

 Independent consultant

 Available for consulting

 In-house workshops

 Cost-Based Optimizer

 Performance By Design

 Performance Troubleshooting

 Oracle ACE Director

 Member of OakTable Network

 Optimizer Basics – Key Concepts

 Proactive: Performance by design

 Reactive: Troubleshooting

 Three main questions you should ask when
looking for an efficient execution plan:

 How much data? How many rows / volume?

 How scattered / clustered is the data?

 Caching?

=> Know your data!

 Why are these questions so important?

 Two main strategies:

 One “Big Job”
=> How much data, volume?

 Few/many “Small Jobs”
=> How many times / rows?
=> Effort per iteration? Clustering / Caching

 Optimizer’s cost estimate is based on:

 How much data? How many rows / volume?

 (partially)

 (Caching?) Not at all

 Single table cardinality

 Join cardinality

 Filter subquery / Aggregation cardinality

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

 Selectivity of predicates applying to a single
table

B
ase C

ard
in

ality

F
iltered

 C
ard

in
ality

 /
 F

ilter R
atio

 Optimizer challenges

 Skewed column value distribution

 Gaps / clustered values

 Correlated column values

 Complex predicates and expressions

 Bind variables

Demo!

optimizer_basics_single_table_cardinality_testcase.sql

 Impact limited to a “single table”

 Influences the favored
(Full Table Scan, Index Access etc.)

 Influences the and
(NESTED LOOP, HASH, MERGE)

=> An incorrect single table cardinality
potentially screws up whole !

 Oracle joins exactly row sources at a time

 If more than two row sources need to be joined,
 join operations are required

 Many different possible (factorial!)

 Tree shape of execution plan

 Challenges

 Getting the right!

 A join can mean anything between and a
 product

 Getting the right

T1 T2

T1, T2

1,000 rows 1,000 rows

0 rows

1,000,000 rows

 Getting the right

T1 T2

T1, T2

Join cardinality =
Cardinality T1 *
Cardinality T2 *
Join selectivity

 Challenges

 Semi Joins (EXISTS (), = ANY())

 Anti Joins (NOT EXISTS (), <> ALL())

 Non-Equi Joins (Range, Unequal etc.)

 Even for the most common form of a join
- the –
there are several challenges

 Non-uniform join column value distribution

 Partially overlapping join columns

 Correlated column values

 Expressions

 Complex join expressions (multiple AND, OR)

Demo!

optimizer_basics_join_cardinality_testcase.sql

 Influences the and
(NESTED LOOP, HASH, MERGE)

=> An incorrect join cardinality/selectivity
potentially screws up whole !

 Data is organized in blocks

 Many rows can fit into a single block

 According to a specific data can
be either across many different blocks
or in the same or few blocks

 Does make a tremendous difference in terms of
efficiency of a “Small Job”

1,000 rows => visit 1,000 table blocks: 1,000 * 5ms = 5 s

1,000 rows => visit 10 table blocks: 10 * 5ms = 50 ms

 Scattered data means potentially many more
blocks to compete for the Buffer Cache for the
same number of rows

 => Caching!

 Scattered data can result in increased

 physical

 write (Log Writer, DB Writer)

 Most OLTP data has a clustering

 Data arriving is usually
clustered together in a heap organized table

 Depends on the organization

 for example can influence this
clustering even for heap organized tables

 Clustering of data can be influenced by
 implementation

 Physical design matters

 Segment space management (MSSM / ASSM)

 Partitioning

 Index/Hash Cluster

 Index Organized Tables (IOT)

 Index design / multi-column composite indexes

 There is a reason why the Oracle internal data
dictionary uses all over the place

No table access => only index blocks are visited!

 There is only a single measure of clustering in
Oracle:
The

 The index clustering factor is represented by a
 value

 The logic measuring the clustering factor by
default does cater for data clustered across

 blocks (ASSM!)

 Challenges

 Getting the right

 There are various reasons why the index clustering
factor measured by Oracle might not be

 Multiple freelists / freelist groups (MSSM)

 ASSM

 Partitioning

 SHRINK SPACE effects

Re-visiting the same recent table blocks

 Challenges

 There is no clustering measurement

 The optimizer therefore doesn’t really have a clue
about the

 You may need to influence the optimizer’s decisions
if you know about this clustering

Demo!

optimizer_basics_inter_table_clustering_testcase.sql

 The optimizer’s model by default doesn’t
consider caching of data

 Every I/O is assumed to be

 But there is a huge difference between
 (measured in microseconds) and
 (measured in milliseconds)

 You might have knowledge of particular
application data that is and usually stays
in the Buffer Cache

 Therefore certain queries against this “hot”
data can be based on that

 The optimizer doesn’t know about this. You
may need to the optimizer’s decisions

 Oracle obviously played with the idea of
introducing an caching component
into the cost calculation in 9i and 10g

 You can see this from the undocumented
parameters and

 as well as the columns
 and

 in the data
dictionary

 It is important to point out that even
 is not “free”

 So even by putting all objects entirely in the
Buffer Cache execution plans may
still lead to poor performance

 logical I/O, in particular on “hot
blocks”, can lead to and

 and determine whether
the or strategy should be
preferred

 If the optimizer gets these estimates right, the
resulting will be within
the of the given access paths

 How to apply these concepts, where to go from
here?

 Read Jonathan Lewis’ article
“Designing Efficient SQL” at Red
Gate’s “Simple Talk”

Probably the best coverage of the
concepts outlined here including
clustering and caching

http://www.simple-talk.com/sql/performance/designing-efficient-sql-a-visual-approach/

 How to apply these concepts, where to go from
here?

 Read Jonathan Lewis’ article
“Designing Efficient SQL” at Red
Gate’s “Simple Talk”

Probably the best coverage of the
concepts outlined here including
clustering and caching

http://www.simple-talk.com/sql/performance/designing-efficient-sql-a-visual-approach/

 How to apply these concepts, where to go from
here?

 Read one of Tom Kyte’s books to
learn more about the pro’s and con’s
of clusters and index organized
tables

 How to apply these concepts, where to go from
here?

 Read one of Tom Kyte’s books to
learn more about the pro’s and con’s
of clusters and index organized
tables

 How to apply these concepts, where to go from
here?

 Learn how to read, interpret and
understand Oracle execution plans
=> Chapter 6 of “Troubleshooting
Oracle Performance” by Christian
Antognini

 This knowledge is required in order
to compare your understanding of
the query to the optimizer’s
understanding

 How to apply these concepts, where to go from
here?

 Learn how to read, interpret and
understand Oracle execution plans
=> Chapter 6 of “Troubleshooting
Oracle Performance” by Christian
Antognini

 This knowledge is required in order
to compare your understanding of
the query to the optimizer’s
understanding

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 How to apply these concepts, where to go from
here?

 Be aware of Query Transformations:
The optimizer might rewrite your
query to something that is
semantically equivalent but
potentially more efficient

 This might take you by surprise
when trying to understand the
execution plan favored by the
optimizer

Query transformation examples by courtesy of Joze Senegacnik (OOW 2010)

 If you want a more formal approach

 Read “SQL Tuning” by Dan Tow

 Teaches a formal approach how to
design and visualize an execution plan

 Focuses on “robust” execution plans
in an OLTP environment

 The formal approach doesn’t take into
account clustering and caching,
however it is mentioned in the book at
some places

 If you want a more formal approach

 Read “SQL Tuning” by Dan Tow

 Teaches a formal approach how to
design and visualize an execution plan

 Focuses on “robust” execution plans
in an OLTP environment

 The formal approach doesn’t take into
account clustering and caching,
however it is mentioned in the book at
some places

 If you want a more formal approach

 Read “Relational Database Index
Design and the Optimizers” by
Tapio Lahdenmäki and Michael
Leach

 Focuses on index design

 Provides simple and more advanced
formulas allowing to predict the
efficiency of queries and indexes

 Covers clustering and caching

 If you want a more formal approach

 Read “Relational Database Index
Design and the Optimizers” by
Tapio Lahdenmäki and Michael
Leach

 Focuses on index design

 Provides simple and more advanced
formulas allowing to predict the
efficiency of queries and indexes

 Covers clustering and caching

 For application developers

 Read “Use the Index, Luke” by
Markus Winand

 Focuses on index design

 Provides a lot of examples how to
design efficient database access using
different front-end languages (Java,
Perl, PHP, etc.)

 Also available as free eBook

 Cross database (Oracle DB2,
MySQL…)

http://use-the-index-luke.com/

 For application developers

 Read “Use the Index, Luke” by
Markus Winand

 Focuses on index design

 Provides a lot of examples how to
design efficient database access using
different front-end languages (Java,
Perl, PHP, etc.)

 Also available as free eBook

 Cross database (Oracle DB2,
MySQL…)

http://use-the-index-luke.com/

 If you want dive into the details of the Cost-
Based Optimizer

 Read “Cost-Based Oracle:
Fundamentals” by Jonathan Lewis

 Almost six years old

 Still the best book about the Oracle
optimizer

 Covers the key concepts mentioned
here in great detail

 If you want dive into the details of the Cost-
Based Optimizer

 Read “Cost-Based Oracle:
Fundamentals” by Jonathan Lewis

 Almost six years old

 Still the best book about the Oracle
optimizer

 Covers the key concepts mentioned
here in great detail

Q & A

