
Complete Showplan
Operators
Fabiano Amorim

High Performance SQL Server

ISBN: 978-1-906434-71-7

Complete Showplan
Operators

By Fabiano Amorim

First published by Simple Talk Publishing June 2011

Copyright Fabiano Amorim 2011

ISBN 978-1-906434-71-7

The right of Fabiano Amorim to be identified as the author of this work has been asserted by him in accordance with the Copyright,

Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval system, or transmitted, in

any form, or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written consent of the

publisher. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil

claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise

circulated without the publisher's prior consent in any form other than which it is published and without a similar condition including

this condition being imposed on the subsequent publisher.

Typeset by Gower Associates.

Table of Contents
About the author ..6
Preface ..6

Chapter 1: Assert ... 8
Assert and check constraints ..8
Assert checking foreign keys ...10
Assert checking a subquery ... 12

Chapter 2: Concatenation .. 14

Chapter 3: Compute Scalar ... 18

Chapter 4: BookMark/Key Lookup ... 27

Chapter 5: Spools – Eager Spool ... 33
Spool operators ... 33
Eager Spool ..34
The Halloween Problem ... 35

Chapter 6: Spools – Lazy Spool ..44

Chapter 7: Spools – Non-Clustered Index Spool 53
Understanding rebind and rewind ..58
Rebinds and rewinds with Table Spool (Lazy Spool) ...59
Rebinds and rewinds with Index Spool (Lazy Spool) ..63
Summary ... 66

Chapter 8: Spools – Row Count Spool ... 67

Chapter 9: Stream Aggregate ... 73
Scalar aggregations ... 75
Group Aggregations ...78
A myth is born .. 80

Chapter 10: SORT ...83
SORT into execution plans ...83
SORT in memory/disk ...85
How to avoid SORT operations .. 86

Chapter 11: Merges – Merge Join ...88
Introduction ... 88
SORT Merge Join ..92
Residual predicate ..95
One to Many and Many to Many Merge Join ... 96

Chapter 12: Merges – Merge Interval ..99
Creating sample data .. 99
Merge Interval ... 101
Finally ...107

Chapter 13: Split, Sort, Collapse .. 108
Introduction ..108
Unique Index ...108
Creating sample data ...109
Querying a Unique Index .. 110
Trivial plan ..112
Full Optimization ... 118
More about querying a Unique Index ... 119
Non-Unique Index and updates ..121
Unique Index and updates .. 126
And finally ...131

6

About the author

Fascinated by the SQL Server Query Processor and the way it works to Optimize queries,
procedures and functions, Fabiano is a Data Platform Architect at SolidQ Brazil, and
graduated as a Technical Processor from Colégio Bezerra de Menezes, SP – Brazil. He
has also worked for several years with SQL Server, focusing on SQL Server Development
and BI Projects for many companies in Brazil and Argentina. Fabiano is an MCP for SQL
Server 2000, MCTS and MCITP Data Base Developer for SQL Server 2005 and 2008. He
is also actively involved in the SQL Server community though forums such as MSDN and
TechNet Brazil, and he writes articles for Simple-Talk and SQL Server Magazine, Brazil,
and presents online webcasts and in-person events for Microsoft Brazil. His blog is at
http://fabianosqlserver.spaces.live.com/, and you can follow him on Twitter as
@mcflyamorim.

Preface

Writing good TSQL code is not an easy task. Then you submit the code to the query
optimizer and strange things happen. The one good view you have into what the
optimizer decided to do is provided by the execution plans. Understanding execution
plans is a lot of work. Trust me on that. What you need to really understand your queries
is as much knowledge as you can get. That's where this excellent collection of articles on
some of the more common execution plan operators comes in.

Fabiano Amorim has taken the time to really drill into the behavior of a small set of
execution plan operators in an effort to explain the optimizer's behavior. He's explored
why things happen, how you can change them, positively or negatively, and he's done it

http://fabianosqlserver.spaces.live.com/
http://www.twitter.com/mcflyamorim

7

all in an approachable style. You want information and knowledge in order to achieve
understanding.

When I wrote my book on execution plans, I really did try to focus on the plan as a whole.
So while I spent time talking about individual operators, what they did, and why they did
it, I was frequently not as interested in discussing everything that an individual operator
might do once I had established their role in a given plan. Having someone like Fabiano
come along and go the opposite route, sort of ignoring the whole plan in an effort to
spend time exploring the operator, acts to fill in gaps. Where I tried to teach how to read
an execution plan, Fabiano is trying to teach what a given operator does. It's all worth-
while and it all accumulates to give you more knowledge.

Time to stop listening to me blather, turn the page, and start learning from Fabiano.

Grant Fritchey

8

Chapter 1: Assert

Showplan operators are used by the Query Optimizer (QO) to build the query plan
in order to perform a specified operation. A query plan will consist of many physical
operators. The Query Optimizer uses a simple language that represents each physical
operation by an operator, and each operator is represented in the graphical execution
plan by an icon.

I'm going to mention only of those that are more common: the first being the Assert.

The Assert is used to verify a certain condition, it validates a Constraint on every row to
ensure that the condition was met. If, for example, our DDL includes a check constraint
which specifies only two valid values for a column, the Assert will, for every row,
validate the value passed to the column to ensure that input is consistent with the check
constraint.

Assert and check constraints

Let's see where the SQL Server uses that information in practice. Take the following
T-SQL:

IF OBJECT_ID('Tab1') IS NOT NULL
 DROP TABLE Tab1
GO
CREATE TABLE Tab1(ID Integer, Gender CHAR(1))
GO
ALTER TABLE TAB1 ADD CONSTRAINT ck_Gender_M_F CHECK(Gender IN('M','F'))
GO
INSERT INTO Tab1(ID, Gender) VALUES(1,'X')
GO

9

Chapter 1: Assert

To the command above, the SQL Server has generated the following execution plan:

As we can see, the execution plan uses the Assert operator to check that the inserted
value doesn't violate the Check Constraint. In this specific case, the Assert applies the
rule, "if the value is different to 'F' and different to 'M' then return 0 otherwise return NULL."

The Assert operator is programmed to show an error if the returned value is not NULL;
in other words, the returned value is not a "M" or "F".

10

Chapter 1: Assert

Assert checking foreign keys

Now let's take a look at an example where the Assert is used to validate a foreign key
constraint. Suppose we have this query:

ALTER TABLE Tab1 ADD ID_Genders INT
GO
IF OBJECT_ID('Tab2') IS NOT NULL
 DROP TABLE Tab2
GO
CREATE TABLE Tab2(ID Integer PRIMARY KEY, Gender CHAR(1))
GO
INSERT INTO Tab2(ID, Gender) VALUES(1, 'F')
INSERT INTO Tab2(ID, Gender) VALUES(2, 'M')
INSERT INTO Tab2(ID, Gender) VALUES(3, 'N')
GO
ALTER TABLE Tab1 ADD CONSTRAINT fk_Tab2 FOREIGN KEY (ID_Genders) REFERENCES
Tab2(ID)
GO
INSERT INTO Tab1(ID, ID_Genders, Gender) VALUES(1, 4, 'X') 4

Let's look at the text execution plan to see what these Assert operators were doing. To
see the text execution plan just execute SET SHOWPLAN_TEXT ON before run the insert
command.

11

Chapter 1: Assert

|--Assert(WHERE:(CASE WHEN NOT [Pass1008] AND [Expr1007] IS NULL THEN (0) ELSE NULL
END))
 |--Nested Loops(Left Semi Join, PASSTHRU:([Tab1].[ID_Genders] IS NULL), OUTER
REFERENCES:([Tab1].[ID_Genders]), DEFINE:([Expr1007] = [PROBE VALUE]))
 |--Assert(WHERE:(CASE WHEN [Tab1].[Gender]<>'F' AND [Tab1].[Gender]<>'M'
THEN (0) ELSE NULL END))
 | |--Clustered Index Insert(OBJECT:([Tab1].[PK]), SET:([Tab1].[ID] =
RaiseIfNullInsert([@1]),[Tab1].[ID_Genders] = [@2],[Tab1].[Gender] = [Expr1003]),
DEFINE:([Expr1003]=CONVERT_IMPLICIT(char(1),[@3],0)))
 |--Clustered Index Seek(OBJECT:([Tab2].[PK]), SEEK:([Tab2].[ID]=[Tab1].
[ID_Genders]) ORDERED FORWARD)

Here we can see the Assert operator twice, first (looking down to up in the text plan and
the right to left in the graphical plan) validating the Check Constraint. The same concept
showed above is used, if the exit value is "0" than keep running the query, but if NULL is
returned shows an exception.

The second Assert is validating the result of the Tab1 and Tab2 join. It is interesting to see
the "[Expr1007] IS NULL". To understand that you need to know what this Expr1007 is,
look at the Probe Value (green text) in the text plan and you will see that it is the result of
the join. If the value passed to the INSERT at the column ID_Gender exists in the table
Tab2, then that probe will return the join value; otherwise it will return NULL. So the
Assert is checking the value of the search at the Tab2; if the value that is passed to the
INSERT is not found then Assert will show one exception.

If the value passed to the column ID_Genders is NULL than the SQL can't show a
exception, in that case it returns "0" and keeps running the query.

If you run the INSERT above, the SQL will show an exception because of the "X" value,
but if you change the "X" to "F" and run again, it will show an exception because of the
value "4". If you change the value "4" to NULL, 1, 2 or 3 the insert will be executed without
any error.

12

Chapter 1: Assert

Assert checking a subquery

The Assert operator is also used to check one subquery. As we know, one scalar subquery
can't validly return more than one value. Sometimes, however, a mistake happens, and
a subquery attempts to return more than one value . Here the Assert comes into play by
validating the condition that a scalar subquery returns just one value.

Take the following query:

INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')
 INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')
|--Assert(WHERE:(CASE WHEN NOT [Pass1016] AND [Expr1015] IS NULL THEN (0) ELSE NULL
END))
 |--Nested Loops(Left Semi Join, PASSTHRU:([tempdb].[dbo].[Tab1].[ID_
TipoSexo] IS NULL), OUTER REFERENCES:([tempdb].[dbo].[Tab1].[ID_TipoSexo]),
DEFINE:([Expr1015] = [PROBE VALUE]))
 |--Assert(WHERE:([Expr1017]))
 | |--Compute Scalar(DEFINE:([Expr1017]=CASE WHEN [tempdb].[dbo].
[Tab1].[Sexo]<>'F' AND [tempdb].[dbo].[Tab1].[Sexo]<>'M' THEN (0) ELSE NULL END))
 | |--Clustered Index Insert(OBJECT:([tempdb].[dbo].[Tab1].
[PK__Tab1__3214EC277097A3C8]), SET:([tempdb].[dbo].[Tab1].[ID_TipoSexo] =
[Expr1008],[tempdb].[dbo].[Tab1].[Sexo] = [Expr1009],[tempdb].[dbo].[Tab1].[ID] =
[Expr1003]))
 | |--Top(TOP EXPRESSION:((1)))
 | |--Compute Scalar(DEFINE:([Expr1008]=[Expr1014],
[Expr1009]='F'))
 | |--Nested Loops(Left Outer Join)
 | |--Compute Scalar(DEFINE:([Expr1003]=geti
dentity((1856985942),(2),NULL)))
 | | |--Constant Scan
 | |--Assert(WHERE:(CASE WHEN [Expr1013]>(1)
THEN (0) ELSE NULL END))
 | |--Stream Aggregate(DEFINE:([Expr101
3]=Count(*), [Expr1014]=ANY([tempdb].[dbo].[Tab1].[ID_TipoSexo])))
 | |--Clustered Index
Scan(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]))
 |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[Tab2].[PK__
Tab2__3214EC27755C58E5]), SEEK:([tempdb].[dbo].[Tab2].[ID]=[tempdb].[dbo].[Tab1].
[ID_TipoSexo]) ORDERED FORWARD)

13

Chapter 1: Assert

You can see from this text Showplan that SQL Server as generated a Stream Aggregate to
count how many rows the SubQuery will return, This value is then passed to the Assert
which then does its job by checking its validity.

It's very interesting to see that the Query Optimizer is smart enough be able to avoid
using assert operators when they are not necessary. For instance:

INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1 WHERE ID =
1), 'F')

INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT TOP 1 ID_TipoSexo FROM Tab1),
'F')

For both these INSERTs, the Query Optimizer is smart enough to know that only one
row will ever be returned, so there is no need to use the Assert.

14

Chapter 2: Concatenation

Showplan operators are used by SQL Server's Query Optimizer (QO) to perform a
particular operation within a query plan. A query plan will usually contain several of
these physical operators. Each physical operation is represented in the Query Plan by an
operator, and each operator is shown in the graphical execution plan by an icon. In this
chapter, we'll be featuring the Concatenation Showplan operator. Its behavior is quite
simple; it receives one or more input streams and returns all the rows from each input
stream in turn. We can see its effect whenever we use the Transact–SQL UNION ALL
command.

Concatenation is a classic operator that can receive more than one input. It is both a
logical and a physical operator.

Before we start to talk about concatenation, we need to understand some important
points about Showplan operators and execution plans.

All operators used in execution plans, implement three methods called Init(), GetNext()
and Close(). Some operators can receive more than one input, so, these inputs will be
processed at the Init() method. The concatenation is one example of these operators.

At the Init() method, the concatenation will initialize itself and set up any required data
structures. After that, it will run the GetNext() method to read the first or the subsequent
row of the input data, it runs this method until it has read all rows from the input data.

Let's take the following query as a sample:

The following script will create a table TabTeste and populate with some garbage data.

15

Chapter 2: Concatenation

USE tempdb
GO
CREATE TABLE TABTeste(ID Int Identity(1,1) PRIMARY KEY,
 Nome VarChar(250) DEFAULT NewID())
GO
SET NOCOUNT ON
GO
INSERT INTO TABTeste DEFAULT VALUES
GO 10000

The script above will populate 10000 rows at the TabTeste table. Now let's run one query
sample to look at the execution plan.

SELECT *
 FROM TABTeste a
 INNER JOIN TABTeste b
 ON a.ID = b.ID

 Graphical execution plan.

16

Chapter 2: Concatenation

SELECT * FROM TABTeste a INNER JOIN TABTeste b ON a.ID = b.ID
 |--Merge Join(Inner Join, MERGE:([b].[ID])=([a].[ID]), RESIDUAL:([TABTeste].[ID]
as [b].[ID]=[TABTeste].[ID] as [a].[ID]))

 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_] AS [b]), ORDERED FORWARD)

 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_] AS [a]), ORDERED FORWARD)

Text execution plan.

As we can see, this query is using one operator called Merge to join the tables, in the plan,
the Merge operator is receiving two inputs (the table TabTeste twice).

Concatenation is a good example of an operator that receives more than one input. If, for
example, we run the following query, we will see that it receives four inputs.

SELECT * FROM TABTeste
UNION ALL
SELECT * FROM TABTeste
UNION ALL
SELECT * FROM TABTeste
UNION ALL
SELECT * FROM TABTeste

17

Chapter 2: Concatenation

 Graphical execution plan.

 |--Concatenation
 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_]))
 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_]))
 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_]))
 |--Clustered Index Scan(OBJECT:([TABTeste].[PK_]))

Text execution plan.

The concatenation operator receives the result of all clustered index scan and copies
all the rows to one output calling the methods Init() and GetNext(). These methods are
called to each Input.

The Query Processor will execute this plan in the order that the operators appear in the
plan, the first is the top one and the last is the end one.

18

Chapter 3: Compute Scalar

The previous two chapters covered two of the most important Showplan operators,
Concatenation and Assert. It is useful to know about such Showplan operators if you are
programming in SQL Server, because they are used by SQL Server's Query Optimizer
(QO) to perform a particular operation within a query plan. Each physical operation in
the Query Plan is performed by an operator. When you look at a graphical execution
plan, you will see each operator represented by an icon. This chapter covers the Compute
Scalar Showplan operator. This operator is very common, and we can see it in many
execution plans.

As is obvious from its name, Compute Scalar performs a scalar computation and returns
a computed value. This calculation can be as simple as a conversion of value, or a concat-
enation of values.

Most of the time, it is ignored by SQL users because it represents a minimal cost when
compared to the cost of the entire execution plan, but, it can become well-worth looking
at when we are dealing with cursors and some huge loops, and especially if you are having
a CPU problem.

To start with, let's take a simple use of Compute Scalar. One simple conversion of data
from Int to Char can be done without much problem but, if we execute this conversion
one million times, it becomes a different matter. If we change the query so as to not
execute this conversion step, we will have an optimization in CPU use, and a conse-
quential improvement in the speed of execution.

Let's take the following query as a sample. The following script will create a table,
TabTeste, and populate with some garbage data.

19

Chapter 3: Compute Scalar

USE tempdb
GO
CREATE TABLE TABTeste(ID Int Identity(1,1) PRIMARY KEY,
 Nome VarChar(250) DEFAULT NewID())
GO
SET NOCOUNT ON
GO
INSERT INTO TABTeste DEFAULT VALUES
GO 10000

Now, the code below will pass to the loop one million times.

DECLARE @I Int
SET @I = 0
WHILE @I < 1000000
BEGIN
 IF EXISTS(SELECT ID FROM TABTeste WHERE ID = @I)
 BEGIN
 PRINT 'Entrou no IF'
 END
 SET @I = @I + 1;
END
GO

20

Chapter 3: Compute Scalar

 Graphical execution plan.

As we can see, the operator Compute Scalar is used; let's take a look at the text execution
plan to see more details about that operation.

|--Compute Scalar(DEFINE:([Expr1003]=CASE WHEN [Expr1004] THEN (1) ELSE (0) END))
 |--Nested Loops(Left Semi Join, DEFINE:([Expr1004] = [PROBE VALUE]))
 |--Constant Scan
 |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[TABTeste].[PK__
TABTeste__3214EC27096F09E1]), SEEK:([tempdb].[dbo].[TABTeste].[ID]=[@I]) ORDERED
FORWARD)

Text execution plan.

21

Chapter 3: Compute Scalar

This plan is using the Compute Scalar to check if the Nested Loop returns any rows, on
the other words; it is doing the IF EXISTS Job.

If we look at the profiler results we can see the column, CPU, which shows us how much
CPU the query above uses.

Now let's change the code to remove the Compute Scalar operator.

DECLARE @I Int, @Var Int
SET @I = 0
WHILE @I < 1000000
BEGIN
 SELECT @Var = ID FROM TABTeste WHERE ID = @I
 IF @@ROWCOUNT > 0
 BEGIN
 PRINT 'Entrou no IF'
 END
 SET @I = @I + 1;
END
GO

22

Chapter 3: Compute Scalar

 Graphical execution plan.

 |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[TABTeste].[PK__
TABTeste__3214EC27096F09E1]), SEEK:([tempdb].[dbo].[TABTeste].[ID]=[@I]) ORDERED
FORWARD)

Text execution plan.

Now that SQL Server does not use the Compute Scalar, let's take a look at the CPU costs.

23

Chapter 3: Compute Scalar

As you can see, SQL Server uses less CPU and finishes the execution of the query faster
than it does with the first query. I'm not trying to show you the better way to check
whether a particular value exists, I'm just showing the Compute Scalar behavior.
However, if you have never seen this kind of validation using @@RowCount, it may be
that it could help you a little bit in your coding. Some time ago I changed one procedure
that uses a lot of IF Exists in much the same way, with very satisfactory result for the
performance of the procedure.

Let's take a look at more practical examples of Compute Scalar.

DECLARE @Tab TABLE(ID SmallInt PRIMARY KEY)
SELECT 'Fabiano' + ' - ' + 'Amorim' FROM @Tab

 Graphical execution plan.

 |--Compute Scalar(DEFINE:([Expr1003]='Fabiano - Amorim'))
 |--Clustered Index Scan(OBJECT:(@Tab))

Text execution plan.

24

Chapter 3: Compute Scalar

The plan was generated using the Compute Scalar just to make the concatenation
between "Fabiano", "-" and "Amorim". Quite simple.

Now we'll see one very interesting behavior of Compute Scalar that it changes in SQL
Server 2005/2008.

Consider the following query:

DECLARE @Tab TABLE(ID SmallInt PRIMARY KEY)
DECLARE @ID_Int Integer
SELECT *
 FROM @Tab
 WHERE ID = @ID_Int

Notice that the Column ID is a SmallInt type, and the variable @ID_Int is a Integer, that
means SQL Server as to convert the value of @ID_Int to be able to compare the value
with ID Column.

At SQL Server 2000 we have the following plans:

 SQL 2000 Graphical execution plan.

25

Chapter 3: Compute Scalar

 |--Nested Loops(Inner Join, OUTER REFERENCES:([Expr1002], [Expr1003],
[Expr1004]))

 |--Compute Scalar(DEFINE:([Expr1002]=Convert([@ID_Int])-1,
[Expr1003]=Convert([@ID_Int])+1, [Expr1004]=If (Convert([@ID_Int])-1=NULL) then 0
else 6|If (Convert([@ID_Int])+1=NULL) then 0 else 10))
 | |--Constant Scan
 |--Clustered Index Seek(OBJECT:(@Tab), SEEK:(@Tab.[ID] > [Expr1002] AND @
Tab.[ID] < [Expr1003]), WHERE:(Convert(@Tab.[ID])=[@ID_Int]) ORDERED FORWARD)

SQL 2000 Text execution plan.

Wow, it's quite hard work, don't you think? Now let's take a look at what happens if we
run this code at SQL 2005/2008.

 SQL 2005/2008 Graphical execution plan.

|--Clustered Index Seek(OBJECT:(@Tab), SEEK:([ID]=[@ID_Int]) ORDERED FORWARD)

SQL 2005/2008 Text execution plan.

Yep, now we have a much simpler plan (which was nothing about the band). But wait a
minute, what is this? Now SQL Server does not convert the value!

Let's look at the execution plan to understand what is going on with the Clustered Index
Seek show plan operator.

26

Chapter 3: Compute Scalar

Graphical execution plan.

As we can see, the SQL Server Dev Team has changed the Engine to use a function called
Scalar Operator to convert the value to the appropriate datatype; that's interesting.

27

Chapter 4: BookMark/Key Lookup

It's time to talk about a film star amongst operators – Key Lookup is such a famous
operator that I couldn't write about it without giving it the red carpet treatment.

Get yourself comfortable, grab some popcorn, and relax. I realize that you know this
smooth operator, but I hope you discover something new about Key Lookup behavior and
learn some good tips here. I hope to give you a fuller understanding of the Bookmark/Key
Lookup by the time you finish the article.

As if seeking anonymity, this operator has changed its identity three times in the last
three versions of SQL Server. In SQL 2000 it was called BookMark Lookup. SQL 2005
comes, and it was renamed and showed as a simple Clustered Index Seek operation. Since
SQL Server 2005 SP2 it has been called a Key Lookup, which makes more sense to me. In
a text execution plan, it is represented as a Clustered Index Seek.

First, I'll explain a bit about the way that SQL Server uses an index, and why unordered
bookmark operations are so very expensive. I'll also create a procedure to return some
information about when lookup operations are good, and when a scan turns out to be
better than a lookup.

 Icon in SQL Server 2000.

 Icon in SQL Server 2005 SP2 and 2008.

Before you get distracted into thinking about RIDs/Heaps, let me say one thing – I'll be
talking about RID Lookup another time. The main focus here is about the Key Lookup
operator.

28

Chapter 4: BookMark/Key Lookup

In summary, the Key Lookup is used to fetch values via a clustered index, when the
required data isn't in a non-clustered index. Let's take a look further.

I once heard Kimberly Tripp give a very good and practical analogy: imagine a book, and
suppose we have two indexes, the first is a clustered index, the Table of Contents that
appears in beginning of the book; and the non-clustered index is the index in the back
of the book. When you need to search for some information in the index at the back,
you have a pointer, the page number, to the page that mentions the subject. This "page
number" is what we call a BookMark, in SQL terms, that is the Cluster Key.

This BookMark action goes to the "back" index, finds the page number that contains the
information, and goes to the page. This is what a "bookmark lookup" does.

Suppose I want to know more about "bookmark lookups"; well, since I have the Inside
Microsoft SQL Server 2005 – Query Tuning and Optimization book, I can go to the back
index and see if there is information somewhere in the book. At the "B" word I have a text
"BookMark Lookup" and the number of the page that talks about the subject. The index
at the end of the book is very useful.

But wait a minute, there is a snag. A Key lookup is a very expensive operation because
it performs a random I/O into the clustered index. For every row of the non-clustered
index, SQL Server has to go to the Clustered Index to read their data. We can take
advantage of knowing this to improve the query performance. To be honest, when I see
an execution plan that is using a Key Lookup it makes me happy, because I know I've
a good chance of improving the query performance just creating a covering index. A
Covering index is a non-clustered "composite" index which contains all columns required
by the query.

Let's demonstrate this with some code.

The following script will create a table called TestTable and will insert 100,000 rows with
garbage data. An index called ix_Test will be created to be used in our lookup samples.

29

Chapter 4: BookMark/Key Lookup

IF OBJECT_ID('TestTable') IS NOT NULL
BEGIN
 DROP TABLE TestTable
END
GO
CREATE TABLE TestTable(ID Int Identity(1,1) PRIMARY KEY,
 Col1 VarChar(250) NOT NULL DEFAULT NewID(),
 Col2 VarChar(250) NOT NULL DEFAULT NewID(),
 Col3 VarChar(250) NOT NULL DEFAULT NewID(),
 Col4 DateTime NOT NULL DEFAULT GetDate())
GO
SET NOCOUNT ON
GO
INSERT INTO TestTable DEFAULT VALUES
GO 100000
CREATE NONCLUSTERED INDEX ix_Test ON TestTable(Col1, Col2, Col3)
GO

Now suppose the following query:

SET STATISTICS IO ON
SELECT *
 FROM TestTable
WHERE Col1 like 'AB%'
SET STATISTICS IO OFF

(6223 row(s) affected)
Table 'TestTable'. Scan count 1, logical reads 1895, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

30

Chapter 4: BookMark/Key Lookup

As we can see in the execution plan above, the Query Optimizer chose not to use the
ix_Test index, but instead chose to scan the clustered index to return the rows. 6,223 rows
were returned and SQL made 1895 logical reads to return that data. That means the table
had 1,895 pages, because SQL made a Scan on the table.

Now, let's suppose that I don't trust the Query Optimizer to create a good plan (don't hit
me, but, do you?), and I decide add a hint to say how SQL Server should access the data.
What will happen?

SET STATISTICS IO ON
SELECT *
 FROM TestTable WITH(INDEX = ix_Test)
WHERE Col1 like 'A%'
SET STATISTICS IO OFF

(6223 row(s) affected)
Table 'TestTable'. Scan count 1, logical reads 19159, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

31

Chapter 4: BookMark/Key Lookup

Here the Key lookup operator is used to read the value of the column Col4 by referencing
the clustered index, since that column is not into the non-clustered index ix_Test.

Cool, now our smartest plan uses the index, and return the same 6,223 rows, but, wait a
minute, it read 19,159 pages! In other words, it has read 1,7264 more than the first plan, or
ten times the table size.

As you can see, a Key Lookup is a good choice only when a few rows are returned; but the
retrieval cost grows with the quantity of returned rows. As Jason Massie once said, there
is a point where the threshold is crossed and a scan becomes more efficient than a lookup.
A scan uses a sequential IO while a lookup does random IO.

Here, we can raise a question. How many rows before a key lookup stops being a good
strategy? When is this threshold crossed, and a scan performs better?

To help you with that, I've created a procedure called st_TestLookup (you can download
the code here). I'll not explain what I did, because this is not the intention, but you need
to enable xp_cmdShell to run this code so, obviously, I don't recommend that you to run
this in a production environment.

The code below runs the procedure to TestTable, the input parameters are three:

•	 @Table_Name where you input the table that you want to analyze

•	 @Lookup_Index where you input the non-clustered index that will be analyzed

•	 a valid Path to SQL Server to create a profiler trace to check the amount of logical IOs
for each query.

Let's look at the results.

http://feedproxy.google.com/%7Er/sqlserverpedia/%7E3/LYgSIJq11BE/
http://www.simple-talk.com/content/file.ashx?file=3544
http://www.simple-talk.com/content/file.ashx?file=3544

32

Chapter 4: BookMark/Key Lookup

EXEC dbo.st_TestLookup @Table_Name = 'TestTable',
 @Lookup_Index = 'ix_Test',
 @Trace_Path = 'C:\TesteTrace.trc'
GO

Logical Reads to Scan 100000 rows of table TestTable: 1902
GoodPlan - Logical Reads to Lookup 100 rows of table : 339
GoodPlan - Logical Reads to Lookup 200 rows of table : 659
GoodPlan - Logical Reads to Lookup 300 rows of table : 981
GoodPlan - Logical Reads to Lookup 400 rows of table : 1301
GoodPlan - Logical Reads to Lookup 500 rows of table : 1620
BadPlan - Logical Reads to Lookup 600 rows of table : 1940

******************* Scan

The first result line shows us how many rows are in the table, and how many logical reads
are used to scan the table. This is our start point. Based on that value, I then do a loop,
reading values of the table. When the number of lookup IOs cross the Scan, I write a line
starting with "BadPlan", and I show the number of IOs to read "x" rows using the Key
Lookup operator.

The lines with "*" are just a tentative way to show these results in a graphical mode.

Based on the procedure results, we know that, when we need more than 600 rows, a Scan
is better than a Lookup.

33

Chapter 5: Spools – Eager Spool

Spool operators

Eager Spool Lazy Spool

Row Count Spool Table Spool

Non-Clustered Index
Spool

There are five types of Spool operators, each with its own behavior, and idiosyncrasies,
but they all share the way that they save their intermediate query results on the TempDb
database, and use this temporary area to search a value.

There are many tricks that Query Optimizer uses to avoid any logical problems and to
perform queries better. The spool operators are a good example of this.

A spool reads the data and saves it on TempDb. This process is used whenever the
Optimizer knows that the density of the column is high and the intermediate result is
very complex to calculate. If this is the case, SQL makes the computation once, and stores
the result in the temporary space so it can search it later.

The spool operators are always used together with another operator. As it stores values, it
needs to know what these values are, and so it must receive them from another operator.

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/

34

Chapter 5: Spools – Eager Spool

For instance, one spool can be used together with a clustered index scan in order to save
the rows read by the scan. These rows can then be read back to an update, or a select
operator. A quite simple graphic representation of this could be the following picture:

In the example represented by these icons above, the order of execution is: Clustered
Index Scan sends rows to Spool and the Select reads all of these rows directly from the
Spool.

Eager Spool

We'll start with the Eager Spool operator. The role of the Eager Spool is to catch all the
rows received from another operator and store these rows in TempDb. The word "eager"
means that the operator will read ALL rows from the previously operator at one time. In
other words, it will take the entire input, storing each row received.

In our simple sample (SCAN -> EAGER SPOOL -> SELECT) the Eager will work like this:
when the scanned rows are passed to Spool then it gets all the rows, not one row at the
time you'll notice but the entire scan, and keeps them in a hidden temporary table.

Knowing that, we could say that The Eager Spool is a blocking operator. I believe that I
haven't yet written about the difference between blocking operators and non-blocking
operators. Let's open a big parenthesis here.

35

Chapter 5: Spools – Eager Spool

There are two categories of Showplan operators: the "non-blocking" operators and the
"blocking" operators or "stop-and-go."

Non-blocking operators are those that read one row from their input and return the
output for each read row. In the method known as GetRow(), the operator executes its
function and returns the row to the next operator as soon as the first row has been read.

The "nested loop" operator is a good example of this "non-blocking" behavior. When the
first row is read, SQL needs to perform a Join with the outer table; if the outer table joins
with the inner table then a row is returned. This process repeats until the end of the table.
To each received row, SQL tries to join the rows and return the required values.

A blocking operator needs to read all the rows from its input to perform some action
and then return the data. A classic sample of a blocking operator is the SORT operator;
it needs to read all rows, sort the data and then return the ordered rows. The execution
of the query will wait until all rows to be read and ordered, before continuing with the
command.

The Halloween Problem

There is a very interesting classic computing problem, called "The Halloween Problem."
Microsoft Engineers take advantage of the blocking Eager Spool operator to avoid this
problem.

In order to illustrate this, I will start with the following code to create a table called
Funcionarios ("Employees" in Portuguese).

This script will create the table with three columns, ID, Nome (Name) and Salario
(Salary), and populate them with some garbage data.

36

Chapter 5: Spools – Eager Spool

USE TempDB
GO
SET NOCOUNT ON
IF OBJECT_ID('Funcionarios') IS NOT NULL
 DROP TABLE Funcionarios
GO
CREATE TABLE Funcionarios(ID Int IDENTITY(1,1) PRIMARY KEY,
 Nome VarChar(30),
 Salario Numeric(18,2));
GO

DECLARE @I SmallInt
SET @I = 0
WHILE @I < 1000
BEGIN
 INSERT INTO Funcionarios(Nome, Salario)
 SELECT 'Fabiano', ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 500000.0)))
 SET @I = @I + 1
END
CREATE NONCLUSTERED INDEX ix_Salario ON Funcionarios(Salario)
GO

This is what the data looks like.

OK, now that we have run the script, we can return to where we left off when describing
the operator Eager Spool.

37

Chapter 5: Spools – Eager Spool

To show the functionality of the Eager Spool we'll go back in time a bit, to the time
when I was just a project being planned, but some other geeks working intensively with
databases.

It was Halloween; the cold winter's night was black as pitch, (I really don't know if was
winter, but I thought it would sound more thrilling) and the wind howled in the trees. It
was 1976 and the children was demanding "trick or treat" in the houses. The full moon
shone and illuminated the whole city when suddenly, some clouds crossed the moon
making the night even more dark and gloomy. It was possible to smell and taste the
tension in the air like a stretched rubber band so close to bursting. People walking in the
street felt that someone was observing them, and when they looked closely behind them,
they could see two red eyes waiting and looking out for unprotected prey.

Was that their imagination? Or just the wrong night to work with databases?

Meanwhile, in a place not far away, an update was started on a database by a skeleton
staff, to update the salary by 10% of all employees who earned less than $ 25,000 dollars.
Their feelings of impending doom increased as the query failed to complete in the
expected time. When, at length, it did, they found to their horror that every employee had
their pay increased to $ 25,000. It was the stuff of DBA nightmares.

So begins the story of a problem known as "Halloween Problem." IBM engineers were
the first to find the problem, but several databases have suffered similar problems over
the years, including our lovely SQL Server as we can see here. The Halloween problem
happens when the write cursor interferes with the read cursor. The selection of the rows
to update is affected by the actual update process. This can happen when there is a index
on the particular column being updated. When the update is made, the same row can be
updated several times.

All updates are executed in two steps; the first is the read step, and the second is the
update. A read cursor identifies the rows to be updated and a write cursor performs the
actual updates.

http://en.wikipedia.org/wiki/Halloween_Problem
http://en.wikipedia.org/wiki/Halloween_Problem
http://support.microsoft.com/search/default.aspx?query=Halloween&mode=r&catalog=LCID%3D1033

38

Chapter 5: Spools – Eager Spool

UPDATE Funcionarios SET Salario = 0
WHERE ID = 10

For the execution of this query, the first step is to locate the records that need updating,
and then the second step needs to update these records. If there is an index on the
column being modified (Salario) then this index also needs to be updated.

As we know, all non-clustered indexes need to be updated when a value changes that is
used in the index.

The problem can happen if SQL Server chooses to read the data using this index during
the read step. This value can then change when the second step is being performed.

Let's see some examples using the same type of query that was being used when the
problem was first found by the IBM engineers.

Suppose that I want to give 10% of increase salary to all employees that earn less than
R$2,000 reais (the Brazilian currency). I could run the following query:

UPDATE Funcionarios SET Salario = Salario * 1.1
FROM Funcionarios
WHERE Salario < 2000

We have the following execution plans:

 Graphical execution plan.

39

Chapter 5: Spools – Eager Spool

|--Clustered Index Update(OBJECT:([Funcionarios].[PK]), OBJECT:([Funcionarios].[ix_
Salario]), SET:([Funcionarios].[Salario] = [Expr1003]))
 |--Compute Scalar(DEFINE:([Expr1016]=[Expr1016]))
 |--Compute Scalar(DEFINE:([Expr1016]=CASE WHEN [Expr1007] THEN (0) ELSE
(1) END))
 |--Top(ROWCOUNT est 0)
 |--Compute Scalar(DEFINE:([Expr1003]=CONVERT_IMPLICIT(numeri
c(18,2),[Funcionarios].[Salario]*(1.1),0), [Expr1007]=CASE WHEN [Funcionarios].
[Salario] = CONVERT_IMPLICIT(numeric(18,2),[Funcionarios].[Salario]*(1.1),0) THEN
(1) ELSE (0) END))
 |--Clustered Index Scan(OBJECT:([Funcionarios].[PK]),
WHERE:([Funcionarios].[Salario]<(2000.00)) ORDERED)

Text execution plan.

For now, let us just look at the steps that I mentioned. In the Clustered Index Scan, we
see that SQL selects all the rows that will be updated, and the Clustered Index Update
then updates these rows in the cluster index (PK) and the non-clustered index ix_salario.

Well, if we follow this logic, what do we predict will happen? Let's take this a step at a
time to see how this will work.

We know that the clustered index is ordered by ID column. SQL Server is using this index
to look at what rows needs to be updated, so we have the following:

The first selected row is the ID = 3. After we select the row, we need to update
the "salario" column. So, we could perform the update of the salary with the
actual value * 1.1.

40

Chapter 5: Spools – Eager Spool

After the update we have the following:

Note that the salary earned a 10% increase, from 80.90 to 88.99. We then continue by
selecting the next row, ID = 5, and this process will then continue until the end of the
selected rows.

So far, we can see that the use of this clustered index generates no error. If SQL Server
continues with this logic until the end of the process, then all rows will be updated
correctly. What if SQL chose, instead, to use the non-clustered index ix_salario to read
the rows that will be updated (first step of the update), what will happen then?

Let's use the same illustration that we used above. But this time we'll force the use of the
non-clustered index ix_salario.

UPDATE Funcionarios SET Salario = Salario * 1.1
FROM Funcionarios WITH(INDEX=ix_Salario)
WHERE Salario < 2000

 Graphical execution plan.

41

Chapter 5: Spools – Eager Spool

|--Clustered Index Update(OBJECT:([Funcionarios].[PK]), OBJECT:([Funcionarios].[ix_
Salario]), SET:([Funcionarios].[Salario] = [Expr1003]))
 |--Compute Scalar(DEFINE:([Expr1016]=[Expr1016]))
 |--Compute Scalar(DEFINE:([Expr1016]=CASE WHEN [Expr1007] THEN (0) ELSE
(1) END))
 |--Top(ROWCOUNT est 0)
 |--Compute Scalar(DEFINE:([Expr1003]=CONVERT_IMPLICIT(numeri
c(18,2),[Funcionarios].[Salario]*(1.1),0), [Expr1007]=CASE WHEN [Funcionarios].
[Salario] = CONVERT_IMPLICIT(numeric(18,2),[Funcionarios].[Salario]*(1.1),0) THEN
(1) ELSE (0) END))
 |--Table Spool
 |--Index Seek(OBJECT:([Funcionarios].[ix_Salario]),
SEEK:([Funcionarios].[Salario] < (2000.00)) ORDERED FORWARD)

Text execution plan.

You'll see from the execution plan that, this time, after reading the data using the index
ix_Salario, SQL Server uses a Blocking operator called Table Spool (Eager Spool). As I
mentioned earlier in this article, when the Eager is called the first time, it will read all
data and then move to the next operator. In our example, the Eager Spool writes the data
returned from the index ix_Salario into a temporary table. Later, the updates do not read
ix_salario any more; instead all reads are performed using the Eager Spool.

You may would be wondering, "Hey, Fabiano, where is the Halloween problem?" We will
get there now.

Let's suppose that SQL Server hadn't used the Eager Spool operator. Let's assume that we
have the same execution plan above but without the Eager Spool operator.

If SQL Server hadn't used the Eager Spool to read the data, it would have read rows
directly from the index ix_Salario. It will read the first row, update the value with 10%,
that get the next row and so on.

We know the index ix_Salario is ordered by column Salario, so let's draw the things
again to see what will happen.

42

Chapter 5: Spools – Eager Spool

The data returned to the Index would be:

The first row is the ID 763, when the SQL Server updates the row the data in the index
will be the following:

Now the next row is the ID 468.

Using this data we will not have a problem. But tell me one thing, if the data was
distributed like that?

Well, that would be a very dangerous problem, Let's go again, get the first row, ID = 763.
Update this value with 10%, the data in the index will be the following:

43

Chapter 5: Spools – Eager Spool

Now, get the next row, which was what? The ID 763 again? Yes, take it easy; let's under-
stand why the row 763 ended up in the second row. Wasn't it in the first row?

Yes, it was, but when SQL Server updated the Salario column value by 10% it updated the
non-clustered index ix_Salario (see into the execution plan, the clustered index updates
ix_Salario and the PK) too, which meant that data was repositioned in the non-clustered
index. The index needs to keep the data physically sorted by salario. Once a value
changes, it resets this value in the balanced tree.

The outcome would be that the employee with ID = 763 has the salary increased by 20%
(well that could be good, since he calls Fabiano). The problem found at IBM, the engineers
said the end of the query all employees were earning $ 25,000.00. And then they had to
start to understand what had happened.

The team at Microsoft that develops the Query Processor uses blocking operators to
ensure that the read data will be the same regardless whether there is a later update. In
our query example, SQL uses the SQL Eager Spool. When it needs to read the rows for
the second time, it will not use the index ix_Salario but will read from the Spool. The
spool has a copy of rows of index ix_Salario in TempDb database.

Well, we saw that the Eager Spool can be used to avoid the problem known as "Halloween
problem," but it can also be used in your queries by the Query Optimizer whenever it
reckons that it pays to create a copy of the data. Keep eye out for more about the Spool
operators. In the next chapter, we will describe the Lazy Spool operator.

44

Chapter 6: Spools – Lazy Spool

 Lazy Spool

The Lazy Spool is actually very similar to the Eager Spool; the difference is just that Lazy
Spool reads data only when individual rows are required. It creates a temporary table and
builds this table in a "lazy" manner; that is, it reads and stores the rows in a temporary
table only when the parent operator actually asks for a row, unlike Eager Spool, which
reads all rows at once. To refer back to some material I covered in the Eager Spool expla-
nation, the Lazy Spool is a non-blocking operator, whereas Eager Spool is a blocking
operator.

To highlight the Lazy Spool, we'll create a table called Pedido (which means "Order" in
Portuguese). The following script will create a table and populate it with some garbage
data.

IF OBJECT_ID('Pedido') IS NOT NULL
 DROP TABLE Pedido
GO
CREATE TABLE Pedido (ID INT IDENTITY(1,1) PRIMARY KEY,
 Cliente INT NOT NULL,
 Vendedor VARCHAR(30) NOT NULL,
 Quantidade SmallInt NOT NULL,
 Valor Numeric(18,2) NOT NULL,
 Data DATETIME NOT NULL)
DECLARE @I SmallInt
 SET @I = 0
WHILE @I < 50
 BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)

45

Chapter 6: Spools – Lazy Spool

 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Amorim',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Coragem',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 SET @I = @I + 1
 END
SET @I = 1
WHILE @I < 3
 BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT Cliente, Vendedor, Quantidade, Valor, Data
 FROM Pedido
 SET @I = @I + 1
 END
GO

This is what the data looks like:

46

Chapter 6: Spools – Lazy Spool

To understand the Lazy Spool, I wrote a query that returns all Orders where the Order
value is lower than the average value of all the relevant customer's orders. That sounds a
little convoluted, so let's just look at the query.

SELECT Ped1.Cliente, Ped1.Valor
 FROM Pedido Ped1
 WHERE Ped1.Valor < (
 SELECT AVG(Ped2.Valor)
 FROM Pedido Ped2
 WHERE Ped2.Cliente = Ped1.Cliente)

Before we see the execution plan, let's make sure we understand the query a little better.
First, for each customer in the FROM table (Ped1.Cliente), the SubQuery returns the
average value of all orders (AVG(Ped2.Valor)). After that, the average is compared with the
principal query and used to filter just each customer's orders with values lower than their
average.

So, now we have the following plans:

Graphical execution plan.

47

Chapter 6: Spools – Lazy Spool

 |--Nested Loops(Inner Join)
 |--Table Spool
 | |--Segment
 | |--Sort(ORDER BY:([Ped1].[Cliente] ASC))
 | |--Clustered Index Scan(OBJECT:([Pedido].[PK__
Pedido__6E01572D] AS [Ped1]))
 |--Nested Loops(Inner Join, WHERE:([Pedido].[Valor] as [Ped1].
[Valor]<[Expr1004]))
 |--Compute Scalar(DEFINE:([Expr1004]=CASE WHEN [Expr1012]=(0) THEN NULL
ELSE
 | [Expr1013]/CONVERT_IMPLICIT(numeric(19,0),[Expr1012],0) END))
 | |--Stream Aggregate(DEFINE:([Expr1012]=Count(*),
 | [Expr1013]=SUM([Pedido].[Valor] as [Ped1].[Valor])))
 | |--Table Spool
 |--Table Spool

Text execution plan.

As we can see, the Spool operator is displayed three times in the execution plan, but
that doesn't mean that three temporary tables were created. All the Spools are actually
using the same temporary table, which can be verified if you look at the operator's hints
displayed in the graphical execution plan below.

48

Chapter 6: Spools – Lazy Spool

As you can see, the first Spool hint has the Node ID equal to 2, and the other two
operators are referenced to the Primary Node 2 as well. Now let's look at a step-by-step
description of the execution plan so that we can understand exactly what it is doing. Note
this is not the exact order of execution of the operators, but I think you'll understand
things better in this way.

The first step in the execution plan is to read all of the data that will be used in the query,
and then group that data by customer.

The Clustered Index Scan operator reads all rows from the Cliente and Valor (Client and
Value) columns. So, the Input of this operator is the following:

… and the Output is just the Client and Value columns:

49

Chapter 6: Spools – Lazy Spool

When the SORT operator receives the rows from the clustered index scan, its output is all
the data, ordered by the Client column:

The Segment operator divides the data into many groups; in this case it receives all the
rows, ordered by customers, and divides them into groups that share the same costumer.
So, the first segment produced by this operator will be all the rows where "Client = 0".
Given that the data is already sorted by customers, the operator just needs to read down
the rows until it finds a different value in order to create a segment.

When the value it is reading changes, it finishes its job and the next operator immediately
receives the segment of all the data for "Customer 0". This process will repeat until all
segments are completely read. The final output of the Segment operator is a series of
segments dividing all the data according to customer, such that each segment contains all
the rows for a particular customer. In this walkthrough, we'll look at all the rows where
"Client=0".

50

Chapter 6: Spools – Lazy Spool

Here we get on to the Table Spool operator, working as a "Lazy" Spool. It will create a
temporary table in the TempDb database, and store all data returned from the Segment
operator; in this case, all the data for customer 0. The output of the Spool operator is just
all data stored in the TempDb table.

The Nested Loops operator joins the first and second parts of the execution plan, or
rather, the principle query with the subquery. As we now, the nested loops scan a table
and join it with another table one row at time, and so for each row in the Table Spool
(Item 4) the nested loop will join the result of Item 11. To give you a quick preview, this
result will be the rows where the Value column in the Spool table is lower than the value
calculated in the aggregation (Item 8 – the average value of the customer's orders). When
this step is finished, the Spool operator (Item 4) is called again, and it in turn calls the
Segment operator, which reads another segment of rows (i.e. processes another
customer). This cycle repeats until all rows are read.

Now, let's to go to the second part of this plan, which will run the SubQuery that returns
the average order value for one costumer.

To start with, the execution plan reads the data from the Lazy Spool and passes the
results to the aggregate to calculate the average. Remember that the rows in the Spool
operator are currently only the rows for "Customer 0."

51

Chapter 6: Spools – Lazy Spool

The Stream Aggregate operator will calculate the average of the value column, returning
one row as an Output value.

The Compute Scalar operator, covered in an earlier chapter, will convert the result of the
aggregation into a Numeric Datatype, and pass the Output row to the Nested Loops
operator in Step 9.

The last Table Spool is used to once again read the "Client=0" rows from the Spool table,
which will be joined with the result of the compute scalar.

The Nested Loops operator performs an iterative inner join; in this case, for each row
returned by the computed scalar, it scans the Spool table and returns all rows that satisfy
the condition of the join. Specifically, it returns the rows where the Value column in the
Spool table is lower than the value calculated in the aggregation.

Tip

If you create an index on the Pedido table covering the Client column and include the Value column,

you will optimize the query because the SORT operator will not be necessary, and it costs 62% of the

whole query.

52

Chapter 6: Spools – Lazy Spool

We saw that the Query Optimizer can use the Lazy Spool operator to optimize some
queries by avoiding having to read the same values multiple times. Because SQL
Server uses the Spool Lazy, the SQL works with just one chunk of the data in all
operations, as opposed to having to constantly fetch new data with each iteration.
Clearly, that translates into a great performance gain.

53

Chapter 7: Spools – Non-Clustered
Index Spool

 Non-Clustered Index Spool

"Indexes, Indexes, Indexes…" to misquote a certain prominent Microsoft employee.
Indexing is a key issue when we are talking about databases and general performance
problems, and so it's time to feature the Non-Clustered Index Spool. It's important that
you read the earlier chapter on Lazy Spool before you get too deeply into this chapter.

The Index Spool is used to improve the read performance of a table which is not indexed
and, as with other types of Spool operators, it can be used in a "Lazy" or an "Eager"
manner. So, when SQL Server needs to read a table that is not indexed, it can choose
to create a "temporary index" using the Spool, which can result in a huge performance
improvement in your queries. To get started with understanding Index Spool, we'll use
the usual table, called Pedido ("Order" in Portuguese). The following script will create a
table and populate it with some garbage data:

USE tempdb
GO
IF OBJECT_ID('Pedido') IS NOT NULL
 DROP TABLE Pedido
GO
CREATE TABLE Pedido (ID INT IDENTITY(1,1),
 Cliente INT NOT NULL,
 Vendedor VARCHAR(30) NOT NULL,
 Quantidade SmallInt NOT NULL,
 Valor Numeric(18,2) NOT NULL,
 Data DATETIME NOT NULL)
GO
CREATE CLUSTERED INDEX ix ON Pedido(ID)
GO

54

Chapter 7: Spools – Non-Clustered Index Spool

DECLARE @I SmallInt
 SET @I = 0
WHILE @I < 50
 BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Amorim',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Coragem',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 SET @I = @I + 1
 END
SET @I = 0
WHILE @I < 2
 BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT Cliente, Vendedor, Quantidade, Valor, Data
 FROM Pedido
 SET @I = @I + 1
 END
GO
SELECT *
 FROM Pedido Ped1
 WHERE Ped1.Valor > (
 SELECT AVG(Ped2.Valor)
 FROM Pedido AS Ped2
 WHERE Ped2.Data < Ped1.Data)

Below is what the data looks like in SSMS:

55

Chapter 7: Spools – Non-Clustered Index Spool

To help us understand the Index Spool, I've written a query that returns all orders with a
sale value higher than the average, as compared to all sales before the date of the order in
question:

SELECT *
 FROM Pedido Ped1
 WHERE Ped1.Valor > (
 SELECT AVG(Ped2.Valor)
 FROM Pedido AS Ped2
 WHERE Ped2.Data < Ped1.Data)

Before we see the execution plan, let's make sure we understand the query a little better.
The SubQuery returns the average value of all sales (AVG(Ped2.Valor)) dated before the
order we're comparing them to. After that, the average is compared with the principal
query, which determines whether the sale value in question is actually bigger than

56

Chapter 7: Spools – Non-Clustered Index Spool

the average. You'll notice that this query has a very similar form to the example in the
previous chapter. So, now we have got the following execution plan:

|--Filter(WHERE:([Pedido].[Valor] as [Ped1].[Valor]>[Expr1004]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Ped1].[Data]))
 |--Clustered Index Scan(OBJECT:([Pedido].[PK_Pedido] AS [Ped1]))
 |--Index Spool(SEEK:([Ped1].[Data]=[Pedido].[Data] as [Ped1].[Data]))
 |--Compute Scalar(DEFINE:([Expr1004]=CASE WHEN [Expr1011]=(0) THEN
NULL ELSE [Expr1012]/CONVERT_IMPLICIT(numeric(19,0),[Expr1011],0) END))
 |--Stream Aggregate(DEFINE:([Expr1011]=Count(*),
[Expr1012]=SUM([Pedido].[Valor] as [Ped2].[Valor])))
 |--Index Spool(SEEK:([Ped2].[Data] < [Pedido].[Data] as
[Ped1].[Data]))
 |--Clustered Index Scan(OBJECT:([Pedido].[PK_Pedido]
AS [Ped2]))

This is a very interesting plan, and, as we can see, the Optimizer chose to use two Index
Spool operators; one working as an Eager and the other as a Lazy spool. We can also see
that, after the Nested Loops, SQL Server uses the Filter operator to select just the rows
that satisfy the WHERE condition (WHERE PEd1.Valor > …).

This execution plan is actually simpler than it looks; first, the Clustered Index Scan reads
the rows in the Pedido table, returning the Data and Valor (Date and Value) columns to
the Eager Index Spool. With these rows, the Optimizer uses the Index Spool to create a

57

Chapter 7: Spools – Non-Clustered Index Spool

temporary non-clustered index on Data and Valor, and as it is an Eager spool, it will read
all the rows from the clustered scan to create the index.

Quick Tip

If you create an index on the Pedido table covering Data and Valor, you will optimize the query because

the operator Index Spool (Eager) will not be necessary.

After that, the optimizer will calculate the average value of the sales, using the following
rule: for each row of Ped1, the optimizer computes the average of any orders where
the Ped2.Data is lower than Ped1.Data (i.e. the average of any orders which have a date
earlier than the order in the given row of Ped1). To do this, SQL Server uses the Stream
Aggregate and the Compute Scalar operators, in a manner similar to that discussed in the
previous chapter.

I'll explain the Index Spool (Lazy) in just a moment, but for now I'll just say that it
optimizes the Nested Loops join, which is joining the average calculated by the sub-query
to the Ped1.Data column, and the result, as I mentioned, is then filtered to complete the
query.

Now, let's look at what makes the Index Spool (Lazy) operator special. When SQL Server
needs to read a value that it knows is repeated many times, then it can use a Spool to
avoid having to do the same work each time it needs to find that value. For instance,
suppose that the date column has a high density (i.e. it contains a lot of duplicated
values); this will mean that SQL Server will have to do the same calculation more than
once, since the Nested Loops operator will process the join row by row. However, if the
value passed as a condition to the join is equal to a value that has already been calculated,
you clearly shouldn't need to recalculate the same result each time. So how can we reuse
the value that has already been found?

This is exactly what the Non-Clustered Index Spool operator (Lazy), is designed to do
– optimize the process of the Join. It is optimized to predict precisely the case that I've

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/

58

Chapter 7: Spools – Non-Clustered Index Spool

described above, so that a value that has already been calculated will not be recalculated,
but instead read from the index, which is cached (TempDb). So, from the point of view
of the Spool, it is very important to know if the required value still needs to be calculated
(rebind), or has already been calculated (rewind). Now that this simple example has illus-
trated that point, it's time to dive a little deeper.

Understanding rebind and rewind

First of all you need understand that all types of Spool operators use temporary storage to
cache the values used in the execution plan, although this temporary storage is truncated
for each new read of the operator. This means that, if I use a Lazy Spool to calculate an
aggregation and keep this calculated value in cache, I can use this cached data in many
parts of the plan, and potentially work with just single chunk of data in all the plan's
steps. However, to do this, we need reset the cache for each newly calculated value ,
otherwise by the end of the plan we'll be working with the whole table! Thus, for a spool,
it is very important to distinguish between executions need the same value (rewinds) and
executions needing an different/new value (rebinds).
A rewind is defined as an execution using the same value as the immediately preceding
execution, whereas a rebind is defined as an execution using a different value. I know this
is a little confusing to understand for the first time, so I'll try and explain it step by step,
with some code and practical examples.

59

Chapter 7: Spools – Non-Clustered Index Spool

Rebinds and rewinds with Table Spool (Lazy
Spool)

To understand a little more about rebind and rewind, let's suppose our Pedido table
has some rows in the Data (Date) column in the following order: "19831203", "19831203",
"20102206" and "19831203". A representation of rewind and rebind in a table spool
operator would be something like this:

Value = "19831203" – A rebind occurs, since is the first time the operator is called.

Value = "19831203" – A rewind occurs since this value was already read, and is in the spool
cache.

Value = "20102206" – The value changes, so the cache is truncated and a rebind occurs,
since is the value "20102206" is not in the cache.

Value = "19831203" – A rebind occurs again, since the actual value in cache is "20100226",
and the value that was read in step 1 was truncated in the step 3.

So our final numbers are three rebinds (steps 1, 3 and 4) and just one rewind (step 2). To
show this in a practice, I've written a script to repopulate the table Pedido with four rows,
exactly as I've mentioned above.

USE tempdb
GO
 TRUNCATE TABLE Pedido
GO
SET IDENTITY_INSERT Pedido ON
INSERT INTO Pedido(ID, Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT 1,
 ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),

60

Chapter 7: Spools – Non-Clustered Index Spool

 '19831203'
INSERT INTO Pedido(ID, Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT 2,
 ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 '19831203'
INSERT INTO Pedido(ID, Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT 3,
 ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 '20100622'
INSERT INTO Pedido(ID, Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT 4,
 ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 '19831203'
 SET IDENTITY_INSERT Pedido OFF
GO

This is what the data looks like in SSMS:

To illustrate the rebind and rewind using the Table Spool operator (which we already
understand), I've written a query using the USE PLAN hint, to force a plan that uses the
Table Spool operator. I'll omit part of the code for brevity, but you can download the

http://www.simple-talk.com/content/file.ashx?file=3820

61

Chapter 7: Spools – Non-Clustered Index Spool

query here. Note that the following query only runs in the TempDb database, because
the XML plan is using this database.

For the query above, we have the following execution plan:

Note that the plan above is using a Table Spool (Lazy Spool) to perform the query; for
each row read in the Pedido (Ped1) table, SQL Server will call the table Spool to run the
SubQuery. Let's look at the rebind and rewind properties, to see how many times SQL
Server executes each task.

http://www.simple-talk.com/content/file.ashx?file=3820

62

Chapter 7: Spools – Non-Clustered Index Spool

"Hey, wait a minute, Fabiano!" I hear you exclaim. "Didn't you said that we have three
rebinds and one rewind? Why SQL is showing different values?"

Sharp-eyed as ever, dear reader. Pay attention, now; do you notice that I marked the
SORT operator with a green square? We should be asking ourselves what this is doing.

As I said earlier, to SQL Server, it is very important to distinguish between executions
using the same value and executions using different values.

63

Chapter 7: Spools – Non-Clustered Index Spool

That means that if SQL Server reads the Pedido table and Sorts the values by Date, it will
increase the chance of a rewind occurring, because the order of rows will go from:

•	 19831203

•	 19831203

•	 20102206

•	 19831203

to

•	 19831203

•	 19831203

•	 19831203

•	 20102206

That's why SQL Server only makes two rebinds and two rewinds. Pretty smart, huh?

Rebinds and rewinds with Index Spool (Lazy
Spool)

Now let's see how the Index Spool works. Remember, index spool doesn't truncate
its cache, even if a rebind occurs; instead it maintains a temporary index with all
"rebound" rows.

64

Chapter 7: Spools – Non-Clustered Index Spool

So a representation of rewind and rebind in an index spool operator would be something
like this:

Value = "19831203" – A rebind occurs, as this is the first time the operator is called.
Value = "19831203" – A rewind occurs, as this value was already read, and is in the spool
cache.
Value = "20102206" – A rebind occurs, as the value "20102206" is not in the cache.
Value = "19831203" – A rewind occurs, as this value was read in step 1, and is still in the
temporary index.

So our final numbers are two rebinds (steps 1 and 3) and just two rewinds (steps 2 and 4).
The same numbers used in the plan above with the table spool operator.

To illustrate rebind and rewind using the Index Spool operator, I've written a second
query using the USE PLAN hint to force a plan that uses the Index Spool operator. As
before, I'll omit part of the code for the sake of brevity, but you can download the query
here.

http://www.simple-talk.com/content/file.ashx?file=3821
http://www.simple-talk.com/content/file.ashx?file=3821

65

Chapter 7: Spools – Non-Clustered Index Spool

To query above we have the following execution plan:

Note that, as intended, the plan above is using an Index Spool (Lazy Spool) to perform the
query. For each row read in the Pedido (Ped1) table, SQL Server will call the Index Spool
to run the SubQuery. Let's look at the Spool's rebind and rewind properties to see how
many times SQL Server executes each task.

66

Chapter 7: Spools – Non-Clustered Index Spool

Maybe you are wondering, "Once again, Fabiano – your prediction is different from the
real values. Could you explain that please? Why is the operator's properties showing three
rebinds and one rewind, when you expected two rebinds and two rewinds?"

Well, this time it's because our Microsoft friends like to confuse us. That's right, my count
is correct, and the displayed properties are actually wrong. To quote from his book, Inside
Microsoft SQL Server 2005 Query Tuning and Optimization, this is what Craig
Freedman wrote about this situation:

"Note that rewinds and rebinds are counted the same way for index and nonindex spools. As
described previously, a reexecution is counted as a rewind only if the correlated parameter(s)
remain the same as the immediately prior execution, and is counted as a rebind if the corre-
lated parameter(s) change from the prior execution. This is true even for reexecutions, in which
the same correlated parameter(s) were encountered in an earlier, though not the immediately
prior, execution. However, since lazy index spools, like the one in this example, retain results
for all prior executions and all previously encountered correlated parameter values, the spool
may treat some reported rebinds as rewinds. In other words, by failing to account for correlated
parameter(s) that were seen prior to the most recent execution, the query plan statistics may
overreport the number of rebinds for an index spool."

Summary

Generally, if you see a spool operator in your plan, you should take a closer look, because
it can probably be optimized if you create the indexes properly. Doing this avoids the
need for recalculations, prevents the query optimizer from having to create the indexes
for you, and your query will perform better.

http://www.microsoft.com/learning/en/us/book.aspx?ID=8565&locale=en-us
http://www.microsoft.com/learning/en/us/book.aspx?ID=8565&locale=en-us
http://blogs.msdn.com/b/craigfr/
http://blogs.msdn.com/b/craigfr/

67

Chapter 8: Spools – Row Count Spool

 Row Count Spool

We've now looked at the Eager Spool, Lazy Spool and Non-Clustered Index Spool
operators, and, in this chapter, we'll be completing the set with the Row Count Spool
Showplan operator.

Of all spool operators we've seen, I think this is the most simple. This operator just scans
an input, counting how many rows are present, and returns the number of rows without
any of the data they contained. It is used when it is important to check for the existence
of rows, but not what data they hold. For example, if a Nested Loops operator performs
a Left Anti Semi Join operation, and the join predicate applies to the inner input, a row
count spool may be placed at the top of that input to cache the number of rows which
satisfy the argument. Then, the Nested Loops operator can just use that row count
information (because the actual data from the inner input is not needed) to determine
whether to return the outer row or not (or rather, how many rows to return).

I know that's a little tricky to wrap your head around at first without a concrete example,
so to illustrate this behavior I'll start, as always, by creating a table called Pedido (Order).
The following script will create a table and populate it with some garbage data.

USE tempdb
GO
IF OBJECT_ID('Pedido') IS NOT NULL
 DROP TABLE Pedido
GO
CREATE TABLE Pedido (ID Int IDENTITY(1,1),
 Cliente Int NOT NULL,
 Vendedor VarChar(30) NOT NULL,
 Quantidade SmallInt NOT NULL,
 Valor Numeric(18,2) NOT NULL,
 Data DateTime NOT NULL)

http://blog.sqlauthority.com/2007/05/23/sql-server-2005-explanation-left-semi-join-showplan-operator-and-other-operator/

68

Chapter 8: Spools – Row Count Spool

GO
CREATE CLUSTERED INDEX ix ON Pedido(ID)
GO
DECLARE @I SmallInt
SET @I = 0

WHILE @I < 5000
BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GetDate() - (CheckSUM(NEWID()) / 1000000)

 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Amorim',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GetDate() - (CheckSUM(NEWID()) / 1000000)
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Coragem',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GetDate() - (CheckSUM(NEWID()) / 1000000)
 SET @I = @I + 1
END
GO

69

Chapter 8: Spools – Row Count Spool

This is what the data looks like.

Next, we've got a sample query which will return the ID and Value for all orders only if
there is no order which was placed on 2009-01-01 for more than 10 items (i.e. Quantity
(Quantidade) > 10).

SELECT ID, Valor
 FROM Pedido Ped1
 WHERE NOT EXISTS(SELECT 1
 FROM Pedido Ped2
 WHERE Ped2.Data = '20090101'
 AND Ped2.Quantidade > 10)
OPTION(MAXDOP 1)

70

Chapter 8: Spools – Row Count Spool

For the query above, we have the following execution plan:

As we can see, this plan is using the operator Row count Spool to check the EXISTS Sub
Query, which returns just a true (some row's exist) or false (no rows exist) value, and so
the actual contents of the rows doesn't matter (do you see where I'm going with this?)
Let's take a closer look at what is happening.

First, the Clustered Index Scan reads all the rows in Pedido table using the ix index, after
which all rows are passed to the Nested Loops operator to be joined with the SubQuery
result. Bear in mind that this Loops operator is working as a Left Anti Semi Join, which
means that only one side (the outer side) of the join will be returned. In our plan, this
means that only the rows read from Ped1 will be returned to the Select operator, but for
each row read in Ped1, the loop will look at the Row Count Spool to see if the subquery
value exists (i.e. does the spool return a row or not).

SQL Server uses the Row Count Spool operator to avoid reading the Pedido (Ped2) table
over and over again. It calls the Clustered Index Scan at the bottom of the execution plan,
which returns just one row (or not, if none satisfy the subquery). This row (or rather, it's
existence) is then cached in the Spool, and this cached value is reused for each row of the
Ped1 table in the nested loop.

Why is this spool even necessary? Let's look at a comparison between a plan which uses
the row count spool and a plan which doesn't. As I did in my last article, I've written an
XML plan to force the Query Optimizer to use my (Row-Count-spool-less) plan, and you
can download the query here.

http://blog.sqlauthority.com/2007/05/23/sql-server-2005-explanation-left-semi-join-showplan-operator-and-other-operator/

71

Chapter 8: Spools – Row Count Spool

For the queries above, we have the following execution plans:

72

Chapter 8: Spools – Row Count Spool

Take a look at the differences between the costs of two queries; that seems like pretty
strong evidence for the usefulness of the Row Count Spool operator, doesn't it? By
avoiding having to read the Pedido table for each row of the Inner input to the nested
loop, SQL Server creates a huge performance gain. Just look at the IO results for the two
queries above:

First Query using Row Count Spool

(15000 row(s) affected)
Table 'Pedido'. Scan count 2, logical reads 186, physical reads 0, read-ahead reads
0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Second Query using Clustered Index Scan

(15000 row(s) affected)
Table 'Pedido'. Scan count 2, logical reads 1395093, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

I've nothing else to say about that, because I don't think there's much I can add to that
kind of compelling evidence.

73

Chapter 9: Stream Aggregate

 Stream Aggregate

The Stream Aggregate operator is very common, and it is the best way to aggregate
a value, because it uses data that has been previously sorted in order to perform the
aggregation quickly.

The Stream Aggregate is used to group some rows by one or more columns, and to
calculate any aggregation expressions that are specified in the query. The commonest
types of aggregation are: SUM, COUNT, AGV, MIN, and MAX. When you use one of these
commands, you will probably see a Stream Aggregation operator being used in the query
plan. The Stream Aggregation is very fast because it requires an input that has already
been ordered by the columns specified in the GROUP statement. If the aggregated data is
not ordered, the Query Optimizer can firstly use a Sort operator to pre-sort the data, or it
can use pre-sorted data from an index seek or a scan.

We will see later in this article how a myth is born. The Stream Aggregate is a father
of this myth, but don't fret, we will get there in a minute, after I've explained how the
Stream Aggregate operation works.

To illustrate the Stream Aggregate behavior, I'll start as always by creating a table called
Pedido (Order). The following script will create a table and populate it with some garbage
data.

74

Chapter 9: Stream Aggregate

USE tempdb
GO

IF OBJECT_ID('Pedido') IS NOT NULL
 DROP TABLE Pedido
GO

CREATE TABLE Pedido (ID INT IDENTITY(1,1) PRIMARY KEY,
 Cliente INT NOT NULL,
 Vendedor VARCHAR(30) NOT NULL,
 Quantidade SmallInt NOT NULL,
 Valor Numeric(18,2) NOT NULL,
 Data DATETIME NOT NULL)
GO

DECLARE @I SmallInt
SET @I = 0

WHILE @I < 10
BEGIN
 INSERT INTO Pedido(Cliente, Vendedor, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 'Fabiano',
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 SET @I = @I + 1
END
GO
UPDATE Pedido SET Cliente = 1 WHERE ID IN (4,6,9)
UPDATE Pedido SET Cliente = 4 WHERE ID IN (8,5,2)
UPDATE Pedido SET Cliente = 20 WHERE ID IN (3,1,7,10)
GO

75

Chapter 9: Stream Aggregate

This is what the data looks like.

Let's divide the aggregations in two types, the Scalar Aggregations and the Group
Aggregations.

•	 Scalar Aggregations are queries that use an aggregation function, but don't have a
GROUP BY clause, a simple sample is SELECT COUNT(*) FROM Table.

•	 Group Aggregations are queries that have a column specified into the GROUP BY
clause, for instance, SELECT COUNT(*) FROM Table GROUP BY Col1.

Scalar aggregations

Scalar aggregations are performed using the Stream Aggregation operator. A quite simple
sample is the following query that counts all rows from the Pedido table.

SELECT COUNT(*) FROM Pedido

76

Chapter 9: Stream Aggregate

For the query above, we have the following execution plan:

 |--Compute Scalar(DEFINE:([Expr1003]=CONVERT_IMPLICIT(int,[Expr1004],0)))
 |--Stream Aggregate(DEFINE:([Expr1004]=Count(*)))
 |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Pedido].[PK__
Pedido__3214EC2707F6335A]))

Text execution plan.

This is not a complicated plan. As we can see, the first step is to read the all rows from
the Clustered Index. Then, as you can see this in the text execution plan, the Stream
Aggregate performs the COUNT(*). After the COUNT, the result of the COUNT is placed
into the Expr1004, and the Compute Scalar operator converts the Expr1004 to a Integer
DataType.

You may is wondering why the Compute Scalar is needed. The answer is as follows...

The output of the Stream Aggregate is a BigInt value, and function COUNT is an Integer
function. You may remember that, in order to count BigInt values, you should use the
COUNT_BIG function. If you change the query above to use the COUNT_BIG, then you
will see that the plan no longer uses the compute scalar operator. My great friend from
SolidQ Pinal Dave gives a very good explanation about that here. There seems to be no
performance advantage through using COUNT_BIG, though, since the casting operation
of compute scalar takes very little CPU-effort.

http://blog.sqlauthority.com/
http://blog.sqlauthority.com/2010/02/05/sql-server-stream-aggregate-showplan-operator-reason-of-compute-scalar-before-stream-aggregate/

77

Chapter 9: Stream Aggregate

Note that the Scalar Aggregations will always return at least one row, even if the table is
empty.

Another important operation is when the Stream Aggregate is used to do two calcula-
tions; for instance, when you use the AVG function the Stream Aggregate actually
computes the COUNT and the SUM, than divides the SUM by the COUNT in order to
return the average.

We can illustrate this in practice. This query performs a simple AVG into the Pedido table.

SELECT AVG(Valor) FROM Pedido

 |--Compute Scalar(DEFINE:([Expr1003]=CASE WHEN [Expr1004]=(0) THEN NULL ELSE
[Expr1005]/CONVERT_IMPLICIT(numeric(19,0),[Expr1004],0) END))
 |--Stream Aggregate(DEFINE:([Expr1004]=Count(*), [Expr1005]=SUM([tempdb].
[dbo].[Pedido].[Valor])))
 |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Pedido].[PK__
Pedido__3214EC2707F6335A]))

Text Execution plan.

As we can see, the Stream Aggregate calculates the COUNT and the SUM, and then the
Compute Scalar divides one value by the other. You'll notice that a CASE is used to avoid
a division by zero.

Tip

Pay very close attention that the result of the AVG will be the same type as the result of the expression

contained in its argument, in our case the column specified by the query. For instance, look at the

difference of the two columns of the following query.

78

Chapter 9: Stream Aggregate

SELECT AVG(Quantidade), AVG(CONVERT(Numeric(18,2),Quantidade)) FROM Pedido
The result of the query is the following:

 The AVG function can return int, bigint, Decimal/Numeric, money and float data,
depending on the result of the expression.

Group Aggregations

Group Aggregations are queries that use the GROUP BY column. Let's take a quite simple
query to start with. The following query is aggregating all orders by each customer.

SELECT Cliente,
 SUM(Valor) AS Valor
 FROM Pedido
 GROUP BY Cliente

For the query above, we have the following execution plan:

79

Chapter 9: Stream Aggregate

 |--Stream Aggregate(GROUP BY:([tempdb].[dbo].[Pedido].[Cliente])
DEFINE:([Expr1003]=SUM([tempdb].[dbo].[Pedido].[Valor])))
 |--Sort(ORDER BY:([tempdb].[dbo].[Pedido].[Cliente] ASC))
 |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Pedido].[PK__
Pedido__3214EC2707F6335A]))

Text Execution plan.

The plan here is not too complicated: firstly, SQL Server reads all the rows from the
Pedido table via the Clustered Index, then sorts the rows by Customer (Cliente), with the
table ordered by Customers, SQL Server then starts the aggregation. For each Customer,
all rows are read, row by row, computing the value of the orders. When the Customer
changes, the operator returns the actual requested row (the first Customer) and starts to
aggregate this new Customer. This process is repeated until all rows are read.

The following picture shows the groups by each Customer.

As we can see from the execution plan, the sort operator costs 78% of the entire cost of
the plan, which implies that, if we can avoid this step, we'll have a considerable gain in
performance.

80

Chapter 9: Stream Aggregate

Let's create the index properly to see what will happen.

CREATE INDEX ix_Cliente ON Pedido(Cliente) INCLUDE(Valor)

Now let's see the execution plan.

Great. It's faster. As we can see, now the SQL Server can now take advantage of the index.
It uses the ordered index by Cliente (Customer) to perform the aggregation, because the
rows already are ordered by Customer, SQL doesn't need to sort the data.

A myth is born

You've probably heard from someone that you don't need to use the ORDER BY clause
if you've already put the columns into the GROUP BY. For instance, in our sample, if I
write:

SELECT Cliente,
 SUM(Valor) AS Valor
 FROM Pedido
 GROUP BY Cliente

81

Chapter 9: Stream Aggregate

And if I want the data be returned by Cliente, I'll be told that I don't need to put ORDER
BY Cliente clause into the query:

SELECT Cliente,
 SUM(Valor) AS Valor
 FROM Pedido
 GROUP BY Cliente
 ORDER BY Cliente

Because Stream Aggregate needs to have the data ordered by the columns specified into
the GROUP BY, the data will generally be returned into the GROUP BY order. But this is
not always true.

Since SQL Server 7.0, the Query Optimizer has two options to perform an aggregation:
either by using the Stream Aggregate or a Hash Aggregate.

I'll cover the Hash Aggregate in a next opportunity, but by now, to see the Hash Aggregate
in action, we could use a very good tip from Paul Withe (you should read all his blog
posts), to disable the rule used by Query Optimizer to create the execution plan using the
Stream Aggregate. In other words, I'll tell the Query Optimizer that the Stream Aggre-
gation is not an option to create the execution plan.

DBCC TRACEON (3604);
DBCC RULEOFF('GbAggToStrm');
GO
SELECT Cliente,
 SUM(Valor) AS Valor
 FROM Pedido
 GROUP BY Cliente
OPTION (RECOMPILE);
GO
DBCC RULEON('GbAggToStrm');

http://sqlblog.com/blogs/paul_white/archive/2010/07/31/inside-the-optimiser-constructing-a-plan-part-4.aspx

82

Chapter 9: Stream Aggregate

For the query above, we have the following execution plan:

We can now see that the Query Optimizer creates a plan that uses the Hash Match
(Aggregate) operator to perform the aggregation and it doesn't require any SORT
operator; but that means that the rows will be returned in a random order.

So the truth is that if you need the data ordered by some column, you should, please,
always put the column in the ORDER BY clause.

If the Query Optimizer chooses to use the Hash Match instead the Stream Aggregate, the
data may not be returned in the expected order.

83

Chapter 10: SORT

The SORT operator is quite simple, and my intention here is to explain the use of this
operator, and demonstrate how you can improve the performance of your queries by
avoiding the sorting operation.

As we can see by its name, the SORT operator sorts all rows received by the operator
into order. It's important to you keep in mind that, in some cases, the SORT operation is
performed in the temporary database TempDb. Because TempDb is used for all databases
within the SQL Server Instance, this can lead to TempDb becoming a bottle-neck and
thereby affecting performance.

It is surprising how often developers and DBAs take the SORT operation for granted,
even though it is can be expensive in terms of CPU and I/O. You should always pay due
attention to this process, and check to make sure that it does not appear in the query plan
unless it is necessary.

SORT into execution plans

To see the SORT in practice, let's start with a simple query that uses the table
DimCustomer from the Microsoft Sample AdventureWorksDW database.

The following query does a simple SELECT operation, ordering the result by LastName.
Because the table is not so large, the Sort will be performed in memory. That means that
the data doesn't need to be written to disk.

SELECT *
 FROM DimCustomer
 ORDER BY LastName

84

Chapter 10: SORT

For the query above, we have the following execution plan:

Here we can see that the Sort is performed so as to order the data by LastName. Because
I didn't specify the word ASC or DESC, the result will be ordered ascending; which is the
default option.

SORT can also be used to remove duplicate rows, in other words, perform a DISTINCT
operation. For instance, consider the following query:

SELECT DISTINCT AddressLine1
 FROM DimCustomer

From this, we have the following execution plan:

85

Chapter 10: SORT

Here the SORT is a Distinct SORT. You'll notice that I didn't specify anything in an
ORDER BY clause; I'm just getting a distinct list of AddressLine1.

SORT in memory/disk

It's important to know that the SORT operation is a very expensive task, and it usually
requires a lot of memory. When the query plan is created, SQL Server reserves the
memory to perform the SORT in a "grant;" but sometimes this sort is written to disk to
run in the TempDb database. To understand more about SQL Server memory grant, look
at this article.

To see when the SORT operation is being done in TempDb, we can use the SQL Server
Profiler to capture an event called "Sort Warnings."

Many of these warnings are an indication that you need more memory. If your appli-
cation requires the use of many disk-based SORT operations, you can also check
physical location of the TempDb database so as to be sure that it is using the best storage
subsystem available.

http://blogs.msdn.com/b/sqlqueryprocessing/archive/2010/02/16/understanding-sql-server-memory-grant.aspx

86

Chapter 10: SORT

Note

Just adding more memory is not the only option, and maybe not the easiest. If you want to know more

about the sort warning you should read the comments below the Simple-Talk web version of

this article. Thanks a lot to Holger, Chris, and Celko for all comments.

How to avoid SORT operations

The easiest way to avoid a SORT is by creating an Index. As we know, indexes are ordered
by the columns so that , if you create an index covering your query, the Query Optimizer
identifies this index and uses it to avoid a SORT operation. Let's look at a sample using
the same query used before.

The following command creates an index using the column LastName.

CREATE INDEX ix ON DimCustomer(LastName)

Now, let's see the execution plan of the same query that we've already used.

SELECT *
 FROM DimCustomer
 ORDER BY LastName

http://www.simple-talk.com/sql/learn-sql-server/showplan-operator-of-the-week---sort/
http://www.simple-talk.com/sql/learn-sql-server/showplan-operator-of-the-week---sort/

87

Chapter 10: SORT

For this query, we have the following execution plan:

This time, the Query Optimizer has chosen to read the data from the ix index and then
uses a Key Lookup to read the other columns to the clustered index. The query optimizer
is smart enough to understand that the index is ordered by the column LastName and
there is no reason to order the data again.

Another very common usage of a sorting operation is when developers create reports
with a lot of options to allow the end-users to choose how to sort the result. In this case,
the ORDER BY clause can often be avoided in your query. It is usually better to sort the
data within the client application, not the server.

SQL Server also can use the SORT operator for other operations, for instance, to be able
to use the Merge algorithm, and you can also avoid this by creating the proper index.

88

Chapter 11: Merges – Merge Join

For quite a while, I wanted to talk about the Join operators (Loop, Merge and Hash), but
I always wondered whether, if I wrote on this subject, you'd find it interesting, since there
are already a lot of blog posts and articles about them. Despite that, I just couldn't miss
having those operators in my series, so I really hope that you like my approach on this
topic. I'll start by featuring the Merge Join operator. I don't have to follow the usual order,
Loop, Merge and Hash, so I'll start with the Merge.

Introduction

Once when I was presenting a lecture on this subject, I asked the audience if there was
anyone in the room who had a database with only one table. To my surprise, one person
raised his hand – I was stunned into silence, to the amusement of the audience.

Simply put, a join is an operation that links one table to another, and SQL Server can use
three algorithms to perform this operation, Loop, Merge and Hash.

The Merge Join performs an inner join, an outer join or, in some cases, even a union
operation. The Merge Join is very fast because it requires that both inputs are already
sorted by the respective key columns. To do an analogy with the joins I'll use the same
example that I like to show in my presentations.

To illustrate the Merge Join behavior, I'll start by creating two tables, one called Cursos
("Courses" in Portuguese) and one table called Alunos (Students). The following script will
create the tables and populate them with some garbage data.

89

Chapter 11: Merges – Merge Join

USE tempdb
GO
IF OBJECT_ID('Alunos') IS NOT NULL
BEGIN
 DROP TABLE Alunos
 DROP TABLE Cursos
END
GO
CREATE TABLE Cursos (ID_Cursos INT PRIMARY KEY, Nome_Curso VARCHAR(80))
CREATE TABLE Alunos (ID_Alunos INT PRIMARY KEY, Nome_Aluno VARCHAR(80), ID_Cursos
INT)
Y, Nome_Curso VARCHAR(80))
GO

INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (1, 'Medicina')
INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (2, 'Educação Física')
INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (3, 'Sistemas de Informação')
INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (4, 'Engenharia')
INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (5, 'Física Quantica')
INSERT INTO Cursos (ID_Cursos, Nome_Curso) VALUES (6, 'Paisagismo')
GO

INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (1, 'Fabiano Amorim',
2)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (2, 'Laerte Junior',
6)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (3, 'Fabricio Catae',
5)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (4, 'Thiago
Zavaschi', 3)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (5, 'Diego Nogare',
4)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (6, 'Rodolfo Roim',
3)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (7, 'Rodrigo
Fernandes', 5)
INSERT INTO Alunos (ID_Alunos, Nome_Aluno, ID_Cursos) VALUES (8, 'Nilton
Pinheiro', 4)

90

Chapter 11: Merges – Merge Join

This is what the data looks like:

SELECT * FROM Alunos
SELECT * FROM Cursos

As you can see, in the table Alunos I've a column, ID_Cursos, that links to the course that
the student is signed up for.

Now you know about the tables and the data. Before we go on with the script stuff, I'd like
to show you a picture with the same tables but using something that we are more used to
seeing in real life.

91

Chapter 11: Merges – Merge Join

I'm sure you already saw one of these card indexes in a movie rental store, a library, your
dental clinic, or even in your college. Before databases became commonplace, this kind
of material was very popular and very useful, but in the past few years we have evolved IT
systems (thank goodness) and now we don't need to store our customers' info in this kind
of table since we have SQL Server to do that job.

You'll notice that the card index Cursos is sorted by ID_Cursos and the card index Alunos
is ordered by Name.

If you are using the card index and I ask you what Fabiano's course is , what is the first
thing you have to do? First of all you have to scan the Aluno's card index to find the record
with the info about the student, Fabiano, then you have to look at the field ID_Cursos to
know the number of the course. Finally you have to search in the card index Cursos to
find the course relative to the ID you found in the Aluno's card.

You just did a join!

92

Chapter 11: Merges – Merge Join

Now, what if I change my question to, "Please give me the details of all students and all
their courses"? What would you have to do then?

One method would entail starting to scan the card index of courses and, for each course
you read, you scan the card index for the students that relate to the course, and you
would repeat this until all the courses are read. That means that, for each course, you
would have to scan the whole card index with the students' info.

Now, can you tell me what will happen if, before we start the process of reading the
students card index, I manually re-order the student card index from the Student Name
to ID_Cursos order?

If I do this, I can just read one Course (which is already sorted by ID_Cursos) and read
just a small part of the Students card index, because now the ID_Cursos = 1 will be the
first occurrence I'll read in the Course card, and the ID_Course = 1 will also be the first
card in the Students card index. Did you understand that you don't need to scan the
Students card index any more?

This is exactly what SQL Server does with the Merge Join algorithm, it takes advantage of
the column orders and performs a very fast join. It will read the rows and, if one of inputs
get to the end, it just stops the read, because that means that all possible rows have been
joined.

SORT Merge Join

As you can see, both sides of the join must be sorted by the key columns before you can
use the Merge Join. Sometimes the Query Optimizer can explicitly force a Sort operator
to precede the Merge Join operator, or it can read the rows from an index that is already
sorted in the expected order.

93

Chapter 11: Merges – Merge Join

The following query is using a hint to force the use of the Merge Join operator.

SELECT Alunos.Nome_Aluno, Cursos.Nome_Curso
FROM Alunos
INNER JOIN Cursos
ON Alunos.ID_Cursos = Cursos.ID_Cursos
OPTION (MERGE JOIN)

For the query above, we have the following execution plan:

You can see in the execution plan that the Query Optimizer explicitly sorted the table
Alunos by the ID_Cursos column so as to use the Merge Join, and the highest cost of the
query is the SORT operator.

We could avoid this step by just creating an index into the table Alunos by the ID_Cursos
column. The following creates the index:

CREATE NONCLUSTERED INDEX ix_ID_Curso ON Alunos(ID_Cursos)

Now let's look at the execution plan again.

94

Chapter 11: Merges – Merge Join

SELECT Alunos.Nome_Aluno, Cursos.Nome_Curso
FROM Alunos
INNER JOIN Cursos
ON Alunos.ID_Cursos = Cursos.ID_Cursos
OPTION (MERGE JOIN)

For the query above we have the following execution plan:

Wow, no! Now the plan is using the index and we don't need the Sort any more, but we
got a plan using a Key Lookup operator. Yes, that's happened because we are asking for
the Cursos.Nome_Curso column, and we didn't include the column into the index, so
let's try creating a new index including the column Nome_Curso.

CREATE NONCLUSTERED INDEX ix_ID_Curso_Nome_Aluno ON Alunos(ID_Cursos) INCLUDE
(Nome_Aluno)

Let's look at the execution plan again.

95

Chapter 11: Merges – Merge Join

SELECT Alunos.Nome_Aluno, Cursos.Nome_Curso
FROM Alunos
INNER JOIN Cursos
ON Alunos.ID_Cursos = Cursos.ID_Cursos
OPTION (MERGE JOIN)

Now, everything is perfect.

Residual predicate

Another thing that the Query Optimizer can do, using the Merge Join operator, is to filter
a new predicate into the Merge that is not part of the join of the tables.

For instance:

SELECT Alunos.Nome_Aluno, Cursos.Nome_Curso
FROM Alunos
LEFT OUTER JOIN Cursos
ON Alunos.ID_Cursos = Cursos.ID_Cursos
AND Alunos.Nome_Aluno LIKE 'F%'
OPTION (MERGE JOIN)

After checking whether rows from Alunos join with Cursos, SQL Server can also check
whether the Nome_Aluno starts with the letter "F." To see the residual predicate you can
click with the right button on the Merge Join operator and then select Properties.

96

Chapter 11: Merges – Merge Join

One to Many and Many to Many Merge Join

To show you this concept of One to Many, I would like to present a pseudo code of the
merge join algorithm. All credits to Craig Freedman who wrote this code into his book.

The code is the following:

Get first row Cursos from input 1
Get first row Alunos from input 2
While not at the end of either input
Begin
 If Cursos joins with Alunos
 Begin
 Output(Cursos, Alunos)
 Get next row Alunos from input 2
 end
 else if Cursos < Alunos
 get next row Cursos from input 1
 else
 get next row Alunos form input 2
end

97

Chapter 11: Merges – Merge Join

This is a very interesting code and this code works just for the One to Many joins (read
more about it here).

When the Merge Join operator was executed using the Many to One algorithm, you can
see what happened when the property Many to Many of the operator is false. To see the
Many To Many property, click with the right button into the Merge Join operator and
then select Properties.

http://blogs.msdn.com/b/craigfr/archive/2006/08/03/687584.aspx

98

Chapter 11: Merges – Merge Join

To illustrate the pseudo code, I don't know of any better way than show you step by step,
so I created the following video (sorry about my accent) so as to explain the code.

Alternatively, download the video here: SQL Server Merge Join (.WMV version).

http://www.simple-talk.com/RedGateBooks/FabianoAmorim/MergeJoin.wmv

99

Chapter 12: Merges – Merge Interval

 Merge Interval

In the previous chapter, I wrote about the Merge Join operator. It is now time to feature
another kind of merge, the Merge Interval operator.

 I was recently working with a customer in Finland to optimize some queries, when I saw
this operator in the execution plan. Because this is not very well documented, I'll try to
cover all aspects and bugs related to this operator (a.k.a. iterators).

In short, this is used to remove duplicated predicates in a query, and to find possible
overlapping intervals in order to optimize these filters so as to avoid scanning the same
data more than once.

As always, I completely understand that this is not as simple as I've just stated. Don't
worry if you have to read what I wrote more than three times to understand what I mean
– I'll be going deep into this subject, step by step, so as to make it easier to understand.

Creating sample data

To illustrate the Merge Interval behavior, I'll start by creating one table called Pedidos
(Orders). The following script will create the tables and populate them with some garbage
data.

100

Chapter 12: Merges – Merge Interval

USE tempdb
GO

IF OBJECT_ID('Pedidos') IS NOT NULL
 DROP TABLE Pedidos
GO

CREATE TABLE Pedidos (ID INT IDENTITY(1,1) PRIMARY KEY,
 ID_Cliente INT NOT NULL,
 Quantidade SmallInt NOT NULL,
 Valor Numeric(18,2) NOT NULL,
 Data DATETIME NOT NULL)
GO

DECLARE @I SmallInt
SET @I = 0

WHILE @I < 10000
BEGIN
 INSERT INTO Pedidos(ID_Cliente, Quantidade, Valor, Data)
 SELECT ABS(CheckSUM(NEWID()) / 100000000),
 ABS(CheckSUM(NEWID()) / 10000000),
 ABS(CONVERT(Numeric(18,2), (CheckSUM(NEWID()) / 1000000.5))),
 GETDATE() - (CheckSUM(NEWID()) / 1000000)
 SET @I = @I + 1
END
GO

Now that we have the table, we have to create two non-clustered indexes. The first uses
the column ID_Cliente as a Key, including the column Valor to create a covered index to
our query. And another using the column Data as a Key and including the column Valor.

CREATE NONCLUSTERED INDEX ix_ID_Cliente ON Pedidos(ID_Cliente) INCLUDE (Valor)
GO
CREATE NONCLUSTERED INDEX ix_Data ON Pedidos(Data) INCLUDE (Valor)
GO

101

Chapter 12: Merges – Merge Interval

Merge Interval

Now that we have the data, we can write a query to see the merge interval. The following
query is selecting the amount of sales for four customers:

SELECT SUM(Valor) AS Val
 FROM Pedidos
 WHERE ID_Cliente IN (1,2,3,4)
GO

For the query above, we have the following execution plan:

In the execution plan above we can see that QO chose to use the index ix_ID_Cliente to
seek the data for each ID_Cliente specified in the IN clause, and then uses the Stream
Aggregate to perform the sum by each ID_Cliente.

102

Chapter 12: Merges – Merge Interval

This is a classic Index Seek task. For each value, SQL Server will read the data through the
balanced index tree searching for the ID_Cliente. For now, it doesn't require the Merge
Interval.

Now let's look at a similar query:

DECLARE @v1 Int = 1,
 @v2 Int = 2,
 @v3 Int = 3,
 @v4 Int = 4

SELECT SUM(Valor) AS Val
 FROM Pedidos
 WHERE ID_Cliente IN (@v1, @v2, @v3, @v4)
GO

For the query above, we have the following execution plan:

As you can see, the only difference between the queries is that now we are using variables
instead of constant values, but the Query Optimizer creates a very different execution
plan for this query. So the question is, "What do you think? Do you think that SQL should
have used the same execution plan for this query?"

103

Chapter 12: Merges – Merge Interval

The right answer is No. Why not? Because at the compile time SQL Server doesn't know
the values of the constants, and if the values turn out to be duplicates, then it will read
the same data twice. Suppose that the value of the @v2 is also "1", SQL will read the ID 1
twice, one for variable @v1 and another for variable @v2, something that we don't expect
to see since we expect performance, reading the same data twice is not good. So it has to
use the Merge Interval to remove the duplicate occurrences.

Let's wait a minute, Fabiano! Are you saying that for the first query, QO automatically
removes the duplicated occurrences in the IN clause?

Yes. Do want to see it?

SELECT SUM(Valor) AS Val
 FROM Pedidos
 WHERE ID_Cliente IN (1,1,3,4)
GO

For the query above we have the following execution plan:

104

Chapter 12: Merges – Merge Interval

You will see that now we only have three Seek Predicates. Perfect.

Let's go back to Merge Interval plan.

The plan is using the operators Compute Scalar, Concatenation, Sort and Merge Interval
to eliminate the duplicated values at the execution plan phase.

At this time, maybe some questions are rising in your mind. First: Why doesn't SQL
Server don't just use a DISTINCT in the IN variables to remove the joins? Second: Why is
this called a Merge, when I can't see anything related to a merge here?

The answer is that the Query Optimizer (QO) uses this operator to perform the
DISTINCT because, with this code, the QO also recognize overlapping intervals and will
potentially merge these to non-overlapping intervals that will then be used to seek the
values. To understand this better, let's suppose that we have the following query that
doesn't use variables.

SELECT SUM(Valor) AS Val
 FROM Pedidos
 WHERE ID_Cliente BETWEEN 10 AND 25
 OR ID_Cliente BETWEEN 20 AND 30
GO

105

Chapter 12: Merges – Merge Interval

Now, let's look at the execution plan:

Notice how smart the Query Optimizer was. (That's why I love it!) It recognizes the
overlap between the predicates, and instead of doing two seeks in the index (one for each
between filter), it creates a plan that performs just one seek.

Now let's change the query to use the variables.

DECLARE @v_a1 Int = 10,
 @v_b1 Int = 20,
 @v_a2 Int = 25,
 @v_b2 Int = 30

SELECT SUM(Valor) AS Val
 FROM Pedidos
 WHERE ID_Cliente BETWEEN @v_a1 AND @v_a2
 OR ID_Cliente BETWEEN @v_b1 AND @v_b2
GO

For this query we have the following execution plan:

106

Chapter 12: Merges – Merge Interval

Let's check what the plan is doing using a different perspective. First let's understand the
overlap.

In the figure above, we can see that if SQL Server reads the ranges separately, it will read
the range from 20 to 25 twice. I've used a small range to test with, but think in terms of a
very large scan that we'd see in a production database; if we can avoid this step, then we'll
see a great performance improvement.

107

Chapter 12: Merges – Merge Interval

After the Merge Interval runs, SQL Server can seek only the final range. It knows that is
possible to go to @v_a1 to @vb_2 directly.

Finally

To finish this subject I would recommend that you read about a bug in SQL Server 2005
caused by a mistake in this process. Just take a look at the blog of Mladen Prajdic, a SQL
Server MVP from Slovenia.

I wouldn't want to miss the opportunity to congratulate the Microsoft guys that build
icons in SQL Server/Windows. I once read a book called The Icon Book; it was amazing
how beautiful and meaningful the icons in the graphical query plan are. The Merge
Interval icon is perfect. If you look at the icon you will see exactly what it is doing.
Brilliant, it's incredible how they can express something in a small picture. Well done!

http://weblogs.sqlteam.com/mladenp/archive/2008/07/14/SQL-Server-2005-bug-when-using-LIKE-searches.aspx

108

Chapter 13: Split, Sort, Collapse

Introduction

In this chapter, we'll feature two new operators, Split and Collapse, and describe how the
SORT operator can be used to help with the validation of a query. The SORT operator
has already been covered in an earlier chapter.

 In short, these operators, Split and Collapse, are used to identify a phantom unique key
violation. To help to understand this better, I'll start by explaining the Unique Index and
how it is used by the query optimizer, then I'll go on to present a update command that
uses these operators.

Unique Index

The Unique Index is an index that guarantees that no duplicate values are allowed in
a specified key column. In other words, if you want to be sure that some value can't be
duplicated in your table, then a unique index can be made responsible for enforcing this.
A classic use for a unique index is as the primary key of your table, where no duplicated
rows are allowed.

Every time that you create a new index, decide whether this can be a unique index. Why?
Because the Query Optimizer can then use this index to simplify a query plan: If it knows
that the rows are always going to be unique, it knows that the selectivity is always one.
The more selective an index has, the greater the likelihood that it will be used by a query.

109

Chapter 13: Split, Sort, Collapse

Creating sample data

To illustrate the operators that are the subject of this article, I'll start by creating one
table called TabTest. The following script will create the table and populate it with some
meaningless data:

USE tempdb
GO
IF OBJECT_ID('TabTest') IS NOT NULL
 DROP TABLE TabTest
GO
CREATE TABLE TabTest (ID Int IDENTITY(1,1) PRIMARY KEY,
 Name VarChar(250) NULL,
 Name2 VarChar(250) NULL,
 Val Int NULL,
 Val2 Int NULL)
GO
CREATE UNIQUE INDEX ix_Name_Unique ON TabTest(Name)
CREATE INDEX ix_Name2_NonUnique ON TabTest(Name2)
CREATE UNIQUE INDEX ix_Val_Unique ON TabTest(Val)
CREATE INDEX ix_Val2_NonUnique ON TabTest(Val2)
GO

INSERT INTO TabTest(Name, Val) VALUES(NEWID(), 1)
INSERT INTO TabTest(Name, Val) VALUES(NEWID(), 2)
INSERT INTO TabTest(Name, Val) VALUES(NEWID(), 3)
INSERT INTO TabTest(Name, Val) VALUES(NEWID(), 4)
INSERT INTO TabTest(Name, Val) VALUES(NEWID(), 5)

GO
UPDATE TabTest SET Name2 = Name, Val2 = Val
GO

SELECT * FROM TabTest

You'll have noticed that the table has four indexes, one for each column. The difference
between the columns Name and Name2 is that the indexes on the columns with the
prefix "2" are non-unique indexes, and the index on the columns Name and Val are
unique.

110

Chapter 13: Split, Sort, Collapse

The value of the columns Name2 and Val2 are the same as the columns Name and Val.

Here is what the data looks like:

Querying a Unique Index

Now that we have created and populated the table, let's try two queries: first, a query that
selects all the rows using a filter on the column with the unique index:

SELECT *
 FROM TabTest
 WHERE Name = '1C9629D2-593A-4C42-8EEA-CFA289AE060F'
GO

111

Chapter 13: Split, Sort, Collapse

For the query above, we have the following execution plan:

As we can see from the execution plan, SQL Server chose to perform an Index Seek on the
ix_Name_Unique index and a Key Lookup to read the data on the clustered index.

Now let's try to run the same query using the column with the non-unique index:

SELECT *
 FROM TabTest
 WHERE Name2 = 'C5AB9BF6-14DA-4D98-9DA6-D070831B6F69'
GO

112

Chapter 13: Split, Sort, Collapse

For the query above, we have the following execution plan:

As we can see, now SQL Server chose to run a scan on the clustered index.

Because the first query is using a Unique Index, SQL Server decides to simplify matters
by merely creating a Trivial Plan. Oops! I have a feeling that I haven't yet described what a
trivial plan is, so let me do it now.

Trivial plan

An execution plan is created during the optimization process. Generally, SQL Server has
to use a variety of techniques to try to optimize your query in order to create the best-
possible plan. Sometimes, however, the Query Optimizer can decide that it does not need
to do the full optimization process to find the best plan, Because it has determined that
there is a plan that is good enough.

Within the execution plan, we can see if the query optimizer has decided that the Plan
is trivial by looking at the properties of the plan. For instance, let's look at the execution
plan of the first query:

113

Chapter 13: Split, Sort, Collapse

Apart from that, we also can see if the plan is trivial by looking at the XML plan:

A trivial plan is created when the Query Optimizer finds an optimal way of read the data
that you are querying. For instance a select * from table will probably create a trivial plan
that merely reads the data from the clustered index. When a trivial plan is selected, the
Query Optimizer doesn't then need to expend resources in trying to figure out the best
plan because it knows that this trivial plan is the best option.

If a plan is determined to be trivial, then the query isn't recompiled when an Update
Statistics occurs on the statistics, and an Auto Update Statistics isn't fired. Let's see this
in practice.

Let's try the first query. If we look at the cache plan, we can see that we have the trivial
plan and that it has been reused:

USE tempdb
GO
DBCC FREEPROCCACHE
GO
SELECT *
 FROM TabTest
 WHERE Name = 'D1397278-67CA-4EE6-B383-2E278018DC8F'
GO
SELECT *
 FROM TabTest
 WHERE Name = '7462AD1E-3335-44BE-AFC4-28F44FCA4F90'
GO
SELECT cp.objType,

114

Chapter 13: Split, Sort, Collapse

 cp.Usecounts,
 st.Text AS Query,
 qp.query_plan.value('declare default element
 namespace "http://schemas.microsoft.com/
sqlserver/2004/07/ Showplan";
 (//StmtSimple/@StatementOptmLevel)[1]',
 'varchar(20)') AS StatementOptmLevel,
 qp.query_plan
 FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
 WHERE st.Text like '%from TabTest%'
 AND st.text not like '%sys.%'
 AND cp.ObjType = 'Prepared'

In this query, I start by freeing the plan cache; then I run the query twice. Finally, I query
the DMVs to find out how many times the plan was reused, and to see the StatementOpt-
mLevel within the XML plan.

As we can see in the picture (column UseCounts), the query was executed twice and the
plan was reused.

Now, let's insert some data in the table in order to force an automatic update statistics.
If you want to know how much data you will need to change so as to trigger an update
statistics, then read Item 13 of this article.

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/

115

Chapter 13: Split, Sort, Collapse

INSERT INTO TabTest(Name, Val)
SELECT NEWID(), ABS(CHECKSUM(NEWID())) / 1000
GO 500

After inserting 500 rows into the table, I'll run the query again and check whether the
plan was reused or if a new plan was created as a result of the auto update statistics.
Optionally, you can check the event SP:StmtCompleted in the profiler to see if the update
statistics was executed.

SELECT *
 FROM TabTest
 WHERE Name = '74DD0A57-56CF-4331-A324-7A7E83C6043E'
GO
SELECT cp.objType,
 cp.Usecounts,
 st.Text AS Query,
 qp.query_plan.value('declare default element
 namespace "http://schemas.microsoft.com/
sqlserver/2004/07/ Showplan";
 (//StmtSimple/@StatementOptmLevel)[1]',
 'varchar(20)') AS StatementOptmLevel,
 qp.query_plan
 FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
 WHERE st.Text like '%from TabTest%'
 AND st.text not like '%sys.%'
 AND cp.ObjType = 'Prepared'

116

Chapter 13: Split, Sort, Collapse

Now we can see that the plan was reused, even after we had inserted sufficient data to fire
an update statistics and thereby cause the creation of a new plan.

Let's try the same exercise with the non-trivial plan:

USE tempdb
GO
DBCC FREEPROCCACHE
GO
SELECT *
 FROM TabTest
 WHERE Name2 = '47B12B84-6B81-4D54-A2ED-3F4BAE31835E'
GO
SELECT *
 FROM TabTest
 WHERE Name2 = '3901385F-2481-4126-BAF7-15B9C656952A'
GO
SELECT cp.objType,
 cp.Usecounts,
 st.Text AS Query,
 qp.query_plan.value('declare default element
 namespace "http://schemas.microsoft.com/
sqlserver/2004/07/ Showplan";
 (//StmtSimple/@StatementOptmLevel)[1]',
 'varchar(20)') AS StatementOptmLevel,
 qp.query_plan
 FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
 WHERE st.Text like '%from TabTest%'
 AND st.text not like '%sys.%'
 AND cp.ObjType = 'Prepared'

117

Chapter 13: Split, Sort, Collapse

Again the plan was reused. Now let's see what happens after we insert the new data.

INSERT INTO TabTest(Name, Val)
SELECT NEWID(), ABS(CHECKSUM(NEWID())) / 1000
GO 500

UPDATE TabTest SET Name2 = Name, Val2 = Val
GO
SELECT *
 FROM TabTest
 WHERE Name2 = 'AC7E0C8E-1240-4537-817E-D20819971542'
GO
SELECT cp.objType,
 cp.Usecounts,
 st.Text AS Query,
 qp.query_plan.value('declare default element
 namespace "http://schemas.microsoft.com/
sqlserver/2004/07/ Showplan";
 (//StmtSimple/@StatementOptmLevel)[1]',
 'varchar(20)') AS StatementOptmLevel
 FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
 WHERE st.Text like '%from TabTest%'
 AND st.text not like '%sys.%'
 AND cp.ObjType = 'Prepared'

118

Chapter 13: Split, Sort, Collapse

As we can see, the auto update statistics was now triggered and a new plan was created.

Full Optimization

An interesting thing is that, in the execution plans, we can only see two levels of optimi-
zation, TRIVIAL and FULL. But behind the scenes we can see that the FULL optimization
is divided into three steps. These steps are called Search 0, Search 1, and Search 2. (I don't
like these names either, I expected something more intuitive.)

If we query the DMV sys.dm_exec_query_optimizer_info, we can see which phase was
executed in a FULL optimization.

SELECT Counter, Occurrence
 FROM sys.dm_exec_query_optimizer_info
 WHERE Counter IN (N'trivial plan', N'search 0', N'search 1', N'search 2')
GO
SELECT *
 FROM TabTest
 WHERE Name2 = 'AC7E0C8E-1240-4537-817E-D20819971542'
OPTION (RECOMPILE)
GO
SELECT Counter, Occurrence
 FROM sys.dm_exec_query_optimizer_info
WHERE Counter IN (N'trivial plan', N'search 0', N'search 1', N'search 2')

119

Chapter 13: Split, Sort, Collapse

In the picture above, we can see that the Search 1 counter has increased by one. If you run
the query using the unique index, you will see the trivial plan counter increasing.

Some queries require a full optimization. This means that, if you have a heavy query with
lot of joins, it may use Search 1 or if you have a query that maybe uses a indexed view it
will use Search 2. You can play with the DMV to see the level of optimization that you got
in your query.

More about querying a Unique Index

After explaining both trivial and full optimization, let's see more samples that
demonstrate the benefit of having a unique index. The Query Optimizer can avoid
an unnecessary DISTINCT:

SELECT DISTINCT Name
 FROM Tabtest
GO

120

Chapter 13: Split, Sort, Collapse

In this execution plan, the Query Optimizer knows that the DISTINCT clause is totally
unnecessary, and it doesn't waste time trying to remove the duplicated occurrences
because it knows that, if the column is unique, then it is sufficient to just read the data
from the index.

The Query Optimizer can avoid an unnecessary aggregation:

SELECT Name, SUM(Val)
 FROM TabTest
 GROUP BY Name

As we can see, there is no aggregation needed to compute the SUM because SQL Server
knows that there is only one row per Name. SQL is reading the data from the clustered
index. The mere presence of the unique index is enough to enable a optimization, even
though SQL Server is not actually reading the data from that index.

121

Chapter 13: Split, Sort, Collapse

The Query Optimizer can avoid an assert validation:

SELECT Val, (SELECT Name
 FROM TabTest
 WHERE Name = 'C24A5A66-6008-4462-B64D-EB3F76D0A420')
 FROM TabTest

Here we can see that SQL Server is not using the Assert operator to validate the
Sub-Query expression.

Non-Unique Index and updates

Every update is executed in two main steps. Firstly, SQL Server has to read the data that
will be updated, and then it must update these values.

Let's analyze a plan that updates a non-unique indexed column. Here is a query that
updates the column Val2 that doesn't have a unique index.

122

Chapter 13: Split, Sort, Collapse

UPDATE TabTest SET Val2 = Val2 + 1

|--Clustered Index Update(OBJECT:([TabTest].[PK__TabTest__3214EC2703317E3D]),
OBJECT:([TabTest].[ix_Val2_NonUnique]), SET:([TabTest].[Val2] = [Expr1003]))
 |--Compute Scalar(DEFINE:([Expr1016]=[Expr1016]))
 |--Compute Scalar(DEFINE:([Expr1016]=CASE WHEN [Expr1007] THEN (0) ELSE
(1) END))
 |--Compute Scalar(DEFINE:([Expr1003]=[TabTest].[Val2]+(1),
[Expr1007]=CASE WHEN [TabTest].[Val2] = ([TabTest].[Val2]+(1)) THEN (1) ELSE (0)
END))
 |--Top(ROWCOUNT est 0)
 |--Clustered Index Scan(OBJECT:([TabTest].[PK__
TabTest__3214EC2703317E3D]))

Text Execution Plan.

As usual, let's go through this execution plan step by step, analyzing what is happening
with some operators of the plan.

Clustered Index Scan
Here, the SQL Server is reading the data that will be updated on the clustered index.

TOP
The TOP operator is necessary in order to perform the SET ROWCOUNT. I know that
sounds a little weird the first time that you hear it, because we aren't executing the SET
ROWCOUNT. What happens here is that, if you change the value of the ROWCOUNT, it
will not trigger a recompilation of the plan, which means that SQL has to find some way
to execute the query using a cached plan, plus updating just those rows specified in the
ROWCOUNT.

123

Chapter 13: Split, Sort, Collapse

Compute Scalar
In this operation, we can see the new optimization that is created on SQL Server 2005 in
order to avoid the update of a value that hadn't changed. For more details, see Item 11 of
this article.

If we analyze the text execution plan, we can see that there is a case expression that
checks whether the value has changed:

[Expr1007] = Scalar Operator(CASE
 WHEN [TabTest].[Val2] = ([TabTest].[Val2]+(1)) THEN (1)
 ELSE (0)
 END)

As we can see, if the value is the same, the value 1 (one) will be returned to the [Expr1007]
and if not, then 0 (zero) will be returned.

Clustered Index Update
Here, the optimizer will execute the Update. An interesting thing here is that we can call
this plan a Narrow Plan or a Per-Row Plan.

You'll probably have noticed from the text execution plan that there are two indexes
being updated by this operator, the clustered index and the index ix_Val2_NonUnique.

Every time that you update a column that has a non-clustered index, SQL Server has
to maintain the data in the clustered and the non-clustered indexes by updating it.
Usually this update is executed in the clustered index key order, which means that the
non-clustered updates are executed in a random order (because it's on the clustered index
order) and not in the non-clustered key order.

Sometimes, the Query Optimizer can create a Wide Plan that reads the data from each
updated index and executes the update in the index order.

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/

124

Chapter 13: Split, Sort, Collapse

To show you a sample of a wide plan, I'll create some new indexes, and change the
number of rows and pages on the statistics of the table TabTest:

CREATE INDEX ix1 ON TabTest (Val2)
CREATE INDEX ix2 ON TabTest (Val2)
UPDATE STATISTICS TabTest WITH ROWCOUNT = 50000, PAGECOUNT = 180
UPDATE STATISTICS TabTest ix_Val2_NonUnique WITH ROWCOUNT = 50000, PAGECOUNT = 180
UPDATE STATISTICS TabTest ix1 WITH ROWCOUNT = 50000, PAGECOUNT = 180
UPDATE STATISTICS TabTest ix2 WITH ROWCOUNT = 50000, PAGECOUNT = 180
GO

Note

If you want to read more about this UPDATE STATISTICS command you can read this post in my

blog or you can read this post from Benjamin Nevarez.

After messing with the statistics, let's try the same update:

UPDATE TabTest SET Val2 = Val2 + 1

http://blogs.solidq.com/fabianosqlserver/Post.aspx?ID=43&title=Fooling+Statistics+and+Number+of+CPUs
http://blogs.solidq.com/fabianosqlserver/Post.aspx?ID=43&title=Fooling+Statistics+and+Number+of+CPUs
http://sqlblog.com/blogs/ben_nevarez/archive/2010/01/13/fooling-the-query-optimizer.aspx

125

Chapter 13: Split, Sort, Collapse

|--Sequence
 |--Index Update(OBJECT:([TabTest].[ix_Val2_NonUnique]), SET:([ID1031]
= [TabTest].[ID],[Val21032] = [TabTest].[Val2]) WITH ORDERED PREFETCH
ACTION:([Act1030]))
 | |--Sort(ORDER BY:([TabTest].[Val2] ASC, [TabTest].[ID] ASC, [Act1030]
ASC))
 | |--Filter(WHERE:(NOT [Expr1024]))
 | |--Table Spool
 | |--Split
 | |--Clustered Index Update(OBJECT:([TabTest].[PK__
TabTest__3214EC27440B1D61]), SET:([TabTest].[Val2] = [Expr1003]))
 | |--Compute Scalar(DEFINE:([Expr1024]=[Expr1024],
[Expr1025]=[Expr1025], [Expr1026]=[Expr1026]))
 | |--Compute Scalar(DEFINE:([Expr1024]=CASE
WHEN [Expr1007] THEN (1) ELSE (0) END, [Expr1025]=CASE WHEN [Expr1007] THEN (1)
ELSE (0) END, [Expr1026]=CASE WHEN [Expr1007] THEN (1) ELSE (0) END))
 | |--Compute Scalar(DEFINE:([Expr1003]=[
TabTest].[Val2]+(1), [Expr1007]=CASE WHEN [TabTest].[Val2] = ([TabTest].[Val2]+(1))
THEN (1) ELSE (0) END))
 | |--Top(ROWCOUNT est 0)
 | |--Clustered Index
Scan(OBJECT:([TabTest].[PK__TabTest__3214EC27440B1D61]), ORDERED FORWARD)
 |--Index Update(OBJECT:([TabTest].[ix1]), SET:([ID1033] = [TabTest].
[ID],[Val21034] = [TabTest].[Val2]) WITH ORDERED PREFETCH ACTION:([Act1030]))
 | |--Sort(ORDER BY:([TabTest].[Val2] ASC, [TabTest].[ID] ASC, [Act1030]

126

Chapter 13: Split, Sort, Collapse

ASC))
 | |--Filter(WHERE:(NOT [Expr1025]))
 | |--Table Spool
 |--Index Update(OBJECT:([TabTest].[ix2]), SET:([ID1035] = [TabTest].
[ID],[Val21036] = [TabTest].[Val2]) WITH ORDERED PREFETCH ACTION:([Act1030]))
 |--Sort(ORDER BY:([TabTest].[Val2] ASC, [TabTest].[ID] ASC, [Act1030]
ASC))
 |--Filter(WHERE:(NOT [Expr1026]))
 |--Table Spool

Text Execution Plan..

Now we have a bigger plan and we can see that SQL is updating one index per time, using
the data sorted by the index key.

Unique Index and updates

After some explanation about unique indexes, it is now time to show you, in action, the
three operators that are the subject of this article. Let's run the update in the column with
the unique index and analyze the plan.

UPDATE TabTest SET Val = Val + 1

Part of the plan was omitted so as to concentrate on the topic.

127

Chapter 13: Split, Sort, Collapse

Earlier in this chapter, I made the statement that these operators are used to avoid a
phantom unique key violation. Let's try to understand that statement a bit better.

The data on the column Val is the following:

SELECT ID, Val FROM TabTest

We already know that an update is executed by a delete operation followed by an insert
operation. You can see an explanation about it in Item 11 of this article. We can also
detect that the update has been executed by the clustered key order.

Following this logic, let's mimic what will happen.

1. Read the first row from the clustered index to be updated. Result, ID = 1

2. Find the row ID = 1 in the unique index. Result, Val = 1

3. Delete the row with the value Val = 1

4. Insert the new value Val = 1 + 1 (2).

Here we have a phantom unique key violation because the value 2 already exists in the
Unique Index. Because this value will eventually also be updated, this is a false violation.

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/

128

Chapter 13: Split, Sort, Collapse

To avoid it, SQL Server uses the operators Split, Sort and Collapse in order to reorganize
the Deletes and the Inserts.

In our table, we have the following rows to be updated:

The column Val is the key column that we need to update, and the column New_Val is
the value of the column after the update.

After the Split occurs, SQL Server gets the deletes and the inserts of the values, and a new
list is created:

129

Chapter 13: Split, Sort, Collapse

The Split creates a list with all the deletes and the inserts, but this list is not properly
ordered because the insertion of the value 2 is done before the delete, so we still have the
phantom violation.

The Sort operator is used to reorder the list by Action plus the Key Value, and the Deletes
then appear before the Inserts. So, after the sort operation, we have the following list:

Now the delete appears before the insert. If SQL Server runs the deletes and inserts in
that order then all goes well and no phantom read occurs. But we still have the Collapse
operator.

The Collapse operator combines those adjacent delete and insert pairs that share the
same key value into a single "update." Collapse finds deletes and inserts for the same key
and changes them into just one "update."

For instance, why should I have to delete and insert a new row with the value 2? If I can
just ignore this step, then it's a good improvement. Right?

After the collapse we have the following actions to be executed:

130

Chapter 13: Split, Sort, Collapse

Because I know you are clever, you are probably thinking, "Ummm. Why update the value
2 to 2? Wouldn't it be better if we got a list just like the following?"

If we perform these two actions, we have the expected final result.

I have to confess that I didn't know why SQL Server executed these updates until I
watched the Conor Cunningham session at the PASS 2010 talking about updates.

According to him, SQL Server needs to update the same row to guarantee that the stored
engine puts the locks on the rows that are being updated. If SQL Server doesn't lock the
row, another transaction can change the row and the update would consequently fail.

http://blogs.msdn.com/b/conor_cunningham_msft/

131

Chapter 13: Split, Sort, Collapse

And finally

I want to say "Thank you" to the people from the Query Optimization community (yes,
there are some guys out there just talking about QO) that indirectly help me to under-
stand it better. Paul White (BTW congrats for the MVP award), Conor Cunningham,
Benjamin Nevarez (BTW congrats on your book) and Craig Freedman.

If you don't follow these guys, you are missing a lot of good stuff about query
optimization.

If you want to know more about a Showplan operator that I haven't covered yet, please
leave a comment here with your suggestion.

That's all folks, I hope you've enjoyed learning about these operators. Keep an eye on
Simple-Talk.com for more Showplan operators.

http://sqlblog.com/blogs/paul_white/
http://blogs.msdn.com/b/conor_cunningham_msft/
http://www.benjaminnevarez.com/
http://www.amazon.com/Inside-SQL-Server-Query-Optimizer/dp/1906434603/ref=sr_1_15?s=books&ie=UTF8&qid=1301596839&sr=1-15
http://blogs.msdn.com/b/craigfr/
http://www.simple-talk.com/sql/learn-sql-server/showplan-operator-of-the-week---split,-sort,-collapse/
http://www.simple-talk.com/

.NET and
SQL Server Tools
from Red Gate Software

Pricing and information about Red Gate tools are

correct at the time of going to print. For the latest

information and pricing on all Red Gate's tools,

visit www.red-gate.com

ANTS Memory Profiler
Find memory leaks and optimize memory usage

$495

 Identify performance bottlenecks within minutes

 Drill down to slow lines of code thanks to line-level code timings

 Boost the performance of your .NET code

 Get the most complete picture of your application’s performance
with integrated SQL and File I/O profiling

 Find memory leaks within minutes

 Jump straight to the heart of the problem with intelligent
summary information, filtering options and visualizations

 Optimize the memory usage of your C# and VB.NET code

Visit www.red-gate.com for a 14-day, free trial

"Freaking sweet! We have a known memory
leak that took me about four hours to find using
our current tool, so I fired up ANTS Memory
Profiler and went at it like I didn't know the leak
existed. Not only did I come to the conclusion
much faster, but I found another one!"
Aaron Smith IT Manager, R.C. Systems Inc.

ANTS Performance Profiler
Profile your .NET code and boost the performance of your application

from $395

"ANTS Performance Profiler
took us straight to the specific
areas of our code which were
the cause of our performance
issues."
Terry Phillips Sr Developer, Harley-Davidson

Dealer Systems

"Thanks to ANTS Performance
Profiler, we were able to
discover a performance hit in our
serialization of XML that was fixed
for a 10x performance increase."
Garret Spargo Product Manager, AFHCAN

SmartAssembly ®

.NET obfuscator and automated error reporting

 Obfuscate your .NET code and protect your IP

 Let your end-users report errors in your software with one click

 Receive a comprehensive report containing a stack trace and values
of all the local variables

 Identify the most recurrent bugs and prioritize fixing those first

 Gather feature usage data to understand how your software is being used
and make better product development decisions

from $795

.NET Reflector ®

Browse, compile, analyze and decompile .NET code

 View, navigate and search through the class hierarchies of .NET assemblies,
even if you don’t have access to the source code for them

 Decompile and analyze .NET assemblies in C#, Visual Basic and IL

 Step into decompiled assemblies whilst debugging in Visual Studio,
with all the debugging techniques you would use on your own code

From $35

Visit www.red-gate.com for a 14-day, free trial

"One of the most useful, practical debugging
tools that I have ever worked with in .NET! It
provides complete browsing and debugging
features for .NET assemblies, and has clean
integration with Visual Studio."
Tom Baker Consultant Software Engineer, EMC Corporation

"I've deployed Automated Error Reporting
now for one release and I’m already seeing the
benefits. I can fix bugs which might never have
got my attention before. I really like it a lot!"
Stefal Koell MVP

$595

$595

"Just purchased SQL Compare. With the
productivity I’ll get out of this tool, it’s like
buying time."
Robert Sondles Blueberry Island Media Ltd

SQL Compare® Pro
Compare and synchronize SQL Server database schemas

SQL Data Compare Pro
Compares and synchronizes SQL Server database contents

 Eliminate mistakes migrating database changes from dev, to test, to production

 Speed up the deployment of new databse schema updates

 Find and fix errors caused by differences between databases

 Compare and synchronize within SSMS

 Save time by automatically comparing and synchronizing your data

 Copy lookup data from development databases to staging or production

 Quickly fix problems by restoring damaged or missing data to a single row

 Compare and synchronize data within SSMS

Visit www.red-gate.com for a 14-day, free trial

"We use SQL Data Compare daily
and it has become an indispensable
part of delivering our service to our
customers. It has also streamlined
our daily update process and cut back
literally a good solid hour per day."
George Pantela GPAnalysis.com

$595

$595

SQL Prompt Pro
Write, edit, and explore SQL effortlessly

 Write SQL smoothly, with code-completion and SQL snippets

 Reformat SQL to a preferred style

 Keep databases tidy by finding invalid objects automatically

 Save time and effort with script summaries, smart object renaming and more

"SQL Prompt is hands-down one of the coolest
applications I’ve used. Makes querying/developing
so much easier and faster."
Jorge Segarra University Community Hospital

SQL Source Control
Connect your existing source control system to SQL Server

 Bring all the benefits of source control to your database

 Source control schemas and data within SSMS, not with offline scripts

 Connect your databases to TFS, SVN, SourceGear Vault, Vault Pro, Mercurial,
 Perforce, Git, Bazaar, and any source control system with a capable
 command line

 Work with shared development databases, or individual copies

 Track changes to follow who changed what, when, and why

 Keep teams in sync with easy access to the latest database version

 View database development history for easy retrieval of specific versions

"After using SQL Source Control for several
months, I wondered how I got by before.
Highly recommended, it has paid for itself
several times over"
Ben Ashley Fast Floor

Visit www.red-gate.com for a 28-day, free trial

$295

$295

Visit www.red-gate.com for a 14-day, free trial

$795

 Compress SQL Server database backups by up to 95% for
 faster, smaller backups

 Protect your data with up to 256-bit AES encryption

 Strengthen your backups with network resilience to enable
 a fault-tolerant transfer of backups across flaky networks

 Control your backup activities through an intuitive interface,
 with powerful job management and an interactive timeline

"SQL Backup is an amazing tool that lets
us manage and monitor our backups in real
time. Red Gate's SQL tools have saved us
so much time and work that I am afraid my
director will decide that we don't need a
DBA anymore!"

Mike Poole Database Administrator, Human Kinetics

SQL Backup Pro
Compress, encrypt, and strengthen SQL Server backups

 Intuitive overviews at global, cluster, machine, SQL Server,
 and database levels for up-to-the-minute performance data

 Use SQL Monitor’s web UI to keep an eye on server performance
 in real time on desktop machines and mobile devices

 Intelligent SQL Server alerts via email and an alert inbox in the
 UI, so you know about problems first

 Comprehensive historical data, so you can go back in time to
 identify the source of a problem

 Generate reports via the UI or with Red Gate’s free SSRS
 Reporting Pack

 View the top 10 expensive queries for an instance or database
 based on CPU usage, duration and reads and writes

 PagerDuty integration for phone and SMS alerting

 Fast, simple installation and administration

"Being web based, SQL Monitor is readily
available to you, wherever you may be on your
network. You can check on your servers from
almost any location, via most mobile devices
that support a web browser."

Jonathan Allen Senior DBA, Careers South West Ltd

SQL Monitor
SQL Server performance monitoring and alerting

Visit www.red-gate.com for a 14-day, free trial

SQL Storage Compress
Silent data compression to optimize SQL Server storage

$1,595

 Reduce the storage footprint of live SQL Server databases by up to 90% to
 save on space and hardware costs

 Databases compressed with SQL Storage Compress are fully functional

 Prevent unauthorized access to your live databases with 256-bit AES encryption

 Integrates seamlessly with SQL Server and does not require any configuration
 changes

SQL Virtual Restore
Rapidly mount live, fully functional databases direct from backups

$495

 Virtually restoring a backup requires significantly less time and space than
 a regular physical restore

 Databases mounted with SQL Virtual Restore are fully functional and support
 both read/write operations

 SQL Virtual Restore is ACID compliant and gives you access to full,
 transactionally consistent data, with all objects visible and available

 Use SQL Virtual Restore to recover objects, verify your backups with
 DBCC CHECKDB, create a storage-efficient copy of your production database,
 and more.

"We find occasions where someone has deleted data
accidentally or dropped an index etc., and with SQL
Virtual Restore we can mount last night’s backup quickly
and easily to get access to the data or the original
schema. It even works with all our backups being
encrypted. This takes any extra load off our production
server. SQL Virtual Restore is a great product."
Brent McCraken Senior Database Administrator/Architect, Kiwibank Limited

SQL Toolbelt
The essential SQL Server tools for
database professionals

$1,995

You can buy our acclaimed SQL Server tools individually or bundled. Our
most popular deal is the SQL Toolbelt: fourteen of our SQL Server tools in
a single installer, with a combined value of $5,930 but an actual price of
$1,995, a saving of 66%.

Fully compatible with SQL Server 2000, 2005, and 2008.

SQL Toolbelt contains:

 SQL Compare Pro

 SQL Data Compare Pro

 SQL Source Control

 SQL Backup Pro

 SQL Monitor

 SQL Prompt Pro

 SQL Data Generator

 SQL Doc

 SQL Dependency Tracker

 SQL Packager

 SQL Multi Script Unlimited

 SQL Search

 SQL Comparison SDK

 SQL Object Level
 Recovery Native

Visit www.red-gate.com for a 14-day, free trial

"The SQL Toolbelt provides tools
that database developers, as well
as DBAs, should not live without."
William Van Orden Senior Database Developer,
Lockheed Martin

Defensive Database Programming
Alex Kuznetsov

Inside this book, you will find dozens of
practical, defensive programming techniques
that will improve the quality of your T-SQL
code and increase its resilience and
robustness.

ISBN: 978-1-906434-49-6
Published: June 2010

Performance Tuning with SQL Server
Dynamic Management Views
Louis Davidson and Tim Ford

This is the book that will de-mystify the
process of using Dynamic Management
Views to collect the information you need
to troubleshoot SQL Server problems. It will
highlight the core techniques and "patterns"
that you need to master, and will provide
a core set of scripts that you can use and
adapt for your own requirements.

ISBN: 978-1-906434-47-2
Published: October 2010

The Red Gate Guide to SQL Server
Team-based Development

Phil Factor, Grant Fritchey, Alex Kuznetsov,
and Mladen Prajdić

This book shows how to use of mixture of
home-grown scripts, native SQL Server
tools, and tools from the Red Gate SQL
Toolbelt, to successfully develop database
applications in a team environment, and
make database development as similar as
possible to "normal" development.

ISBN: 978-1-906434-59-5
Published: November 2010

Brad's Sure Guide to
SQL Server Maintenance Plans
Brad McGehee

Brad's Sure Guide to Maintenance Plans
shows you how to use the Maintenance
Plan Wizard and Designer to configure and
schedule eleven core database maintenance
tasks, ranging from integrity checks, to
database backups, to index reorganizations
and rebuilds.

ISBN: 78-1-906434-34-2
Published: December 2009

	About the author
	Preface

	Chapter 1: Assert
	Assert and check constraints
	Assert checking foreign keys
	Assert checking a subquery

	Chapter 2: Concatenation
	Chapter 3: Compute Scalar
	Chapter 4: BookMark/Key Lookup
	Chapter 5: Spools – Eager Spool
	Spool operators
	Eager Spool
	The Halloween Problem

	Chapter 6: Spools – Lazy Spool
	Chapter 7: Spools – Non-Clustered Index Spool
	Understanding rebind and rewind
	Rebinds and rewinds with Table Spool (Lazy Spool)
	Rebinds and rewinds with Index Spool (Lazy Spool)
	Summary

	Chapter 8: Spools – Row Count Spool
	Chapter 9: Stream Aggregate
	Scalar aggregations
	Group Aggregations
	A myth is born

	Chapter 10: SORT
	SORT into execution plans
	SORT in memory/disk
	How to avoid SORT operations

	Chapter 11: Merges – Merge Join
	Introduction
	SORT Merge Join
	Residual predicate
	One to Many and Many to Many Merge Join

	Chapter 12: Merges – Merge Interval
	Creating sample data
	Merge Interval
	Finally

	Chapter 13: Split, Sort, Collapse
	Introduction
	Unique Index
	Creating sample data
	Querying a Unique Index
	Trivial plan
	Full Optimization
	More about querying a Unique Index
	Non-Unique Index and updates
	Unique Index and updates
	And finally

	_GoBack

