\LLELLEXECUTION

Randolf Geist
http:/ / oracle-randolf.blogspot.com
- randolf.geist@sqltools-plusplus.org

o

Expert
Oracle Practices

Oracle Database Administration from
the Oak Table

W

Melanie Caffrey, Pete Finnigan, Randolf Geist,
Alex Gorbachev, Tim Gorman, Connie Green, Charles Hooper,
Jonathan Lewis, Niall Litchfield, Karen Morton,

Robyn Sands, Joze Senegacnik, Riyaj Shamsudeen,

Uri Shaft, Jeremiah Wilton, Graham Wood

Foreword by Arup Nanda

Apress

A | ORACLE

ACE Director

GENDA

1on introduction

) measure distribution of work
ystematically analyze distribution

INTRODUCTION

se Enterprise Edition includes
allel Execution feature that
processing of a single

statement exe n across multiple

€T Processes

ature is fully integrated into the Cost
Based Optimizer as well as the execution
runtime engine and automatically distributes
the work across the so called Parallel Workers

NTRODUCTION

parallelization example

of 8 numbers

9+6+2+6+3= 227

1+8=9, 9+7=16, 16+9=25,...

n=8 numbers, 7 computation steps required

Serial execution: 7 time units

ﬂ'~

INTRODUCTION

generic parallelization example

!g{'ll 4 workers

3 (7) time units

§ /i l Coordinator

il

But 3 (7) x 4 workers assigned

RODUCTION

parallelization example

1 startup cost:
ct / coordinate workers

r challenge: Divide task into chunks that can be
ently and independently processed by workers

Il execution time in parallel can be lower than
execution

= But potentially more worker units required than
serial execution

ODUCTION

ic parallelization example

units assigned matters

many can be b

unication between worker units required -
eds to be (re-) distributed (overhead!)

= Major challenge: Keep all workers busy all the time

'= Parallelization might require different approach

\ODUCTION

1on doesn’t mean “work

accept to “work

so be called:
rce” approach

\ODUCTION

. xecution there
ht be the problem that it
n't work “hard enough”

\ODUCTION

o major challenges

ivided into sub-tasks that can
ly be processed by the

? (“Parallel Unfri ")

' igned workers be kept busy all the time?

RODUCTION

ion can only reduce runtime as
rkers are kept busy

ingle worker will be
and have to do all the work

| case Parallel Execution can actually be
slower than serial execution

= There is a need to measure how busy the
workers are kept

INTRODUCTION

measure doesn’t tell you
e efficiency of the actual
lon plan

otherwise efficient Parallel Execution
an only scale if the expected number of
ers is kept busy ideally all the time

Note that it says “can scale” - if your system
cannot scale the required resources (like I/O)
you just end up with more workers waiting

ODUCTION

Oracle Parallel Execution
time as expected:

ngrade” at execution time (less workers
d than expected)

= Overhead of Parallel Execution implementation

= [imitations of Parallel Execution implementation

LEL DML/DDL

L gotchas

un parallel or serial

JARALLEL DDL / DML PLANS

serial query

| TQ |IN-OUT| PQ Distrib |

|

| | |

| :TQ10001 Q1,01 | P->S | QC (RAND) |

| T4 Q1,01 | PCWP |

| Q1,01 |

D ROUND-ROBIN| :TQ10000 S->P | RND-ROBIN |

JOIN |
ACCESS FULL| T2
ACCESS FULL| T2 |

|
|
|
|
PCWP |
|
|
|
|

SARALLEL DDL / DML PLANS

varallel query

| TQ |IN-OUT| PQ Distrib |

STATEMENT

QC (RANDOM) | :TQ10002 | Q1,02 | P->S | QC (RAND) |

)IN BUFFERED | | Q1,02 | PCWP | |

| | Q1,02 | PCWP | I

| :TQ10000 | ©1,00 | P->P | HASH |

OCK ITERATOR | | Q1,00 | PCWC | |

LE ACCESS FULL	T2	Q1,00	PCWP		
PX RECEIVE		Q1,02	PCWP		
PX SEND HASH	:TQ10001	©1,01	P->P	HASH	
11 . PX BLOCK ITERATOR		Q1,01	PCWC		
12	TABLE ACCESS FULL	T2	Q1,01	PCWP	

ODUCTION

Oracle Parallel Execution

ngrade” at execution time (less workers
d than expected)

= Overhead of Parallel Execution implementation

= Limitations of Parallel Execution implementation

| TQ |IN-OUT| PQ Distrib |

—_———————— — - e e e

'QC (RANDOM) | :TY10003 | Q1,03 | P->S | QC (RAND) |
QUE | | 01,03 | PCWP | |
IVE | | Q1,03 | PCWP | |

D HASH | :TQ10002 | Q1,02 | P->P | HASH
H JOIN BUFFERED | | Q1,02 | PCWP | |
| | Q1,02 | PCWP | |
END HASH | :TQ10000 | Q1,00 | P->P | HASH |

(BLOCK ITERATOR | | Q1,00 | PCWC |

| TABLE ACCESS FULL | T2 | Q1,00 | PCWP | |
| PX RECEIVE | | Q1,02 | PCWP | |
| . PX SEND HASH | :TQ10001 | Q1,01 | P->P | HASH !
| 13 | PX BLOCK ITERATOR | | Q1,01 | PCWC | |
| 14 | TABLE ACCESS FULL | T2 | Q1,01 | PCWP | |

ALLENGES

major challenges

ivided into sub-tasks that can
ly be processed by the

? (“Parallel Unfri ")

ssighed workers be kept busy all the time?

UNFRIENDLY

Bromst2;

TQ |IN-OUT| PQ Distrib |

ND QC (RANDOM) | :TQ10000 01,00 | P->S | QC (RAND)
K ITERATOR | 01,00 | PCWC
3LE ACCESS FULL| T2 Q1,00 | PCWP

L UNFRIENDLY

| TQO |IN-OUT| PQ Distrib |

LE STATEMENT
NATOR

| | | | |

| | | | |

QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

| T3 | 02,01 | PCWP | |

| | 02,01 | PCWP | |

| :TQ20000 | | S->P | RND-ROBIN |

' l | |

| ORDINATOR | | | |

| PX SEND QC (RANDOM) | :TQ10000 | Q1,00 | P->S | QC (RAND) |

| COUNT STOPKEY | | Q1,00 | PCWC | |

| | PX BLOCK ITERATOR | | Q1,00 | PCWC | |
i | TABLE ACCESS FULL| T2 | 01,00 | PCWP | |

L UNFRIENDLY

allel
iIlect a.*,
rder by 1d) as prev filler

| TQ |IN-OUT| PQ Distrib |

BLE STATEMENT
INATOR

| | | | |

| | | | |

QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

B EIECT | T3 | 02,01 | PCWP | |

VE | | 02,01 | PCWP | |

SEND ROUND-ROBIN | :TQ20000 | | S—->P | RND-ROBIN |

| | | | |

| | |

| COORDINATOR | | | | |

| PX SEND QC (ORDER) | :TQ10001 | Q1,01 | P->S | QC (ORDER) |

™ | SORT ORDER BY | | 01,01 | PCWP | |
1	PX RECEIVE		Q1,01	PCWP	
2% PX SEND RANGE	:TQ10000	Q01,00	P->P	RANGE	
13	PX BLOCK ITERATOR		Q1,00	PCWC	
14	TABLE ACCESS FULL	T2	01,00	PCWP	

L UNFRIENDLY

les have one thing in common:

' (non-parallel part)
perform a significant part of the overall
Parallel Execution won't reduce the
runtime as expected

ALLENGES

o major challenges

ivided into sub-tasks that can
ly be processed by the

? (“Parallel Unfri ")

' igned workers be kept busy all the time?

ALL WORKERS BUSY

Legend

| I CPU Wait

oo [EERRRRRRERRERNANRRERERR RN
R UNUBHNNIHHE N
S L IR
ad LT THIN LB
time

WANA DISTRIBUTION SKEW

Legend
I CPU Wait

a1

S8 [T T

o2 [EREREREERERRERREREERREREHRTE
S8 [T N

time

T EMPORAL SKEW

GENDA

1on introduction

) measure distribution of work
ystematically analyze distribution

ALLENGES

| Execution work distribution

e SQL Monitoring
ing Pack license

Active Session History to large degree

SEAL-TIVE SQL MONITORING
ingle SQL execution

ne and DB Time

Average Active Sessions graph

DB Time per Parallel Worker process

SOL MONITORING

whether all workers are kept
Or not

“Supports RAC

= SOL MONITORING

ot persisted and will be flushed

natic troubleshooting which plan
ilons cause a work distribution problem

some precision regarding Parallel
- Execution details

GENDA

1on introduction

) measure distribution of work
ystematically analyze distribution

ARAL EXECUTION SKEW

g Data Distribution Skew

ded SQL Trace: requires to reproduce, many
trace files, only data distribution skew

LEEE EXECUTION SKEW

ul approach is using Active

essions once a second

ples

ity of Parallel ers over time can

be analyzed

11g on the ASH data even contains a

ce to the execution plan line, so a
relation between Parallel Worker activity and
- execution plan line based on ASH is possible

SARALLEL EXECUTION SKEW

les on ASH data required for

AN_ASH toc s these queries for a
SQL_ID exec I

1tage of ASH is the availability of

ed historic ASH data via AWR on disk

ation can be extracted even for SQL

executions as long ago as the retention
- configured for AWR

1

XECUTION SKEW

ata Distribution Skew

ibution: Data volume
TE hint

ning: Partition-wise operations

. Changé application design

QUESTIONS & ANSWERS

