

 Independent consultant

 In-house workshops

 Cost-Based Optimizer

 Performance By Design

 Performance Troubleshooting

 Oracle ACE Director

 Member of OakTable Network

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

 Oracle Database Enterprise Edition includes
the powerful Parallel Execution feature that
allows spreading the processing of a single
SQL statement execution across multiple
worker processes

 The feature is fully integrated into the Cost
Based Optimizer as well as the execution
runtime engine and automatically distributes
the work across the so called Parallel Workers

 Simple generic parallelization example

Task: Compute sum of 8 numbers

1+8=9, 9+7=16, 16+9=25,...

1+8+7+9+6+2+6+3= ???

n=8 numbers, 7 computation steps required

Serial execution: 7 time units

Simple generic parallelization example

4 workers

But 3 (7) x 4 workers assigned

3 (7) time units

1 + 8
= 9

9 + 7
= 16

6 + 2
= 8

6 + 3
= 9

9 + 16
= 25

8 + 9
= 17

25 + 17
= 42

Coordinator

 Simple generic parallelization example

 Possibly additional startup cost:
Find available /instruct / coordinate workers

 Major challenge: Divide task into chunks that can be
efficiently and independently processed by workers

 Overall execution time in parallel can be lower than
serial execution

 But potentially more worker units required than
serial execution

 Simple generic parallelization example

 Number of worker units assigned matters

 Too few can be bad

 Too many can be bad, too

 Communication between worker units required –
data needs to be (re-) distributed (overhead!)

 Major challenge: Keep all workers busy all the time

 Parallelization might require different approach

 Parallel Execution doesn’t mean “work
smarter”

 You’re actually willing to accept to “work
harder”

 Could also be called:
“Brute force” approach

So with Parallel Execution there
might be the problem that it
doesn’t work “hard enough”

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

 Parallel Execution can only reduce runtime as
expected if all workers are kept busy

 Possibly only a few or a single worker will be
active and have to do all the work

 In this case Parallel Execution can actually be
slower than serial execution

 There is a need to measure how busy the
workers are kept

 Note that this measure doesn’t tell you
anything about the efficiency of the actual
operation / execution plan

 But an otherwise efficient Parallel Execution
plan can only scale if the expected number of
workers is kept busy ideally all the time

 Note that it says “can scale” – if your system
cannot scale the required resources (like I/O)
you just end up with more workers waiting

Other reasons why Oracle Parallel Execution
might not reduce runtime as expected:

 Parallel DML/DDL gotchas

 “Downgrade” at execution time (less workers
assigned than expected)

 Overhead of Parallel Execution implementation

 Limitations of Parallel Execution implementation

Parallel DML / DDL gotchas

 DML / DDL part can run parallel or serial

 Query part can run parallel or serial

Parallel CTAS but serial query

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10001 | Q1,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T4 | Q1,01 | PCWP | |

| 4 | PX RECEIVE | | Q1,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN| :TQ10000 | | S->P | RND-ROBIN |

|* 6 | HASH JOIN | | | | |

| 7 | TABLE ACCESS FULL| T2 | | | |

| 8 | TABLE ACCESS FULL| T2 | | | |

Serial CTAS but parallel query

--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | LOAD AS SELECT | T4 | | | |

| 2 | PX COORDINATOR | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10002 | Q1,02 | P->S | QC (RAND) |

|* 4 | HASH JOIN BUFFERED | | Q1,02 | PCWP | |

| 5 | PX RECEIVE | | Q1,02 | PCWP | |

| 6 | PX SEND HASH | :TQ10000 | Q1,00 | P->P | HASH |

| 7 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 8 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

| 9 | PX RECEIVE | | Q1,02 | PCWP | |

| 10 | PX SEND HASH | :TQ10001 | Q1,01 | P->P | HASH |

| 11 | PX BLOCK ITERATOR | | Q1,01 | PCWC | |

| 12 | TABLE ACCESS FULL| T2 | Q1,01 | PCWP | |

--

Other reasons why Oracle Parallel Execution
might not scale as expected:

 Parallel DML/DDL gotchas

 “Downgrade” at execution time (less workers
assigned than expected)

 Overhead of Parallel Execution implementation

 Limitations of Parallel Execution implementation

“Parallel Forced Serial” Example

--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | SELECT STATEMENT | | | | |

| 1 | PX COORDINATOR FORCED SERIAL| | | | |

| 2 | PX SEND QC (RANDOM) | :TQ10003 | Q1,03 | P->S | QC (RAND) |

| 3 | HASH UNIQUE | | Q1,03 | PCWP | |

| 4 | PX RECEIVE | | Q1,03 | PCWP | |

| 5 | PX SEND HASH | :TQ10002 | Q1,02 | P->P | HASH |

|* 6 | HASH JOIN BUFFERED | | Q1,02 | PCWP | |

| 7 | PX RECEIVE | | Q1,02 | PCWP | |

| 8 | PX SEND HASH | :TQ10000 | Q1,00 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 10 | TABLE ACCESS FULL | T2 | Q1,00 | PCWP | |

| 11 | PX RECEIVE | | Q1,02 | PCWP | |

| 12 | PX SEND HASH | :TQ10001 | Q1,01 | P->P | HASH |

| 13 | PX BLOCK ITERATOR | | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | Q1,01 | PCWP | |

--

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

select median(id) from t2;

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | |

| 1 | SORT GROUP BY | | | | |

| 2 | PX COORDINATOR | | | | |

| 3 | PX SEND QC (RANDOM)| :TQ10000 | Q1,00 | P->S | QC (RAND) |

| 4 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 5 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

create table t3 parallel

as

select * from t2

where rownum <= 10000000;

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T3 | Q2,01 | PCWP | |

| 4 | PX RECEIVE | | Q2,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN | :TQ20000 | | S->P | RND-ROBIN |

|* 6 | COUNT STOPKEY | | | | |

| 7 | PX COORDINATOR | | | | |

| 8 | PX SEND QC (RANDOM) | :TQ10000 | Q1,00 | P->S | QC (RAND) |

|* 9 | COUNT STOPKEY | | Q1,00 | PCWC | |

| 10 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 11 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

create table t3 parallel

as select * from (select a.*,

lag(filler, 1) over (order by id) as prev_filler

from t2 a);
--

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

--

| 0 | CREATE TABLE STATEMENT | | | | |

| 1 | PX COORDINATOR | | | | |

| 2 | PX SEND QC (RANDOM) | :TQ20001 | Q2,01 | P->S | QC (RAND) |

| 3 | LOAD AS SELECT | T3 | Q2,01 | PCWP | |

| 4 | PX RECEIVE | | Q2,01 | PCWP | |

| 5 | PX SEND ROUND-ROBIN | :TQ20000 | | S->P | RND-ROBIN |

| 6 | VIEW | | | | |

| 7 | WINDOW BUFFER | | | | |

| 8 | PX COORDINATOR | | | | |

| 9 | PX SEND QC (ORDER) | :TQ10001 | Q1,01 | P->S | QC (ORDER) |

| 10 | SORT ORDER BY | | Q1,01 | PCWP | |

| 11 | PX RECEIVE | | Q1,01 | PCWP | |

| 12 | PX SEND RANGE | :TQ10000 | Q1,00 | P->P | RANGE |

| 13 | PX BLOCK ITERATOR | | Q1,00 | PCWC | |

| 14 | TABLE ACCESS FULL| T2 | Q1,00 | PCWP | |

--

All these examples have one thing in common:

If the Query Coordinator (non-parallel part)
needs to perform a significant part of the overall

work, Parallel Execution won’t reduce the
runtime as expected

Two major challenges

Can the given task be divided into sub-tasks that can
efficiently and independently be processed by the
workers? (“Parallel Unfriendly”)

Can all assigned workers be kept busy all the time?

 Legend

P003

P002

P001

P000

time

CPU Wait

 Legend

P003

P002

P001

P000

time

CPU Wait

 Legend

P003

P002

P001

P000

time

CPU Wait

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

Measure Parallel Execution work distribution

 From 11g on: Real Time SQL Monitoring

 Requires Diagnostics + Tuning Pack license

 Based on Active Session History to large degree

 Analysis of a single SQL execution

 Provides Elapsed Time and DB Time

 Shows Average Active Sessions graph

 Shows DB Time per Parallel Worker process

Easy to identify whether all workers are kept
busy all the time or not

Easy to identify if there was a problem with
work distribution

Shows actual parallel degree used (“Parallel
Downgrade”)

Supports RAC

Reports are not persisted and will be flushed
from memory quite quickly on busy systems

No easy identification and therefore no
systematic troubleshooting which plan
operations cause a work distribution problem

 Lacks some precision regarding Parallel
Execution details

 Parallel Execution introduction

 Major challenges

 Parallel unfriendly examples

 Distribution skew examples

 How to measure distribution of work

 How to systematically analyze distribution

Analyzing Data Distribution Skew

 Real-Time SQL Monitoring: Not part of report,
requires custom query, only data distribution skew

 V$PQ_TQSTAT: requires to reproduce, fails for
complex queries, only data distribution skew

 Extended SQL Trace: requires to reproduce, many
trace files, only data distribution skew

 One very useful approach is using Active
Session History (ASH)

 ASH samples active sessions once a second

 Activity of Parallel Workers over time can
easily be analyzed

 From 11g on the ASH data even contains a
reference to the execution plan line, so a
relation between Parallel Worker activity and
execution plan line based on ASH is possible

 Custom queries on ASH data required for
detailed analysis

 XPLAN_ASH tool runs these queries for a
given SQL_ID execution

 Advantage of ASH is the availability of
retained historic ASH data via AWR on disk

 Information can be extracted even for SQL
executions as long ago as the retention
configured for AWR

Fixing Data Distribution Skew

 Influence Parallel Distribution: Data volume
estimates, PQ_DISTRIBUTE hint

 Partitioning: Partition-wise operations

 Rewrite queries

 Change application design

Q & A

