

 Independent consultant

 In-house workshops

 Cost-Based Optimizer

 Performance By Design

 Performance Troubleshooting

 Oracle ACE Director

 Member of OakTable Network

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

 Oracle Database Enterprise Edition includes
the powerful Parallel Execution feature that
allows spreading the processing of a single
SQL statement execution across multiple
worker processes

 The feature is fully integrated into the Cost
Based Optimizer as well as the execution
runtime engine and automatically distributes
the work across the so called Parallel Workers

 Simple generic parallelization example

Task: Compute sum of 8 numbers

1+8=9, 9+7=16, 16+9=25,...

1+8+7+9+6+2+6+3= ???

n=8 numbers, 7 computation steps required

Serial execution: 7 time units

Simple generic parallelization example

4 workers

But 3 (7) x 4 workers assigned

3 (7) time units

1 + 8
= 9

9 + 7
= 16

6 + 2
= 8

6 + 3
= 9

9 + 16
= 25

8 + 9
= 17

25 + 17
= 42

Coordinator

 Simple generic parallelization example

 Possibly additional startup cost:
Find available /instruct / coordinate workers

 Major challenge: Divide task into chunks that can be
efficiently and independently processed by workers

 Overall execution time in parallel can be lower than
serial execution

 But potentially more worker units required than
serial execution

 Simple generic parallelization example

 Number of worker units assigned matters

 Too few can be bad

 Too many can be bad, too

 Communication between worker units required –
data needs to be (re-) distributed (overhead!)

 Major challenge: Keep all workers busy all the time

 Parallelization might require different approach

 Parallel Execution doesn’t mean “work
smarter”

 You’re actually willing to accept to “work
harder”

 Could also be called:
“Brute force” approach

So with Parallel Execution there
might be the problem that it
doesn’t work “hard enough”

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

 Parallel Execution can only reduce runtime as
expected if all workers are kept busy

 Possibly only a few or a single worker will be
active and have to do all the work

 In this case Parallel Execution can actually be
slower than serial execution

 There is a need to measure how busy the
workers are kept

 Note that this measure doesn’t tell you
anything about the efficiency of the actual
operation / execution plan

 But an otherwise efficient Parallel Execution
plan can only scale if the expected number of
workers is kept busy ideally all the time

 Note that it says “can scale” – if your system
cannot scale the required resources (like I/O)
you just end up with more workers waiting

Other reasons why Oracle Parallel Execution
might not reduce runtime as expected:

 Parallel DML/DDL gotchas

 “Downgrade” at execution time (less workers
assigned than expected)

 Overhead of Parallel Execution implementation

 Limitations of Parallel Execution implementation

Parallel DML / DDL gotchas

 DML / DDL part can run parallel or serial

 Query part can run parallel or serial

Parallel CTAS but serial query

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | Q1,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T4 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | Q1,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN| :TQ10000 | | S->P | RND-ROBIN |

|* 6 | HASH JOIN | | | | |

| 7 | TABLE ACCESS FULL| T2 | | | |

| 8 | TABLE ACCESS FULL| T2 | | | |

Serial CTAS but parallel query

--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | LOAD AS SELECT | T4 | | | |

| 2 | PX COORDINATOR | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10002 | Q1,02 | P->S | QC (RAND) |

|* 4 | HASH JOIN BUFFERED | | Q1,02 | PCWP | |

| 5 | PX RECEIVE | | Q1,02 | PCWP | |

| 6 | PX SEND HASH | :TQ10000 | Q1,00 | P->P | HASH |

| 7 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

| 9 | PX RECEIVE | | Q1,02 | PCWP | |

| 10 | PX SEND HASH | :TQ10001 | Q1,01 | P->P | HASH |

| 11 | PX BLOCK ITERATOR | | Q1,01 | PCWC | |

| 12 | TABLE ACCESS FULL| T2 | Q1,01 | PCWP | |

--

Other reasons why Oracle Parallel Execution
might not scale as expected:

 Parallel DML/DDL gotchas

 “Downgrade” at execution time (less workers
assigned than expected)

 Overhead of Parallel Execution implementation

 Limitations of Parallel Execution implementation

“Parallel Forced Serial” Example

--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | SELECT STATEMENT | | | | |

| 1 | PX COORDINATOR FORCED SERIAL| | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10003 | Q1,03 | P->S | QC (RAND) |

| 3 | HASH UNIQUE | | Q1,03 | PCWP | |

| 4 | PX RECEIVE | | Q1,03 | PCWP | |

| 5 | PX SEND HASH | :TQ10002 | Q1,02 | P->P | HASH |

|* 6 | HASH JOIN BUFFERED | | Q1,02 | PCWP | |

| 7 | PX RECEIVE | | Q1,02 | PCWP | |

| 8 | PX SEND HASH | :TQ10000 | Q1,00 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 10 | TABLE ACCESS FULL | T2 | Q1,00 | PCWP | |

| 11 | PX RECEIVE | | Q1,02 | PCWP | |

| 12 | PX SEND HASH | :TQ10001 | Q1,01 | P->P | HASH |

| 13 | PX BLOCK ITERATOR | | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | Q1,01 | PCWP | |

--

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

select median(id) from t2;

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | |

| 1 | SORT GROUP BY | | | | |

| 2 | PX COORDINATOR | | | | |

| 3 | PX SEND QC (RANDOM)| :TQ10000 | Q1,00 | P->S | QC (RAND) |

| 4 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 5 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

create table t3 parallel

as

select * from t2

where rownum <= 10000000;

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T3 | Q2,01 | PCWP | |

| 4 | PX RECEIVE | | Q2,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN | :TQ20000 | | S->P | RND-ROBIN |

|* 6 | COUNT STOPKEY | | | | |

| 7 | PX COORDINATOR | | | | |

| 8 | PX SEND QC (RANDOM) | :TQ10000 | Q1,00 | P->S | QC (RAND) |

|* 9 | COUNT STOPKEY | | Q1,00 | PCWC | |

| 10 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 11 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

create table t3 parallel

as select * from (select a.*,

lag(filler, 1) over (order by id) as prev_filler

from t2 a);
--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T3 | Q2,01 | PCWP | |

| 4 | PX RECEIVE | | Q2,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN | :TQ20000 | | S->P | RND-ROBIN |

| 6 | VIEW | | | | |

| 7 | WINDOW BUFFER | | | | |

| 8 | PX COORDINATOR | | | | |

| 9 | PX SEND QC (ORDER) | :TQ10001 | Q1,01 | P->S | QC (ORDER) |

| 10 | SORT ORDER BY | | Q1,01 | PCWP | |

| 11 | PX RECEIVE | | Q1,01 | PCWP | |

| 12 | PX SEND RANGE | :TQ10000 | Q1,00 | P->P | RANGE |

| 13 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 14 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

--

All these examples have one thing in common:

If the Query Coordinator (non-parallel part)
needs to perform a significant part of the overall

work, Parallel Execution won’t reduce the
runtime as expected

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

 Legend

P003

P002

P001

P000

time

CPU Wait

 Legend

P003

P002

P001

P000

time

CPU Wait

 Legend

P003

P002

P001

P000

time

CPU Wait

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

Measure Parallel Execution work distribution

 From 11g on: Real Time SQL Monitoring

 Requires Diagnostics + Tuning Pack license

 Based on Active Session History to large degree

 Analysis of a single SQL execution

 Provides Elapsed Time and DB Time

 Shows Average Active Sessions graph

 Shows DB Time per Parallel Worker process

Easy to identify whether all workers are kept
busy all the time or not

Easy to identify if there was a problem with
work distribution

Shows actual parallel degree used (“Parallel
Downgrade”)

Supports RAC

Reports are not persisted and will be flushed
from memory quite quickly on busy systems

No easy identification and therefore no
systematic troubleshooting which plan
operations cause a work distribution problem

 Lacks some precision regarding Parallel
Execution details

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

Analyzing Data Distribution Skew

 Real-Time SQL Monitoring: Not part of report,
requires custom query, only data distribution skew

 V$PQ_TQSTAT: requires to reproduce, fails for
complex queries, only data distribution skew

 Extended SQL Trace: requires to reproduce, many
trace files, only data distribution skew

 One very useful approach is using Active
Session History (ASH)

 ASH samples active sessions once a second

 Activity of Parallel Workers over time can
easily be analyzed

 From 11g on the ASH data even contains a
reference to the execution plan line, so a
relation between Parallel Worker activity and
execution plan line based on ASH is possible

 Custom queries on ASH data required for
detailed analysis

 XPLAN_ASH tool runs these queries for a
given SQL_ID execution

 Advantage of ASH is the availability of
retained historic ASH data via AWR on disk

 Information can be extracted even for SQL
executions as long ago as the retention
configured for AWR

Fixing Data Distribution Skew

 Influence Parallel Distribution: Data volume
estimates, PQ_DISTRIBUTE hint

 Partitioning: Partition-wise operations

 Rewrite queries

 Change application design

Q & A

