
Database Lifecycle
Management
Achieving Continuous Delivery
for Databases

Prev
iew

Editio
n

By Grant Fritchey & Matthew Skelton

Database
Lifecycle
Management
Achieving Continuous
Delivery for Databases
By Matthew Skelton and Grant Fritchey

First published by Simple Talk Publishing, 2015

Copyright Matthew Skelton and Grant Fritchey 2015

ISBN: 978-1-910035-09-2

The right of Matthew Skelton and Grant Fritchey to be identified as the authors of this book has been

asserted by Matthew Skelton and Grant Fritchey in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act

in relation to this publication may be liable to criminal prosecution and civil claims for damages. This book

is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or

otherwise circulated without the publisher's prior consent in any form other than which it is published and

without a similar condition including this condition being imposed on the subsequent publisher.

Cover Image: James Billings

Typeset: Peter Woodhouse and Gower Associates

A WORD ON LEANPUB
We are developing this book using 'Agile' publishing; producing and then refining content
in relatively short, iterative cycles. The outline that follows reflects our current thoughts
on the topics and ideas that we need to cover, in order to illustrate how to apply Database
Lifecycle Management techniques through all critical stages in the life of a database.
However, this can and will change and evolve as we progress, and as we receive feedback
from readers.

We’d love to hear your thoughts!
If you spot errors, issues, things you think we've missed, or an idea you think is worth
exploring further, please do let us know, by contacting DLMBook@red-gate.com

TABLE OF CONTENTS

Sections listed in blue and bold are included in this special preview

Introduction: In a world without effective Database
Lifecycle Management

Why you need DLM
T-R-I-M database processes to reduce risk
The book sections

Section 1 - DLM foundations
Section 2 – Enabling DLM in the enterprise
Section 3 - DLM for the relational database
Section 4 – DLM beyond development
Section 3 - DLM and the data ecosystem

Who should read this book?
Resources
Feedback

Section 1 - DLM Foundations
1. Databases and change
2. How DLM works
3. Core DLM practices
4. Stumbling towards database change management: a case study:

4.1 "I've put all the files in this folder"

4.2 Rapid business expansion, no IT planning
4.3 Deeper data architecture problems
4.4 Lack of testing
4.5 Pain pushing changes between environments
4.6 Data architecture redesign
4.7 ORMs and the "stateful versus migrations" debate
4.8 A better development model
4.9 Automated database deployment
4.10 Compliance

Section 2 - Enabling DLM at the Enterprise Level
5. How CIOs/CTOs can enable DLM
6. Team structure/challenges
7. Core practices to enable non-breaking changes
8. Operational considerations: the "operations first" approach

Section 3 - DLM for relational databases
9. Version control for DLM
10. DLM for database builds and migrations

10.1 Build, migrations, upgrades, releases and deployments
10.2 What is a database build?
10.2.1 What's in a build?
10.2.2 Pre- and post-build processes
10.2.3 Generating the build
10.3 What is a database migration?
10.3.1 State-based approach
10.3.2 Evolutionary change scripts
10.4 What is different about a DLM build or migration?
10.4.1 DLM database builds are automated
10.4.2 DLM database builds are frequent
10.4.3 DLM database builds are consistent across environments
10.4.4 DLM database builds are tested

10.4.5 DLM database builds are instrumented
10.4.6 DLM database builds are repeatable, measureable and visible
10.5 Database builds and migrations in more detail
10.5.1 Database-specific build considerations
10.5.2 What database objects need to be built?
10.5.3 Server-based objects that need to be built with the database
10.6 Conclusion

11. CI for databases
12. Testing databases
13. Release / deployment
14. Monitoring and feedback
15. Issues tracking for DLM

Section 4 - DLM beyond Development
16. Configuration management
17. Access control / security
18. Audit, traceability, compliance
19. Documenting databases
20. Reporting

Section 5 - DLM and the Data Ecosystem
21. Hybrid database environments
22. Operational models
23. DLM for ETL systems
24. Content Management Systems (CMS)
25. Business Intelligence (BI)
26. Data retention, discovery and curation

9

Introduction

In a world without database lifecycle
management

It is 9am in the office of InfiniWidgets, Inc., a company that originally

produced and shipped widgets for use in the food industry, and that now

offers a SaaS-based manufacturing plant tracking system for its clients.

The company is successful and has a large database with orders and

inventory records dating back to its inception, 17 years ago. Its four

software development teams work on various different aspects of the

internal Order and Inventory (OI) system, as well as the customer-facing

Factory Management (FM) system.

Jess, the lead software developer from the FM team, and acting Scrum Master, is
frustrated. The database changes were supposed to go live today but the scripts are still
under review by the database administration (DBA) team. She's had no update via email
or the ticketing system to tell her when the changes will be ready. She informs the project
manager of the delay, who fires off an impatient email to the DBA team.

Bal, in the DBA team, is multi-tasking as fast as he can. He's just finished some urgent
schema updates that the OI team requested yesterday, and it took longer than he hoped,
as the scripts were a bit of a mess. He's now working on a ticket from the FM team and
they are not happy about the delay. His heart sinks when he sees how the numerous

10

requested index modifications and additions are likely to affect the performance of trans-
actions on the FM system.

He fires off a mail to Jess explaining the problem and attaching the performance chart,
wondering aloud why he never gets to see these proposed changes until the last minute. If
he'd seen them earlier he could have warned them that this approach wouldn't work.

Jess views Bal's email and sighs in exasperation. "Why couldn't we have had these metrics
before? We might have taken a different approach!" When Jess explains to her project
manager that the DBA team have rejected the change, he loses his temper. "How many
times do we have to put up with these DBA roadblocks?" He fires off an angry email to
the Head of Delivery before marching up to Sam, the lead DBA, and insisting that the FM
team's changes be deployed that day in order to meet their client commitment.

Under pressure from all sides, Sam feels there is no choice but to deploy the database
changes from Jess's team, even though Bal tells him they are likely to cause problems. Sam
instructs Bal to run the scripts after 6pm that day.

The next day, the problems begin. The DBA team begins to receive emails from the
customer support team saying that five of their main six customers are having problems
accessing their factory management portals. The problem escalates; queries are hanging
due to severe blocking, users are seeing queries fail due to deadlocks. Eventually the
whole site goes down.

A frustrating half-day and hundreds of emails later, the DBA team breaks the bad news
that they need to restore the database from a nightly backup and the customer support
team spend the next three days re-entering lost customer transactions.

If this tale, fictional as it is, strikes notes of familiarity with you, then you should find all or
parts of this book helpful.

11

Why you need DLM
If you work for an organization that produces database-driven software systems, and
the database needs frequent or periodic changes to features, functionality, or data, then
this book is for you. It describes how to apply the business and technical approaches of
Database Lifecycle Management (DLM) to make all database processes more visible,
predictable, and measurable, with the objective of reducing costs and increasing quality.

Modern organizations collect large volumes of data, in a range of formats and from a
range of sources. They require that data to be available in a form that allows the business
to make fast decisions and achieve its strategic objectives. The DLM approach acknowl-
edges the dual reality that databases are becoming increasingly complex and challenging
to develop and maintain, in response to the business's demand for data, and that we must
be able to adapt even complex databases in response to changing requirements.

Given these demands, traditional manual approaches to database changes become unsus-
tainable and risky. Instead, we need to increase automation whilst retaining and using
the expertise of people who understand our organization's data. We need team structures
that encourage communication. We need a framework within which to make simple,
stepwise improvements to our core database build, test, and delivery processes, and then
to apply the workflow that stitches together these otherwise disparate processes into a
coherent, automated pipeline to database delivery. We need to make databases easier to
maintain, using instrumentation, and by considering their support requirements as part
of the design process.

DLM will help you achieve these goals. The scope of DLM is, as the name suggests, the
entire useful life of a database. DLM starts with aspects of design and data architecture,
encompasses the database development and delivery processes, and extends to the
support and maintenance of the database while it is in operation. It aims to ensure that
an organization has in place the team, processes, methods, business systems, and tools
that will allow it to design, develop, and then progressively refine even the most complex
databases, with the minimum di¤culty.

12

This book will explain how to use DLM to:

• Automate many of the critical processes involved in the design, development, delivery,
and ongoing operation of a database

• Improve the organization's knowledge of the database and related applications

• Identify opportunities for optimization

• Encourage technical and organizational innovation

• Ensure that the database supports your key business goals, and drives strategic decision
making, within the enterprise

The overall goal is to help you evolve databases by a process of continuous, incremental
change, in direct response to the changing data requirements of the business, and to
improve the delivery, operation, and overall quality of your database systems.

T-R-I-M database processes to reduce risk
Making changes to database-coupled systems can often be di¤cult enough within organi-
zations, but when those changes need to be made more frequently, more rapidly, and
more reliably traditional manual approaches to database changes become unsustainable
and risky. Historically, organizations who rely on these manual approaches have delayed
or avoided making changes to database-coupled systems due to the perceived risk and
complexity.

However, organizations that lag behind in the technical practices that allow change will
find themselves at a disadvantage. Their competitors innovate quicker. Funding is moved
to organizations that can make more effective use of scarce resources. The speed of
change in the technology sector leaves them at the mercy of legacy, unsupported technol-
ogies, costly outdated billing models, and even security vulnerabilities.

13

Throughout the book, we describe a range of critical database processes in the database
lifecycle, from initial design, governance, development, testing, release, deployment and
through to ongoing operations and maintenance. We identify typical problems associated
with ad-hoc, manual approaches to each process, along with the associated business risks.
We highlight common technical issues, bad practices and behaviors, and risks, depending
on how the team tackles that process, and then describe how stepwise application of
DLM methods help tame and then systematically improve that process, making it more
Traceable, Repeatable, Improvable and Measurable (T-R-I-M):

• Traceable/Visible – processes are visible to all teams, and to the broader business, from
very early in the project

• Repeatable – processes are automated, tested and therefore predictable and repeatable

• Incrementally Improved – processes are connected by workflows that provide the
necessary information to drive continuous short cycles of improvement

• Measurable – processes are instrumented and logged so that errors and deviation from
predictable behavior are corrected quickly

We start from ad-hoc, manual approaches to a particular database process (such as
testing) and move logically towards an approach that is automated, integrated, measured,
and standards-compliant. This progression gradually reduces risk, by making the process
more visible, predictable, and measurable. The approach is based loosely on the idea of a
"Capability Maturity Model" (described in more detail in Chapter 1).

As a by-product of this approach, we arrive at a structured series of problems and
associated solutions. For instance, in the chapter on "DLM for ETL systems," we see:

• Challenge: Constant changes to the ETL data format, by the data supplier, hampers the
team's ability to improve the quality of the ETL processes

14

This challenge has several solutions, including:

• Solution: Insist on data format/schema standards for ETL

For a given skill or method, it means you can identify where you are now in terms of your
current approach, and the associated risks, and then see what to aim for next in terms of
process improvement. It's a structure that we hope also provides fast access to solutions
to specific problems, without having to cover the preceding material in depth.

You may even find it beneficial to print out the Contents section of a chapter on large-
format paper in your team area to help with tracking progress with DLM.

The book sections
The book splits down broadly into five sections.

Section 1 – DLM foundations
Section 1 describes exactly what we mean by Database Lifecycle Management.

We start by discussing the key technical, organizational and philosophical 'barriers' to
making the database, relational or otherwise, a willing participant in practices such as
continuous integration, test-driven development, and minimum viable product, which
enable incremental change, and the continuous delivery of new functionality to the users.

Next, we define precisely what we mean by Database Lifecycle Management, and its
benefits. We describe the key DLM skills, or working methods, which will support a
continuous and incremental approach to database change, establish predictable delivery
times and result in higher quality, more maintainable database applications. We also

15

describe, broadly, the data and system architecture, design approaches, team structures,
and tools that can help with the adoption of DLM techniques.

We finish the section with a real life DLM case study, from Frazier Kendrick, called
Stumbling towards Database Change Management. Frazier worked for 15 years as a DBA
and IT Manager in the insurance and financial markets. He describes a world in which
database change processes were chaotic at best, where IT improvements were funded
only when there was little alternative, rather than as part of a longer-term strategic plan,
and teams succeeded through periods of 'heroic endeavor', in response to very short-term
priorities and targets. Nevertheless, despite this, he did witness a slow journey towards
more managed and optimized systems, where database or application changes could
be made relatively quickly, and with less disruption, lower risk and fewer surprises, and
a semblance of proper IT governance was a reality, with the development team more
generally accountable to the business as a whole, for the changes they wished to make.

Section 2 – Enabling DLM in the enterprise
Section 2 explains what sort of thinking and structures that must be present at the
organizational level in order to enable effective DLM. Like any form of significant organi-
zational change, DLM cannot be purely a grassroots, bottom-up process. You'll need
support from whoever is the technical decision maker, you'll need to consider the team
structures that will support DLM most effectively, the personalities within your team, and
how your teams are rewarded and for what.

DLM means arriving at a set of practices that help us to manage the entire lifecycle of
our databases, not just the development cycle. We need to think about maintenance and
operational support, and the needs of other teams within the organization, such as those
responsible for data analysis. We need to consider what an "operations first" approach
really means to the design and development of our database applications. It means we
need to look beyond the immediate world of SQL scripts and database backups to the
approaches required to support data analysis/mining systems, to issues of data strategy
and traceability for audit, and much more.

16

We close section 2 by reviewing, at a high level, some of the core techniques, such as use
of version control and well-defined interfaces that decouple application and database,
without which any DLM effort will flounder. .

Section 3 – DLM for the relational database
Section 3 explains in deeper, strategic detail how to apply DLM techniques to the design,
development, deployment, and maintenance of the relational database which, for many
decades, has been at the heart of an organization's data.

It will describe the database design, build, test, and deployment processes that we need to
consider, in order to manage to the database schema, data, and metadata for a database,
along with the DLM techniques and associated workflow that will allow the team to
tackle each process in an automated, integrated, and measurable way.

Section 4 – DLM beyond development
Sections 4 looks beyond the foundational DLM practices that are essential to building
a database development and delivery pipeline, to the broader needs of the organization.
It will consider the fundamental requirements of access control and configuration
management that are essential when deploying to production. It will discuss the need for
sustainable automated testing and for traceability, reporting, documentation and so on.
In particular, it will consider the topics of governance and compliance, and to establish
accountability and visibility for any changes that affect the organization's data.

17

Section 5 – DLM and the data ecosystem
Section 5 considers the applicability of the practices and methods described in Section
2 to the broader "data ecosystem", to the ETL process that supply the data, BI systems
that must analyze it, as well as to the design, development, delivery, and maintenance of
non-relational databases and other supporting, non-transactional systems.

We describe relevant DLM techniques within organizations that have experienced a
proliferation of different types of databases, such as graph-, column-, and document-
oriented databases, alongside structured, relational data. This is often as a result of
changes in development practices, such as adoption of application architectures based
around containers and microservices, as well as changes in the type and volume of data
that must be collected and analyzed.

Section 5 closes by asking the question "where next?" What new data challenges are on
the horizon? What are the emerging new technologies will enable our data systems to
cope with them?

Who should read this book?
We have tried to write a book that appeals to anyone with an interest in making databases
changes smoother, faster, and more reliable. As far as possible, we avoid industry jargon
in favor of simple, straightforward terms and descriptions.

This book offers practical but strategic-level advice on how to tackle the various aspects of
database change automation, as illustrated by the Problem-Solution approach described
previously. It does not contain hands-on examples, extensive code listings or technology-
specific walkthroughs. We will not describe, for example, how to go about setting up a CI
Server using a specific tool such as TeamCity, although we will present the various alter-
natives, pros and cons where possible and relevant, and resources for further details.

Database Lifecycle Management encompasses a broad set of practices, requires collabo-
ration and coordination of activities across many different parts of the organization and
therefore involves a broad cross-section of an organization's IT staff. As a result, this is
a slightly uncommon book in that it is aimed at several different readers, and should
probably be read slightly different depending on who you are and what you need.

When writing this book we have kept in mind three broad areas of responsibility, and
typical associated job roles:

Governance
CTO
Head of Program Management
Head of IT

Operations/Administration
Database Administrators
Systems Administrators
Release Managers

Software Development
Database and Application Developers
Testers
Project Managers

Throughout the text we use these icons to indicate content of particular relevance to
each broad category of job group. However, we expect that people from any of these roles
will benefit from reading the entire book because each group understanding the needs of
other groups will be beneficial for all.

We have used the established technique of developing user personas in order to validate
the material and focus of the different parts of the book. Appendix A provides a series of
full-page Personas, describing our understanding of the knowledge, motivation, and goals
for each of the main job roles.

You may find that the personas help to distinguish better the needs of different groups
within your organization, and so adapt your working practices to better meet their needs.

Feedback
We would love your feedback on the book, particularly in its early stages as a 'lean'
publication. A core tenet of our approach to DLM is early and rapid feedback on changes,
and this is the approach we have adopted when writing the book. All feedback, positive
and negative, will help us make the book as relevant and useful as possible.

As chapters become available, we will post them to:

www.leanpub.com/database-lifecycle-management

We will then progressively refine the content based on your feedback, which you
can submit using the comment form at the above URL or by sending an email to
dlmbook@red-gate.com

Look forward to hearing from you!

21

Section 1
DLM Foundations
Covering:
1. Databases and change
2. How DLM works
3. Core DLM practices
4. Stumbling towards database change management:

a case study (included in this preview)

22

4: STUMBLING TOWARDS
DATABASE CHANGE
MANAGEMENT: A CASE
STUDY
By Frazier Kendrick

I worked for 15 years as a DBA and IT Manager in the insurance and financial markets. The scale of change in

the insurance and financial markets is such that there is little time for the application or database developer

to sit back and work out ways of improving the delivery process. Over time, however, it is possible to improve

the process so that individual heroics are required less and less as release and deployment become more man-

aged and predictable. It can be messy and error-prone at times but the long-term benefits make the struggle

worthwhile.

When I first started out, 'chaotic' would be the best word to describe our approach to the design, develop-

ment and ongoing maintenance of our business applications and data. I remember vividly the "Wild West"

days when, with only a database backup as a fallback policy, I'd make ad-hoc database changes directly to

production with little to no testing. I learned the hard way that processes that can survive for short periods,

with a slice of luck and when working on relatively small systems and in small teams, become untenable as

the team, systems, and business ambitions grow.

It would be nice to be able to say that as the companies I worked for grew and matured, so I witnessed a

smooth technical and cultural change that allowed us to continually refine and optimize our IT systems

in a planned and structured way. In truth, it was a lot messier than that. Some of the sensible models

that exist for continual process improvement, such as that enshrined in the CMMI Maturity Model from

Carnegie Mellon University, are barely on the radar of many organizations. My experience in the industry

Section 1: DLM Foundations

23

was characterized by periods of 'heroic endeavor', in response to very short-term priorities and targets.

IT improvements were funded only when there was little alternative, rather than as part of a longer-term

strategic plan.

Nevertheless, in fits and starts, we did move gradually and sometimes painfully towards more managed and

optimized systems, where database or application changes could be made relatively quickly, and with less

disruption, lower risk, and fewer surprises. By the time I left the finance industry, our testing was automat-

ed, deployments were "1-click", and a semblance of proper IT governance was a reality, with the develop-

ment team more generally accountable to the business as a whole, for the changes they wished to make.

"I've put all the files in this folder"
In my early days as a database developer-cum-reluctant DBA (early 2000), I was working in financial ser-

vices, developing and managing some in-house trading software for a small hedge fund.

The trading system had an Access front end and a SQL Server database. Change management was rudimen-

tary. There was no version control of any kind. A "release" entailed shouting to the other developer, who

was really a trader, to inform him that "I've put all the files in this folder." All changes were made live to the

production system, after a brief sanity check. It was quite a small operation, but the trading system was still

dealing with a few $100 million of people's money.

Later, this hedge fund management firm merged into another larger hedge fund that had far greater

assets under management (about $5 billion) but if anything an even more chaotic approach to change

management.

Their key business functions were defined in Excel files. The system used SendKeys macros to send instruc-

tions to a DOS-based investments management system. We produced basic reports using some Java compo-

nents to run queries against this DOS database. Nothing was source controlled. All changes were direct to

production. There was no formal issue tracking beyond erratic entries into a central spreadsheet.

Every attempt to introduce a change to a report would involve hacking the Java code, and then running it in

production to see what the new report looked like, hopefully while nobody else was trying to look at it. The

Section 1: DLM Foundations

24

Java code was badly written and it was very easy to make a mistake and blow everything up, at which point,

I simply had to revert to my original file system copy and try again.

My first task was to migrate the database to SQL Server and replace the unreliable SendKeys macros with a

COM interface. Along the way, I managed to get the Java code into source control, well Visual SourceSafe

(VSS) at least. The database code was less of a priority at that point, since making any schema changes

wasn't a realistic prospect.

Eventually, I built a dedicated data mart and moved some of the main business functions out of Excel. I

had devised a new schema for the data mart, and began making more database changes, so I started script-

ing out the database schema each evening and saving it to VSS. I also managed to acquire a second server.

It wasn't called anything as grand as "staging", but it was at least a place where I could break things with

impunity before pushing changes to production. I started using a schema comparison tool (SQL Compare)

to push changes between the two environments.

Rapid business expansion, no IT planning
At this time, the firm had some success in winning new business and shifted from being a specialist hedge

fund into supporting a broader range of product types. It was a period of rapid business expansion, achieved

without giving a great deal of strategic thought to the support functions, including IT.

The business wanted a new trading platform that would drive and support their expanding business inter-

ests. They wanted new functionality, and they wanted it delivered quickly. The IT team grew, and we were

expected to undertake much more ambitious projects.

Our rudimentary and manual change management processes, which showed evidence of strain even when

the development team was relatively small, began to crack. There was no automated workflow around any

of our processes. It all relied on people firstly remembering to check their changes into source control, and

then getting my "okay" before anything went into production. Inevitably, as the team grew, along with the

pressure to deliver, mistakes crept in.

Section 1: DLM Foundations

25

We simply had to make some overdue improvements to our processes. We acquired a third environment,

so we now had Development, UAT/QA (depending on what was required at that time), and production.

We moved from VSS to Subversion, which was a big leap forward in terms of the ease with which we could

make concurrent changes. We also started using SQL Source Control to commit database changes directly

from SSMS, as well as CruiseControl as a build server and JetBrains' YouTrack for issue tracking, in place of

Excel.

Thanks to these improvements in our development and deployment processes, we managed to deliver some

decent bits of functionality for the business, but progress was often frustratingly slow, because we were

working against deeper problems.

Deeper data architecture problems
The right tools will help make your application and database change management process more reliable

and predictable, but it's still fundamentally hard to deliver changes quickly and e¤ciently, if the underlying

architecture isn't well-designed, flexible or adaptable. These inadequacies in our data architecture, and a

lack of time for any forward planning caused us a lot of pain.

In terms of IT budgets, the focus always tends to be on short-term tactical objectives. The business wants

a new piece of functionality to support a current objective, and needs it as quickly as possible. This meant

there was never time to tackle fundamental problems with the underlying data architecture. There was

resistance to the idea that the data architecture was part of the "software stack". Combine this attitude with

artificial deadlines ("I want this by Tuesday") and it meant that tactical decision-making was the norm. Over

time, this actively subverts good architecture.

Each new application tended to be a 'stovepipe' or 'silo', with its own database and its own definition of

a data model. It was hard to adapt the schema for these applications to introduce new features, and even

harder to integrate the data from the various silos when we needed a more unified view of the business

data.

The core problem was that there was no unified understanding of an underlying data model for the busi-

ness. In the data model, we had to represent important business entities such as "asset classes" and "risk

Section 1: DLM Foundations

26

categories". If there's no central definition of these entities, what they mean, and how they are defined then

you simply can't correlate data from each silo.

At one point we embarked on a project to upgrade our compliance engine, which would test proposed

trades against a relatively simple set of rules ("The exposure of this fund in US dollars cannot exceed 80% of its

total value"). Each customer would have slightly different rules.

The compliance engine had to integrate data from numerous "stovepipe" databases, perform the test and

feed the result into the central trading system. We were having to manipulate our schemas a fair bit in order

to support these new applications, but without any lead time or forward planning, we ended up creating a

lot of cross database dependencies, linked server dependencies, which would make it truly painful to move

changes between environments.

We took the pain, and stayed late every night for months, and when things went wrong we fought the fires.

We took that pain over and over again for a long time. We knew what the pain was, we knew what the solu-

tion was, but we weren't empowered to step back. We needed to overhaul the underlying data model; we

needed to introduce an abstraction over the database, but senior management felt that the right way to run

a project was to lean on everybody aggressively to "get it over the line", with a promise for time to look into

the "other stuff" later. Of course, that time was rarely found.

Lack of testing
Over this period, a lack of automated testing during development became a major problem. When failures

happened, the first sight of the problem would be through the front-end, and if it didn't report it very

clearly, then you really just had to go through all the connection strings, all the permission sets, and logs,

and try to track down the issue.

I recall one project where we requested a more test-driven approach to the development. The outside

consultancy presented two prices to the CEO, one with testing and one without. The CEO chose the one

without. It seems surprising now, but it wasn't at the time.

Section 1: DLM Foundations

27

We're now well-versed in the case for test driven development but ten years ago it was not the norm. Test-

ing was still someone firing up the application and clicking. That's what people understood it to mean.

The management perspective was to try to hire decent developers who didn't make that many mistakes. It's

a different mind-set. If you think application faults are blunders by people who should be better at writing

software, then the answer is shout at them more, shout louder, lean on them, fire them if you have to, hire

in some new ones then shout at them to make it clear that they're not allowed to make mistakes.

Pain pushing changes between
environments
Connection and permission-related failures were a constant pain when promoting changes from one envi-

ronment to another. We had segregated permission sets for our three environments, but moving anything

from one environment to another was still manual and painful. I lost count of the number of time a stored

procedure had been introduced, but the associated role hadn't been given the correct permissions, and so it

would fail.

By necessity, I spent quite a lot of time smoothing out the process of promoting changes up through the

environments. I built up a collection of scripts that I could rerun relatively quickly, but a lot of the stages

were still manual and it burnt a lot of my time as the reluctant DBA.

Pushing changes down the environments was even more tedious and error prone. Developers would

request a copy of production or a copy of the current UAT for their environments, and I'd stumble con-

stantly into permissions issues, environmental inconsistencies (different numbers of servers, different

linked server definitions), and other ad-hoc complications related to a specific request, such as to introduce

subsets of changes from UAT that hadn't yet been deployed to production.

Another di¤culty we had was imposing the discipline of not making direct changes to the Test/QA envi-

ronment. We wanted testers to feed bugs back down to development, so they could be fixed, and then the

new code tested and promoted back up to UAT/QA from source control. However, it didn't often happen

this way. Our change management processes weren't as slick or automated as we needed them to be; they

Section 1: DLM Foundations

28

took time, and the developers were always busy. As a result, testers would demand privileged access to

UAT/QA in order to make changes and see whether the change that they thought would make their test

pass really did make their test pass. Of course, there was always a risk that without careful oversight, which

of course eats up time, direct changes to these environments would not make it back into the "canonical

source" in source control.

Data architecture redesign
Eventually, we embarked on a project that more or less forced us to rethink our application and data

architecture.

The organization wanted to automate the main middle o¤ce operations and functions, and for Foreign

Exchange trading one of the main functions is to rebalance. By the nature of the Foreign Exchange, the

value of a client's assets in each given currency changes all the time, due to market movement. Rebalancing

meant to bring down or up the exposure to market risk, in a particular area. Exposure can be very volatile,

so we needed to be able to rebalance quickly, very often between very large foreign exchange trades into the

market. At a month's end there would be hundreds of rebalancing trades to be implemented at exactly 4:00

PM on the last day of the month. It was very stressful, and these rebalancing calculations were being done

on spreadsheets!

We hired some consultants to help build the main components of that application and at around the same

time we also had some consultants in to review our IT infrastructure and processes, of the root cause some

of the recurring problems. They came back with a lot of recommendations. Thankfully, one of those recom-

mendations was to implement a new data architecture.

An experienced data architect came in to help us design and build a data architecture that could service the

business properly. It was a ground-up, analytical approach. He interviewed users and IT, enumerated sys-

tems and business functions, came up with a logical data model for the business, which we then reviewed

and tested against real business functions, before coding it into a schema.

Section 1: DLM Foundations

29

With a unified data model in place, we were able to introduce new business functionality at a much-

improved rate, adopting a service-oriented approach, based on Windows Presentation Foundation (WPF)

with a WCF data service, for the rebalancing project, and all future projects.

With the help of a consultant development team, we also managed for the first time to introduce a proper

package of automated tests, running on TeamCity. We deployed from TeamCity into each environment. It

meant that the TeamCity projects were relatively complex, with a lot of environment variables determining

what was going to happen after a build. However, with the new services architecture, it meant that applica-

tion developers could build a WCF services and WPF application, hit a button, and run the test suite. If it

passed all the tests it was pushed into the test environment, and from there into the UAT environment.

On the downside, despite sorting out the data model, the database was still out of sync with all these posi-

tive testing and deployment changes, and the new smooth application processes exposed how relatively

backward the database processes were. Database deployments or upgrades were still a relatively manual

process, driven by SQL Compare, and we still suffered from a lot of our old problems.

ORMs and the "stateful versus migrations"
debate
We gradually built up a more complete layer of reusable services for all of our applications. In many cases,

a service required a dedicated database that would store only the data required to support that particular

business function.

The application team wanted to adopt a "migrations" approach to managing database changes in sync with

application and service changes, automating database migrations through their ORM (Object-Relational

Mapping) tool, which was NHibernate.

In this approach, the application team developed the data model in the ORM and a member of the DBA

team would then vet the schema to make sure it was consistent in its basic definitions with our underlying

data model for the business as a whole.

Section 1: DLM Foundations

30

Once the data was in its final state, the application or service was required to feed completed records into

our central, relational data store, where we had in place auditing and constraints to ensure all the data

conformed to the rules for that particular business function.

During development, as the team committed each database modification, the ORM generated a migration

script describing that change, which was stored in the VCS. The ORM would automatically run the required

scripts to generate a new build, or to advance a database from one defined state to another (e.g. build 11 to

build 14).

This worked reasonably well in those cases where there was a clean 1:1 relationship between application and

database, and they could change in lockstep. Unfortunately, the application developers were convinced this

was the only way ever to do any kind of change control on databases and wanted to apply it everywhere.

However, we also had databases that were shared between multiple applications, and had different report-

ing responsibilities. We argued that they could not possibly be under the jurisdiction of one particular

service or application, and so began an awful lot of bun fights about ORM versus non-ORM, and use

of migrations versus simply storing in the VCS the current state of each database object. In the end, we

settled on a two-solution approach where application specific databases were built using ORM and man-

aged entirely under that solution, but domain databases, those that supported multiple applications, were

treated differently.

A better development model
When dealing with domain databases, multiple projects would request changes to that database. Initially,

we had only a single shared database development environment for each domain database and we encoun-

tered issues around not being able to freeze an environment without impacting other projects, and not

being able to progress an environment, to support a request from one project, without impacting another.

To address these issues, we switched to a "swim lane" model of development with a separate database

development server for each project team. We had four development environments, DevA, DevB, DevC, and

DevIntegration. In A, B, and C, developers could work on features specific to their project. This gave us the

ability to freeze and unfreeze and progress our environments separately.

Section 1: DLM Foundations

31

We tried to avoid branching as far as possible, because of the pain of merging, especially for the databases.

Occasionally, we needed to implement a feature that cut across project work, and touched multiple services

and apps, forcing us to branch so as not to lose in-flight work. Other than that, we would simply analyze the

current set of work and the likelihood of one project's changes "breaking" another project, when we pushed

the changes to DevIntegration. Generally, we found the answer was no, and we could take steps to mitigate

any likely problems we did foresee.

Each team committed daily during development and we would build that against a copy of production for

all the databases and run tests against that, and dev integration every night.

Automated database deployment
By this stage we had four separate development environments, plus test, staging, UAT, and production. We

also had seven or eight services, three applications and still had half a dozen databases.

I had a central spreadsheet where I tried to keep track of which service, application, or database was in

any given environment at any time, and when a new version had been introduced, but it was becoming

time-consuming and error prone. Also, we were still suffering from a lot of the pain described earlier, when

trying to promote changes between environments.

This situation improved dramatically once we'd adopted a proper release management tool (Red Gate

Deployment Manager, now retired and replaced by Octopus Deploy, with SQL Release) that would help us

manage deployments for both the application and the database. Through a single interface, we now had vis-

ibility into exactly what had been deployed where and when, and eventually arrived at single-click deploy-

ments between development and test environments, and eventually all the way up to production.

We resolved the age-old problem with permission failures, when moving changes from one environment to

the next, by separating out the permissions for each environment into a set of script and environment vari-

ables. We used a Visual Studio (VS) solution for this such that, for example, on a deployment to Test or UAT,

we'd tear down the whole permission set for a database and apply it afresh from the current VS solution,

stored in source control.

Section 1: DLM Foundations

32

After a lot of work, I was able to fit multiple development styles (migrations and state-based, for example)

into that single deployment interface and we were in a much happier place. We also adopted a scheme

where only privileged users could deploy to specific environments. So, for example, in order to deploy to

production, you had to login as a special user, whose password was only known to two people, and all the

other environments would be greyed out. We would perform these production deployments in front of the

people responsible for signing off that change.

Compliance
When I first started out, there was no governance, no real business oversight of what IT did or how. Over

time, however, this began to change, especially in the period following the consultant review.

In practice, this meant that there was now a "gated" approval process for each development effort. A candi-

date piece of work would require a business case and a change control committee would need to approve

the project into the current workload.

During development and test, we'd have a small "release gate", for release of a finished feature to UAT. We

went through many iterations of the release gate criteria before we arrived at something that was useful to

all parties, without causing too much delay or drag. Essentially, it was a wiki page, which we created from a

template and which answered questions such as: What's changing and why? What's the risk? Who's affect-

ed? How are you communicating with them? How are you performing testing in UAT? What is the worst

case scenario? How will you roll back, if necessary? This review process had to involve non-technical people,

so for UAT that might just be business analysts and the head of operations.

For a release to production, the gate was higher and the review process involved a compliance o¤cer, the

CEO, anyone who you could get into a room, but the more senior the better. For each significant change,

such as a software upgrade, or database schema changes to support new functionality, and possibly data

changes as well, we'd present along with the wiki page various 'artefacts' to help describe what was chang-

ing and why and how we'd tested it. This might include test coverage reports from TeamCity or the SQL

comparison report from SQL Compare, and so on.

Section 1: DLM Foundations

33

As a technical manager, it's easy for me to review the tests, the code, and the schema and data changes

and say "this is all correct", but I'm only signing off at a certain level. The compliance o¤cer is responsible

for making sure we're observing the regulatory rules, as well as the client specific rules that software was

designed to implement. They're finally responsible, not the technical team. The technical team would

have to do a lot of education of the non-technical team in order to get them to understand what they were

approving.

The increased visibility we had provided into our deployment process helped with this. For example the

compliance o¤cer could see exactly what had been deployed to UAT and for how long and this gave greater

confidence that the change had been tested thoroughly.

We also spent a long time developing a way to communicate simply what was often complex new func-

tionality, such as to that to perform rebalance calculations. This was as much a problem of describing the

domain language as the actual software change.

Rather than just describe a change to the "Rebalance" software, or why we needed to introduce a new

abstraction to the logical model and therefore a new object to the schema, we had to explain in business

terms why these existed and how we intended to drive the required behavior through the software.

Software development for a specific business domain often requires evolving and reinforcing a domain-

specific language, so we had to introduce and communicate changes to the business users as we developed

the systems.

If all of this hadn't been documented and explained well ahead of time, then the final sign off would be

quite di¤cult.

Summary
When I started out with databases, neither I nor the company I worked for had an idea of the extent of the

techniques and processes that contributed to an ordered and repeatable management of database develop-

ment. In any organization, it takes time and the necessary components have to be introduced step-wise.

There is no single product or other silver bullet that allows databases to be developed quickly, and for

Section 1: DLM Foundations

34

features to be added predictably in line with the requirements of the business. Database Lifecycle Manage-

ment (DLM) requires cultural changes, the learning of techniques, the introduction and integration of a

range of tools and a different way of working with the business. For a business that depends for its existence

on rapid, robust, and scalable system in a fast-changing industry that is subject to regulatory supervision,

the benefits are survival and a good chance of growth.

Section 1: DLM Foundations

35

Section 3
DLM for the
relational database
Covering:
 9. Version Control
10. DLM for database builds and migrations

(included in this preview)
11. CI for databases
12. Testing databases
13. Release and deployment
14. Monitoring and feedback
15. Issue tracking

36

10: DLM FOR DATABASE
BUILDS AND MIGRATIONS
In many organizations, the database build or migration process is infrequent, painful, and
manual. At its most chaotic, it is characterized by a 'trial-and-error' approach, running
successive sets of database change scripts that make, undo, and then redo changes until
finally stumbling upon a working database state.

An unreliable database build or migration process will lead inevitably to delayed and
unreliable database deployments. Firstly, this means that the database deployment
process becomes a bottleneck for all other deployment processes. Each upgrade of an
application must wait while the manual steps required for the database deployment are
navigated. Secondly, because these processes are manual, they are much more likely to
be error prone. This means that the application deployment is waiting on a database
deployment that may not even be correct when it eventually gets finished.

Many organizations have been living with this sort of pain for a long time. This chapter
will focus on the first step to removing this pain: understanding what comprises a
database build, and what comprises a migration, and then how to apply DLM techniques
to make these processes automated, predictable, and measurable. Subsequent chapters
will tackle testing and continuous integration, and then guiding the build/migration
artefact through the release and deployment processes.

Section 3: DLM for the relational database

37

Builds, migrations, upgrades, releases, and
deployments
Quite frequently, terms such as build, migration, upgrade release, and deployment tend
to be used rather interchangeably. It leads inevitably to confusion. You may find subtly
or even wildly different definitions elsewhere, but this is how we define the terms in this
chapter, and throughout the book.

• A Database build – the process of creating a version of a database from its constituent
DDL creation scripts. It will create a new database, create its objects, and load any
static data. The build process will fail if the database already exists in the target
environment.

• A Database migration – the process of altering the metadata of a database, as defined
by its constituent DDL creation scripts, from one version to another, whilst preserving
the data held within it.

• Database migration using an automatically-generated differential script – The
source scripts store the current state of each object in the database. Rather than
executing the source scripts to build the database, a differential script is created
dynamically, and subsequently edited where necessary, to effect the change between
the two versions of the database.

• Database migration using immutable change scripts – deploying the same set
of immutable scripts in a pre-defined order, starting at the current version of the
database.

• Database upgrade – a Database migration to a higher version.

• Release – making available outside the development environment all the scripts and
supporting files necessary to create a version of the database that will support the new
version of the software. At a minimum the release will contain the version number
of the release, and the scripts from source control required to build the version being
released. If an older version of the database exists, it will also contain the necessary

Section 3: DLM for the relational database

38

migration scripts. It is likely to also include documentation, deployment packages, and
configuration files.

• Deployment – the process of taking a database release through the Testing/
Compliance/Staging/Production phases, which will include making all necessary
changes to supporting systems and services.

A build, according to the strict definition provided above, is a development-centric
technique. Builds will be performed many times during the development process. In
other environments, such as Production or Staging or User Acceptance Testing (UAT),
we sometimes use the term 'the build' more generically to mean "the artefact that will
establish the required version of the database in a given environment". In almost all
cases, except for the very first, the build will be accomplished via a migration, in order to
preserve existing data.

What is a Database Build?
A 'build' is a term used in application development for the process of creating a working
application from its constituent parts, including compilation, linking, and packaging in
the correct order. It will do everything required to create or update the workspace for the
application to run in, and manage all baselining and reporting about the build.

Similarly, the essential purpose of a database build, according to our strict definition of
the term, is to prove that what you have in the version control system – the canonical
source – can successfully build a database from scratch. The build process, fundamentally,
is what tells the development team whether or not it's possible to create a working appli-
cation from the latest version of the committed code, in the source control repository.

During development and testing, builds need to be performed regularly, and therefore
need to be automated and instrumented. If a build breaks, or runs abnormally long, then
the team need access to detailed diagnostic information and error descriptions that will
allow them to identify the exact breaking change and fix it, quickly.

Section 3: DLM for the relational database

39

Since we're creating an entirely new database from scratch, a database build will not
attempt to retain the existing database or its data. Many build processes will fail, by
design, if a database of the same name already exists in the target environment (rather
than risk an IF EXISTS…DROP DATABASE command running on the wrong server!).

Microsoft database build definitions

Microsoft refers to a build as the mechanism that creates the necessary objects
for a database deployment. A build, per their definition, is just the act of creating
a script or a DACPAC file. They then refer to the act of applying that script to the
database as publishing the build.

A significant build is the one that produces the release candidate, and a deployment
involves the same basic build process, but with extra stages, for example to account
for the production server settings, and to integrate the production security, and incor-
porate production architecture that isn't replicated in development (such as SQL Server
replication).

Some databases have a more complex release process that requires a separate build for a
number of different variants of the database, for a range of customers.

What's in a build?
Firstly, the build will create the database, including all relevant database objects, such
as tables, stored procedures, functions, database users, and so on. To build a functioning
database from scratch, you need to take the current version of the DDL scripts from the
Version Control System (VCS) and execute them on the target server in the right order.
Firstly, you run a script to create the database itself, then use that database as the context

Section 3: DLM for the relational database

40

for creating the individual schemas and the objects that will reside in them, all in the
correct dependency order.

A database build may also include a data load. The data could be lookup (or static)
data used by the application. It may even include operational data loaded through an
automated process.

For a database to work properly, when it comes time to deploy to production, or to
production-like environments, the canonical source, in the VCS, will also need to include
components that are executed on the server, rather than within the database. These
server objects include scheduled jobs, alerts, and server settings. You'll also need scripts
to define the interface linking the access-control system of the database (database users
and roles) to the server-defined logins, groups, and users so that the appropriate users
can access the roles defined within the database. We'll cover server-level objects in a little
more detail later in the chapter.

Therefore, if a build succeeds and is validated, it means that all the DDL source code,
assemblies, linked servers, interfaces, ETL tasks, scheduled jobs, and other components
that are involved in a database have been identified and used in the right order. This
makes it more di¤cult for a subsequent deployment to fail due to a missing component,
and all of the people involved in the database lifecycle can see, at any stage, what compo-
nents are being used.

Pre- and post-build processes
A build process will generally include pre-build and post-build processes. Various
automated or semi-automated processes are often included in the build but are not
logically part of the build, and so are slotted into one or other of two phases of the build
called the 'pre-build process' and the 'post-build process'. A build system will have slots
before and after the build to accommodate these.

Section 3: DLM for the relational database

41

An important pre-build process, for example, is 'preparing the workspace', which means
ensuring that all the necessary requirements for the build are in place. What this entails is
very dependent on the nature of the database being built, but might include preparing a
Virtual Machine with SQL Server installed on it at the right version, or checking to ensure
that the platform is configured properly, and there is su¤cient disk space.

Typical post-build processes will include those designed to manage team-based workflow
or reporting. For example, we need to log the time of the build, the version being built
and the success of the build, along with warning messages. It might involve email alerts
and could even list what has changed in the build since the last successful build.

Also, of course, there will need to be a post-build step to validate the build. Specially-
devised tests will not only check that the build was successful but that no major part of
the system is entirely broken.

Generating the build
The build process can get complicated, and error prone, very quickly if you're putting
the scripts together by hand. You may have each script stored and then a mechanism,
frequently called a manifest, for calling them in the correct order.

However, there are tools that can automate generation of the build script. Both the
DACPAC (SQL Server) and SQL Compare (Oracle, SQL Compare and MySQL) can read
a number of scripts and combine them together in the right order to create a 'synchroni-
zation' script that can be executed to publish a new database. In effect, a synchronization
script that publishes against an entirely blank database, such as MODEL, is a build script.

Of course, we can use essentially the same technique to create a synchronization script
that we can execute to publish a different version of the same database, i.e. to perform a
migration.

Section 3: DLM for the relational database

42

What is a database migration?
To build a database from scratch, we CREATE all database objects, in dependency order.
In other words, we drop the unit of work and re-create it. However, when deploying
database changes to production, we must of course take steps to ensure that the changes
preserve all existing data. In production, we will generally only perform a database build
once, and then all subsequent changes will be applied using a database migration. In
other words, we use scripts that will ALTER changed objects, while preserving existing
data, and CREATE new ones, thereby migrating the database from one version to
another. Likewise, in production-like environments, such as UAT and Staging, it makes
little sense to tear down and rebuild a large enterprise database, and then load all data,
each time we need to make a minor database change.

In short, a database migration will change a database from one version to the version you
require while preserving existing data. The migration process will use as a starting point
the build scripts for the individual database objects held in source control.

In this book, we try to make a definite distinction between a build and a migration, but
there are inevitably grey areas. For example, Microsoft's DLM solution assumes that every
database 'publication' is actually a migration, using a generated script, even if it is a fresh
build from scratch. In other words, the database build step is followed by a 'publication'
step, which in effect migrates an empty database to the required version.

With any code objects in the database (views, stored procedures, functions, and so on), we
can make any change simply by deleting the current object and re-creating the changed
object. However, with this approach we need to reset permissions on the object each
time. A better approach is to CREATE the object only if it doesn't exist, and ALTER it
otherwise, so that existing permissions on that object are retained (although under the
covers, the object is still dropped and recreated).

In the case of changes to tables, child objects such as columns and indexes can be changed
without requiring the table to be dropped. Of course, all such changes must be performed
in such a way as to preserve any existing data. As described previously, in such cases we

Section 3: DLM for the relational database

43

can perform a migration in one of two ways. In either approach, if the migration scripts
are treated as unchanging, or immutable, once tested, then it means we only need to sort
out a data migration problem once.

State-based approach
The state-based approach is to store in the version control system (VCS) the current
state of the database. For every object, we simply store a single CREATE script, which
we successively modify. We then dynamically generate a differential script to bring any
target database to the same state. As with any script that performs a migration, it is good
practice to retain each differential script, if it is successful. Once it has been successfully
used it should never ever be changed without a great deal of caution and testing.

One problem with automatically-generated differential scripts is that it is not possible to
automatically generate the differential script for some table migrations, if existing data
has to be preserved. However, if the build tool that you use is canny enough, it can use
an existing immutable migration script to 'navigate around' a di¤cult table-refactoring.
Another problem is that comments in and around tables get stripped out of any reverse-
engineered script.

Evolutionary change scripts
In this approach, we simply apply to the target database a set of immutable change
scripts, in a pre-defined order, which will apply all necessary changes. A new version of a
database can be created simply by running these migration scripts to evolve the database
from version to version. This potentially makes any build from scratch a lot easier. Like
many good IT practices, though, the evolutionary approach can quickly be taken to
extreme. Many developers argue that it is unnecessary to hold object-level build scripts
in version control at all, beyond the initial CREATE scripts for each object. The only
requirement is a migration script that takes you between consecutive versions. If these

Section 3: DLM for the relational database

44

are executed sequentially in order, the inevitable result is a successful build as long as they
remain immutable.

Of course, there are downsides to this approach. Firstly, if every script in the VCS is
immutable then the VCS becomes essentially redundant, in terms of its versioning
capabilities. Secondly, it means the database is built by a process akin to the theory of
'recapitulation', doomed to repeat past mistakes. Thirdly, it is much harder to determine
the current state of an object, and the database as a whole, from a long string of change
scripts than it is when each object is defined in the VCS by a single build script.

Finally, as the database evolves through a number of versions, a migration can entail
running a very large number of change scripts. Some teams consider performing a 'rebase'
at certain versions. For example, if we perform a rebase at version 3, we transform the
string of existing change scripts into a single build script for that version. Then, if we are
building version 4 of the database, then we can run the build script from new to 3, and
then merely create change scripts to get from 3 to 4.

The evolutionary approach suits a development practice where there is one or very few
developers working on the database or schema, but it breaks down in a team-based devel-
opment. For a DLM-based build it is suspect not only because it doesn't scale, but also
because it prevents others seeing individual object scripts unless these are also, redun-
dantly, stored in the version control system. These problems can be circumvented with
the necessary specialist tooling, but is otherwise impractical when taken to extreme.

Typical Problems with manual database builds and
migrations
most of the problems I see with the a team's database build and migration processes stem
from the fact that they do not rigorously enforce the discipline of always starting from a
known version in source control, and regularly testing to prove that they can establish the
required version of the database, either via a build-from-scratch, or a migration.

Section 3: DLM for the relational database

45

A fairly typical approach goes something like as follows. The development team make
changes to a shared database, either directly or with the help of a database adminis-
trator (DBA) or a database developer. When it comes time to release a new version of
the application, the development team works with the DBA to come up with a list of
just the database changes that are needed to support the new version. They generate a
set of scripts, run them against the database in the test environment (although, in the
worst cases, this is done directly against a production environment), and then build the
application.

Testing reveals that some of the necessary database changes aren't there, so additional
scripts are generated and run. Next, they discover that some scripts were run that
implement database changes that the application is not yet ready to support. They
generate another set of scripts to roll back the unwanted changes.

This chaotic process continues until, more by perseverance than planning, the appli-
cation works. The team now have a whole new set of scripts that have been created,
manually, and that will have to be run in the correct order in order to deploy to the next
environment.

This causes all sorts of problems. Development and testing are slowed down because of
all the additional time needed to identify the changes needed. The manual process of
generating scripts is time-consuming and very error prone. It leads to delayed function-
ality, and often to bugs and performance issues. In the worst cases, it can lead to errors
being introduced into the data, or even loss of data.

To avoid this sort of pain, database builds and migrations should be automated,
controlled, repeatable, measurable, and visible.

Section 3: DLM for the relational database

46

What is different about a DLM build or
migration?
A build-from-scratch is a regular health-check for the database. If all is well, then
automated builds will run regularly and smoothly. Assuming all necessary database and
server-level objects have been accounted for in the build, the team will be confident that
little can go awry as it is shepherded through the release process to deployment. Likewise,
a reliable, automated, and tested migration process will very significantly reduce the
likelihood of introducing data integrity issues into the production database.

Of course, if the database builds and migrations break frequently, then all bets are off. A
serious problem with a database deployment will knock the confidence of the affected
organization, perhaps to the point that they request that the team perform less frequent
releases, until the database build issues are resolved. Unreliable database build and
migration processes lead to slow delivery of the functionality needed by the business.
Anything that increases the number of errors can also directly impact the business with
bad or missing data, or in extreme cases, even data loss. Getting your database deploy-
ments under control within the development environment is an extremely important
aspect of Database Lifecycle Management.

Throughout the remaining sub-sections, and mainly to avoid the tedium of writing and
reading "build or migration" a hundred times, we use the term "build" more generically
to mean the process that establishes the required version of the database. If the advice is
specific to the build-from-scratch process or the migration process, I make that explicit in
the text. Most of the advice is relevant to either process.

DLM database builds are automated
To make a database build easy, individual scripts should create a single object as defined
by SQL Server (a column or key, for example, is not an object). Where this is the case, and
the scripts are named systematically by the schema and object names (object names are

Section 3: DLM for the relational database

47

only guaranteed unique within a schema), then it is possible to generate automatically
an accurate list of scripts, in the order in which they should be executed. Unfortunately,
this ideal world is seldom found. To allow a database to be built that has scripts with a
number of different object in them, you either need to create, and subsequently maintain,
a 'manifest' file that lists the files in the order of execution, or you should use a tool such
as SQL Compare or DacFx to do the build.

• If using a manifest, keep that in source control with the scripts.

• Label and branch the manifest with the scripts

• If using a differential tool, such as SQL Compare or DacFx, save the generated script in
source control with the appropriate label or branch

A big part of automation is having the ability to both replicate what you've done and go
back and review what you've done. If you keep the manifest or generated scripts in source
control, you'll always be able to do this.

Don't reverse engineer the source code

It is a bad idea to reverse-engineer the source code of an object from your development server.
We all sometimes use the visual aids in SSMS to create objects. The database diagramming
tool in particular is useful for creating the first cut of a database, and there are tools for
creating tables, views, and expressions that can speed the process up. However, the job you are
doing must end with the script that was generated by the design tool being edited so as to add
comments and then save to the VCS.

Although a build tool or proprietary build server is often used to build databases, it is not
necessary. You merely need an automated script that executes each script serially in order,
and SQLCMD.exe can be used easily to execute a SQL file against a target server.

Section 3: DLM for the relational database

48

If you are using a shared development server with the database in it, and it is kept entirely
up to date with source control (all current work is checked in) then you can calculate the
build order with a SQL routine that does a topological sort of the dependencies between
objects to list first the objects that have no dependencies and then successively, all the
objects that are depending only on already listed objects until all objects are accounted
for. You can, of course, create a PowerShell routine that calls SMO to do the task for you.
If all else fails, you can use SSMS to generate an entire build script for you from the live
database and use that creation order for your manifest.

DLM database builds are frequent
During development, the build process should be done regularly, because it tells you
whether it is possible to do this with the latest version of the committed code, and allows
you to keep all the team up to date. The canonical database that results from a successful
build can also be checked against other development versions to make sure that they are
up to date, and it can be used for a variety of routine integration and performance tests.

Frequent or overnight builds can catch problems early on. A build can be scheduled daily,
once all developer changes have been committed and if necessary merged, or after every
significant commit, when any component parts change. Testing is performed on the most
recent build to validate it. Usually, builds are done to the latest version, but with version
control, ad-hoc builds can occasionally be done when necessary on previous versions of
the code to track down errors, or to revive work that was subsequently deleted.

DLM database builds are consistent across
environments
Do you need a different build process for development, test, integration, release, and
deployment? Essentially, the answer is no. The same build process should be used,
with any necessary modification, for development, test, and production. It should be

Section 3: DLM for the relational database

49

automated, and the modifications for the different contexts should be in the manifest
rather than in the scripted process itself. All these manifests can be saved either in devel-
opment source control or in the CMS.

The only data that should be held in source control is that of 'enumerations', 'lookup-lists'
or static data, error explanations, and such that are necessary for the database to work.

All other data is loaded in a post-build script as dictated by the manifest, unless the
build takes place against a version that already has the required data. Test data should be
generated to the same distribution, characteristics, and datatype as the potential or actual
production data, and each type of test is likely to require different test data sets. Perfor-
mance and scalability testing will require a range of large data sets whereas integration
tests are likely to require standard 'before' and 'after' sets of data that includes all the likely
outliers. Test data is best loaded from 'native' BCP format using bulk load.

A build process within development will generally use only local resources. This means
that up-stream ETL processes will be 'mocked' su¤ciently for them to be tested. Allied
databases, middleware services and message queues will either be skeletal or mocked.
Likewise 'downstream' processes that are 'customers' of the data from the database are
generally also 'mocked'.

A development build process will also have a security and access control system (e.g.
GRANTs and user accounts) that allows the developers complete access. If it is role-based,
then the production access control can easily be used for a production build during the
deployment process. Typically, operations will want to assign users via Active Directory,
so the production build will have a different set of Windows groups created as database
users, and assigned database roles as befits the security model for the database.

In order to work this magic, all DLM solutions give a high degree of freedom to what
is included, or not, in a migration script. Templates for such problems as references to
external systems, linked databases, file paths, log file paths, placement on a partition
scheme, the path to full-text index files, filegroup placements or filesizes can be used that
would produce different values for each environment.

Section 3: DLM for the relational database

50

DLM database builds are tested
Of course, we need to validate not just that the build or migration succeeded, but that
it built the database exactly as intended. Is your database and data intact? Do all parts of
your application and important code still function as expected?

By incorporating automated testing into your build process you add additional protec-
tions that ensure that, ultimately, you'll deploy higher quality code that contains far fewer
errors. Chapter 12 of the book addresses testing in more detail.

DLM database builds are instrumented
Once you have the build process automated, the next step is to set up measurements.
How long does a build take? How many builds fail? What is the primary cause of build
failure?

You need to track all this information in order to continuously improve the process. You
want to deliver more code, faster, in support of the business. To do this, you need to get
it right. If you're experiencing the same problems over and over, it's best to be able to
quantify and measure those so you know where to spend your time fixing things.

As the databases increase in number, size, and functionality within an organization, the
complexity and fragility of the build process will often increase, unless serious thought
has been given to structuring and modularizing the system via, for example, the use of
schemas and interfaces.

A common blight of the database build is, for example, the existence of cross-database
dependencies. At some point, the build chokes on a reference from one object to a
dependent object in another database, which it can't resolve for one reason or another.
At this point, it's very important that the build process is well instrumented, providing
all the details the developer needs, including the full stack trace if necessary, to pinpoint
with surgical precision the exact cause of the problem.

Section 3: DLM for the relational database

51

In poorly instrumented builds, it's more likely the developer will see a vague "can't find
this column" error, and will be left to sift through the remaining few thousand objects
that didn't load to find the one that caused the problem. No wonder, in such circum-
stances, database builds and releases are infrequent and often delayed, and therefore
potential problems spotted much later in the cycle.

DLM database builds are repeatable, measureable,
and visible
If a build is successfully automated, it is much more likely to be repeatable. The
governance process will be more confident in the time that must be allowed for a build
process and validation, and will be much more confident in a successful outcome. This
makes the entire end-to-end delivery process more predictable.

An automated build can be more wide-ranging, building not only the database, but also
any automatically-generated build notes and other documentation such as help pages.

It is easier to report on an automated build, as well as simple facts such as the time it
took and whether it succeeded, the number of warnings, and even an overall code-quality
metric, or code policy check, if necessary. This allows the governance process to do its
audit and accountability tasks, and firm-up on planning estimates.

Finally, a DLM build is designed to be flexible enough that external dependencies such
as ETL processes and downstream BI can be 'mocked', by creating interface-compatible
stubs, to enhance the range of testing that can be done and allow development to run
independently.

Section 3: DLM for the relational database

52

Database builds and migrations in more
detail
On the face of it, the database build process seems simple; simply build the tables and
other objects in the right order. However, a surprising number of objects can comprise
a successful build, in enterprise databases, and there are many choices to be made as to
how the build processed in case of various eventualities.

Database-specific migration considerations
There seem to be an infinite variety in databases and this is reflected in the number of
options that have to be considered in the build or migration, and subsequent deployment
process.

Is the server version (platform) compatible with the database code?

Different versions and editions of the RDBMS will have different capabilities. It is easy
to produce working code for one version of SQL Server that will fail entirely, work in a
subtlety different way, or with degraded performance, on a different version. A database
is always coded for a particular version of the RDBMS. What should happen if the build is
done on a server instance with a different version of the product?

When updating CLR assemblies, does the process drop blocking assemblies?

SQL Server allows functionality to be written in .NET languages such as C# or VB. By
default, any blocking/referencing assemblies will block an assembly update if the refer-
encing assembly needs to be dropped. How should the build process react if this happens?

Section 3: DLM for the relational database

53

Should the database be backed up before the update is made? (Migration only)

If a build is done as part of a deployment process, then a number of precautions need to
be taken. A database backup is an obvious backstop precaution, though if a deployment
goes wrong, the restore time can be prohibitive.

Should the build be aborted and the changes rolled back if there is a possibility
of data loss? (Migration only)

This is only relevant if an existing database is altered to update it to a new version, using
a synchronization script. Sometimes, if a table is heavily refactored, it isn't obvious to
any automated process how the existing data of the previous version of the table is to
be reallocated, then a manual migration script has to be used instead. This requires the
build process to be aborted and existing changes rolled back. Then a manual migration
script has to be created and tested before being used to migrate a database between two
versions. Subsequently, the migration script is used instead of the automated synchro-
nization script to do the build when the target database is on the version before the
refactoring.

Should the build be aborted and the changes rolled back if there has been drift?
(Migration only)

If the target database is not really at the version it is supposed to be, then someone,
somewhere has done a change. If the build deletes this change then work may be
irretrievably be lost. If this is a risk, then this is time for the anomaly to be investigated:
otherwise the build should go ahead and obliterate the drift.

Section 3: DLM for the relational database

54

Should the collation of the target database be changed to the source database
being built?

A collation will affect the way that a database behaves. Sometimes, the effect is
remarkable, as when you change from a case-sensitive to a case-insensitive collation or
the reverse. It will also affect the way that data is sorted or the way that wildcard expres-
sions are evaluated. This will produce subtle bugs that could take a long time to notice
and correct.

Are we updating or re-creating the database?

A clean build of a database from scratch is much simpler to do, because there is no risk of
over-writing existing configurations or changes that have been done in a manner that is
invisible to the build components. A re-creation is always cleaner, but it doesn't preserve
existing data. It is always better to import data from file in a post-build process but this is
likely to take more time, and if a table is refactored, the existing file-based data will need
to be split and manipulated to fit in the new table structure.

Can database-level properties be changed in the build?

 Code that works under one database configuration can easily be stopped by changing a
database-level configuration item. When a server creates a database, it uses the database-
level configuration that is set in the MODEL database. This may be quite different from
the database configuration on developer servers, and if these differences are allowed the
result will be havoc.

Section 3: DLM for the relational database

55

Should the database being built then be registered as a particular version on the
server?

SQL Server allows databases to be registered, meaning that an XML snapshot of a
database's metadata is stored on the server and can be used to check that no unauthorized
changes have been made. It is generally a good precaution to register a database if you are
using DacFx, but very large databases could require noticeable space.

Can we stop users accessing the database during the upgrade? (Migration only)

This is only relevant if doing a build using a production database as a target as part of
a deployment process. We may require non-breaking online deployments, but will risk
locking and blocking on large tables (a table column ALTER is likely to lock the entire
table).

Should all constraints be checked after all the data is inserted into the build?
(Build-from-scratch only)

This only applies if data is imported into the database as part of the build. In order to
guarantee a fast data import, constraints are disabled for the course of the import and
then re-enabled after the task is finished. By re-enabling the constraints, all the data is
retrospectively checked at once. It is the best time to do it but it could be that more data
has to be inserted later, and so this should, perhaps, be delayed.

Should we disable DDL triggers that are auditing DDL changes, during the build?

Many databases track changes to the database definition as part of an audit. This catches
intruders who are attempting to promote their permissions to gain access to tables.
Unfortunately, these generally need to be disabled for a build as DDL triggers will slow
the build and produce invalid audit entries.

Section 3: DLM for the relational database

56

Do we alter Change Data Capture objects when we update the database?
(Migration only)

Change Data Capture involves capturing any changes to the data in a table by using an
asynchronous process that reads the transaction log and has a low impact on the system.
Any object that has Change Data Capture requires sysadmin role to alter it via a DDL
operation.

Should we alter replicated objects in the database?

Replicated tables will contain special artefacts that have been added to the table when it
became a publisher or subscriber.

Do we drop existing constraints, DDL Triggers, indexes, permissions, roles or
extended properties in the target database if they aren't defined in the build?
(Migration only)

Where operations teams are maintaining a production system, they may make changes
that are not put into development source control. This can happen legitimately.
Normally, changes to indexes or extended properties should filter back to development
version control, but in a financial, government or healthcare system, or a trading system
with personal information, there must be separation of duties, meaning that database
permissions, for example have to be administered by a separate IT role, and the source
stored separately in a configuration management system. To apply a build to a target
database that has separation of duties, permissions and role membership has to be
ignored. DDL Triggers that are used for audit purposes are sometimes used to monitor
unauthorized alterations of DDL, and so obviously cannot be part of development source
control.

Section 3: DLM for the relational database

57

How do we deal with NOT NULL columns for which no default value is supplied?
(Migration only)

If the build involves updating a table that contains data with a column that does not allow
NULL values, and you specify no column default, should the build provide a default to
make existing null data valid?

Developers sometimes forget that, if they are changing a NULL-able column to a NOT
NULL-able constraint, all existing rows with a NULL in that column will be invalid and
cause the build to fail. Sometimes a build that succeeds with development data then fails
when the build is used to deploy the version to production. Of course, the code needs
to be altered to add a DEFAULT to a non-null value to accommodate any rogue rows.
However, some developers want the build to do this for them!

Should the build ignore differences in file paths, column collation, and other
settings?

Many paths and database or server settings may vary between the source and target
environments. For example, there will likely be different filepaths for data and log files,
perhaps different filegroup placements, a different path to full-text index files or for a
cryptographic provider.

There may be other differences too, such as in the order of DDL triggers, the default
schema, extended properties, fill factors, the seed or increment to identity columns,
keyword casing, lock hints, not-for-replication settings, placement on a partition scheme,
semicolons, and other syntactic sugar such as whitespace.

Migration scripts that take an existing database and change it to the new version have
a particular di¤culty. It is not an all-or-nothing task. There are shades of grey. Some
settings, such as file paths, log file paths, placement on a partition scheme, the path to
full-text index files, filegroup placements or filesizes have nothing to do with devel-
opment and a lot to do with operations and server administration. They depend on the

Section 3: DLM for the relational database

58

way that the server is configured. It can be argued that the same is true of FillFactor.
There are dangers in over-writing such things as the seed or increment to identity
columns, or collation. The most curious requirement that has been made is that differ-
ences between semicolons or even whitespace is enough to require an update to the code
in a routine such as a stored procedure or function.

How should the build handle security options, security identifiers, and
differences in permissions, user settings or the role memberships of logins?

Should these be ignored or updated? This very much depends on the context of the
build. It is, for many databases, probably illegal to allow the same team of people to both
develop the database and to determine, if the database is holding live personal, financial
or healthcare data, the access rights or security settings for database objects. Best practice
is for these to be held separately in a central CMS archive by operations, and determined
according to whether the database holds real data or spoofed test data. Within devel-
opment the problem is greatly simplified as long as live data is never allowed. The devel-
opment and test builds can run unhindered. As soon as live data is used, as in staging,
forensic analysis, or production, then all security and access control settings need to
comply with whatever legislative framework is in force.

How should the build handle differences in whether CHECK constraints or
FOREIGN KEY constraints have been disabled?

Constraints can be temporarily disabled for ETL processes and they are sometimes
mistakenly left disabled. It is always a mistake to leave them disabled. If the intention is
to not use them they should be dropped, otherwise anyone inspecting the code might get
the false impression that the database is protected from bad data.

Section 3: DLM for the relational database

59

What database objects need to be built?
There are over fifty potential types of database object in SQL Server. Only base tables hold
data. Many database stray not much further than schemas, database roles, tables, views,
procedures, functions, and triggers.

In SQL Server, tables are objects but the schema that it resides in isn't. Its constituent
parts are child objects or properties in a slightly confusing hierarchy:

Without a doubt, tables are best handled at table-level rather than treating the child
objects in their own right. In scripts generated from DacPacs, Microsoft are rather
inclined to detach foreign keys and extended properties from their parent table for a
reason that isn't at all obvious.

Section 3: DLM for the relational database

60

In SQL Server, in alphabetic order, the database objects include

Aggregates ApplicationRoles Assemblies AsymmetricKeys BrokerPriorities

Certificates Contracts DatabaseRoles DatabaseTriggers Defaults

ExtendedProperties Filegroups FileTables FullTextCatalogs FullTextStoplists

MessageTypes PartitionFunctions PartitionSchemes Permissions Queues

RemoteServiceBindings RoleMembership Rules ScalarValuedFunctions SearchPropertyLists

Sequences Services Signatures StoredProcedures SymmetricKeys

Synonyms Tables TableValuedFunctions UserDefinedDataTypes UserDefinedTableTypes

ClrUserDefinedTypes Users Views XmlSchemaCollections Audits

Credentials CryptographicProviders DatabaseAuditSpecifica-
tions

Endpoints ErrorMessages

EventNotifications EventSessions LinkedServerLogins Routes ServerAuditSpecifications

ServerRoleMembership ServerRoles and
ServerTriggers

Server-based objects that need to be built with the
database
It is a mistake to think that by storing the database objects in source control and building
those that you have the entire database. Some database application objects are stored at
server level and if they are tightly bound to the database logic, then they must be held as
SQL scripts, in development VCS and built with the database. Some server-based objects
are associated with the database application but need entirely different scripts for each
server environment. Operators, the contact details of the person who is alerted when a
database goes wrong, is a simple example of this type of script.

Section 3: DLM for the relational database

61

As we prepare to deploy the database, or database changes, to production, the same build
process must be able to define the appropriate operator in each environment, whether it
be development, test, integration, staging or production.

We need to store in source control the T-SQL scripts to create the latest versions of all
of the required Agent and other server objects. SMO exposes these objects through the
Server and JobServer class, and we can create a PowerShell script, for example, to iterate
over all of the various collections of this class, containing the jobs and alerts and other
server objects, along with associated operators, schedules and so on.

Not every object will be relevant for the application so after running the script for the
first time, you'll have some tidying up to do, weeding out irrelevant objects. You'll need
a reliable way to 'flag' which job, alert, endpoint, or whatever, is part of which database.
There are a few ways to do, one of which is to use the permissions on the resource.
However, using the name is probably the easiest because it's a property common to all the
objects. In some cases, such as with job steps, things are easy since SQL Server allows you
to assign them explicitly to a database, but this isn't generally the case. Using the name is
ugly, but it meets the purpose.

Agent Jobs and Job Steps
DBAs use SQL Server Agent Jobs for all manner of tasks, such as running background
processes, maintenance tasks, backups, and ETL. Databases of any size will have Agent
Jobs that are entirely part of the database functionality. Because of this, they should be
stored in the development VCS rather than be 'owned' by Ops and stored in the CMS
archive. Although there could be Agent Job Steps that are little to do with individual
databases, many of them are involved with ETL, such as replication jobs, analysis services
jobs, integration services jobs.

Agent Jobs are generally, but by no means always, T-SQL batches. They can even be
PowerShell scripts, ActiveX Scripting jobs or executables. SQL Server stores jobs for all
databases on the SQL Server instance, all together, in the SQL Server Agent, in MSDB.

Section 3: DLM for the relational database

62

It is best to start with these jobs being in source control. It is not easy to unpick the
scheduled jobs on a server with more than one database on it to script out the ones that
are appropriate to a particular database application

It isn't a good idea to involve several logically separate databases with the one job unless
it is an administrative server job such as backups or maintenance. For application tasks
it is one job, one database. Otherwise, what happens when the database versions get
'out-of-sync'?

Agent Jobs often reference scripts in file locations. Different servers may have these in
other locations so these need to be parameterized in the build script so that the build
process can assign the correct filepath.

It is wise to document the source code of Agent Jobs with the name and description of
the job which database(s) it is accessing. Use the description to provide special detail, such
as a PowerShell script on the server that is called from a PowerShell-based job and which
should also be saved.

SSIS tasks that are called by SQL Agent must be in source control too, along with batch
files that are called from job steps. Is that PowerShell script executing a file as a script
block? (That means that the file must be saved as well.) Are server-based executable files
involved? Someone needs to ensure all of this is in source control and then check they
have not changed since the last deployment (the description field of the job step may
help).

Agent Alerts
Agent Alerts are generally more relevant to the server than the database, but they are
part of the build process. For the application, it is a good practice to set up special alerts
for severe database errors. Operations people will have definite opinions about this.
Alerts should, for example, be fired on the occurrence of message 825 (tried to read and
failed), and a separate alert for each severity 19, 20, 21, 22, 23, 24, and 25. It is also wise to

Section 3: DLM for the relational database

63

alert on severity levels 10 – 16, indicating faults in the database application code, usually
programming errors and input errors. Usually, the end user hears about these before the
developers, or Ops people. There will also be various performance alerts, set up in order
to alert the operator when a certain performance condition happens.

Alert notifications will change according to the type of installations in order to specify
the right recipient. For integration or UA testing, the database developers need to know
about it, whereas in production, the production DBA will need to know about these. The
build needs to take these alerts from the appropriate place, the development VCS or the
operations central CMS archive.

Wherever they are held, we need to script all these alerts and, like jobs, we should use the
name to signal which alerts belong to which database.

Operators
These are the recipients of the alerts, the addresses notified by email of corruption, errors
in code, job failures, or major problems. The operator is likely to be different in devel-
opment, test, integration and production. This means that the script will be different for
each environment. The build process must be flexible enough to deal with settings and
scripts like this that are different for every server environment

Proxy accounts
Proxy accounts, or proxies, are useful when some principals need to access external
resources, but when it is unwise, for security reasons, to grant those necessary extra
permissions to those principals. To avoid having to do this in order to, for example, run a
PowerShell script, we can map, purely for that task, the agent account to another account
that already has these rights. This is generally going to be a database-level security device,
so we need to install those proxies appropriately for the server on which the database is to

Section 3: DLM for the relational database

64

be deployed. You may even need different proxies in development, test, integration, and
production.

Server triggers
Server-scoped triggers track server-wide DDL changes, such as a database creation or
drop, and login attempts to the current server. If specified, the trigger fires whenever the
event occurs anywhere in the current server. Their main use is for server security and
audit, but an application might use them for security purposes.

Linked servers
An application might use linked servers for ETL, distributed database layering or data
transfer. They are sometimes used for archiving old data. We need to install these, with
the application, and it makes things neater for the build process if we obey the following
rules:

• One linked server, one database

• Keep the source of the linked server in source control

• Ensure that the creation or update is repeatable.

Section 3: DLM for the relational database

65

Conclusion
When developing a database application, it is a mistake to believe that database build is a
simple task. It isn't. It has to be planned, scripted, and automated. The build must always
start from a known state, in the version control system. You can then use various means
to generate the scripts necessary for a build or migration. You need testing in order to
validate the build, and ensure that you're building the correct items in a safe fashion. You
need instrumentation and measurements that will log the time of the build, the version
being built and the success of the build, along with warning messages. Warnings and
errors need to provide detailed diagnostics, if necessary, to pinpoint the exact cause of the
failure quickly.

As a result, your database builds and releases will be frequent, punctual, and you'll spot
and fix potential problems early in the cycle, and you'll have the measurements that will
prove just how much your processes are improving and how much higher the quality and
speed of your development processes has become.

Section 3: DLM for the relational database

66

Feedback
We would love your feedback on the book, particularly in its early stages as a 'lean'
publication. A core tenet of our approach to DLM is early and rapid feedback on changes,
and this is the approach we have adopted when writing the book. All feedback, positive
and negative, will help us make the book as relevant and useful as possible.

As chapters become available, we will post them to:

www.leanpub.com/database-lifecycle-management

We will then progressively refine the content based on your feedback, which you
can submit using the comment form at the above URL or by sending an email to
dlmbook@red-gate.com

Look forward to hearing from you!

Database
Lifecycle
Management

Your SQL Servers get source control,
continuous integration, automated deployment,
and real time monitoring.

 You get fast feedback, safe releases, rapid
development, and peace of mind.

Find out how at:
www.red-gate.com/products/dlm

