
SQL Server
Tacklebox
Essential Tools and Scripts for the day-to-day DBA

Rodney Landrum

High Performance SQL Server

ISBN: 978-1-906434-24-3

SQL Server

Tacklebox

Essential Tools and Scripts

for the day-to-day DBA

By Rodney Landrum

First published by Simple Talk Publishing 2009

Copyright Rodney Landrum 2009

ISBN 978-1-906434-24-3

The right of Rodney Landrum to be identified as the author of this work has been asserted by
him in accordance with the Copyright, Designs and Patents Act 1988

All rights reserved. No part of this publication may be reproduced, stored or introduced into
a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical,
photocopying, recording or otherwise) without the prior written consent of the publisher.
Any person who does any unauthorized act in relation to this publication may be liable to
criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be
lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any
form other than which it is published and without a similar condition including this condition
being imposed on the subsequent publisher.

Technical Review by Shawn McGehee

Cover Image by Paul Beckman

Edited by Tony Davis

Typeset by Gower Associates

Table of Contents
About the author .. vi

About the technical reviewer vi

Acknowledgements... vii

Introduction .. viii

Code Download... x

Chapter 1: Eating SQL Server installations for
breakfast ...11

Specification, installation, configuration.. 12

Specifying the physical server .. 12

Ready to install – almost... 14

Installation done, now to configure ... 19

Bon Appétit..31

Chapter 2: The SQL Server landscape...................... 32

What information is required? ... 33

Automating information retrieval ... 44

Summary...59

Chapter 3: The migratory data 61

Mapping out the data migration solution... 62

The data source .. 63

Bulk data transfer tools ... 64

SSIS .. 72

Data comparison tools .. 78

"High Availability" tools.. 84

Summary...93

Chapter 4: Managing data growth 94

Common causes of space issues..95

Being a model DBA ...96

Indexes and large row counts ...107

TempDB ..115

A query to determine current space utilization119

Summary ...122

Chapter 5: DBA as detective 123

System tables versus DMVs ...123

Tracking down database performance issues.......................................124

Automating discovery of problems ..136

Summary ...143

Chapter 6: Monitoring and notifications 145

Types of monitoring and notifications..145

Enabling notifications ..148

Backup failure notification ...154

Performance issues...159

Stopped services and disk space shortage...166

Summary ...168

Chapter 7: Securing access to SQL Server 169

Overview of security challenges..169

Finding SQL logins, Windows users and groups171

Find Windows Active Directory group membership175

Find SQL users at the database level ...179

Loading up the DBA repository with security data182

Finding service accounts with WMIC ..182

Surveillance...185

Summary...202

Chapter 8: Finding data corruption 204

Causes of corruption... 204

Consequences of corruption ...205

Fighting corruption ..206

Seeking out corruption .. 224

Summary...228

vi

ABOUT THE AUTHOR

Rodney Landrum has been working with SQL Server technologies for
longer than he can remember (he turned 40 in May of 2009, so his memory
is going). He writes regularly about many SQL Server technologies,
including Integration Services, Analysis Services, and Reporting Services. He
has authored three books on Reporting Services. He is a regular contributor
to SQL Server Magazine and Simple-Talk, the latter of which he sporadically
blogs on about SQL and his plethora of geek tattoos. His day job finds him
overseeing the health and well-being of a large SQL Server infrastructure in
Pensacola, Florida. He swears he owns the expression "Working with
Databases on a Day to Day Basis" and anyone who disagrees is itching to
arm wrestle. Rodney is also a SQL Server MVP.

ABOUT THE TECHNICAL

REVIEWER

Shawn McGehee is a full-time professional DBA and a part-time amateur
developer from Pensacola, Florida. He is very active with the local SQL
users’ group in Pensacola and helps organize / speaks regularly at their
events. Shawn is also a contributing writer to popular SQL websites such as
Simple Talk and SQL Server Central. He was also a co-author of the book
"Pro SQL Server 2008 Reporting Services."

vii

ACKNOWLEDGEMENTS

I would like to thank everyone involved in the making of this book,
peripherally and personally, but first and foremost Karla…my love, who has
been with me, spurred me on and understood when I needed a fishing or
beer respite through 5 books now. I love you.

To all my kids who also sacrificed during the writing of this book. Megan,
Ethan, Brendan and Taylor. Well, OK, Ethan did not sacrifice so much, but
he did help me understand that "Buffalo buffalo Buffalo buffalo buffalo
buffalo Buffalo buffalo" is a legitimate sentence.

Thanks to my Mom and Dad, as always. I love you. There will still be a
novel, I promise; just not a Western. Sorry, Mom.

Thanks also to Shawn McGehee, my good friend and DBA colleague, who
tech-edited the book. It is much better for it. Also, thanks Shawn, for letting
me use snippets of your hard-won code as well.

Special thanks also go to Truett Woods who has opened my eyes in a lot of
ways to good coding practices, and for the use of one of his base code
queries in Chapter 1.

Thanks to Joe Healy of devfish fame, a straight up bud whose .Net
tacklebox is more full than mine. I will be getting the devfish tattoo next.

Finally, I would personally like to thank Throwing Muses, The Pixies and
Primus for providing the music that helped me through the many late
nights. OK, so they will never read this and offer to come over to play a set
at a backyard BBQ, I know, but one can hope.

viii

INTRODUCTION

This book, as with almost all books, started out as an idea. I wanted to accumulate
together those scripts and tools that I have built over the years so that DBAs
could sort through them and perhaps adapt them for their own circumstances. I
know that not every script herein will be useful, and that you might ask "Why are
you using this table and not that DMV" or "Why is this code not compatible with
SQL Server 2008?" After writing about SQL Server solutions now for the past 10
years, I can expect this criticism, and understand it fully. Everyone has their own
ways of solving problems. My goal is to provide useful samples that you can
modify as you please.

I wrote the book the way it is because I did not want to bore DBAs to tears with
another 500+ page textbook-style tome with step-by-step instructions. I wanted
this book to be a novel, a book of poetry, a murder mystery, a ghost story, an epic
trilogy, a divine comedy. But realizing that this is, after all, a technical book, I
compromised by imbuing it with some humor and personality. If you make it as
far as the monster at the end of this book, my hope is that you will have been
entertained and can use the code from the Tacklebox in some fashion that will
make your lives as DBAs easier. Why "The Tacklebox," you might ask, rather than
"Zombie Queries," "You Can’t Handle the Code" or "You had me at BEGIN?" I
think, as I push halfway through my career as a DBA and author, this book is as
close as I will ever get to "The Old Man and the Sea"…oh yes, and apparently the
"Toolbox" had been copyrighted. Plus, come on! Look at the cover of the book.
How can I live here and not go fishing once in a while?

Chapter 1

Here you will find wholesome SQL Server installations on the menu, complete
with Express, Continental and Deluxe breakfast choices, depending on your
application’s appetite. And there will be a little GUI setup support here. This
chapter is about automation, and a lengthy script is included that will help you
automate SQL installations and configurations. There is some foreshadowing
lurking as well, such as code to enable a DDL trigger that I will show later in the
book. This is the chapter where your new SQL Server installation is completely
yours, having not as yet been turned over to the general populace of developers or
users. Enjoy it while you can.

Chapter 2

In this chapter, I introduce the DBA Repository, a documentation tool I have
built using Integration Services and Reporting Services. It is easy to manage one,

Introduction

ix

two or three SQL Server instances with the panoramic view the tool gives. It is
even easy to work with ten SQL Servers without documentation, but when you
have 70 or 100 or 2,000 SQL Servers without an automated documentation
solution, you cannot successfully manage your SQL Server Landscape – ironically,
that is the name of the chapter, "The SQL Server Landscape."

Chapter 3

I think we can all agree that data at rest never stays that way. No, far from it. The
data in this chapter has begun the swim up river to its spawning grounds and will
migrate and transform like the intrepid salmon (hey, a fishing reference) from the
open ocean, to river, to stream. Here, I look at different ways that data moves
about, and I investigate tools such as SSIS and BCP that help facilitate such
moves, whatever the reason, be it high availability, disaster recovery or offloaded
reporting.

Chapter 4

In this chapter, I describe one of the first hungry monsters of the book, the disk-
space consuming databases. The hunger may not be abated entirely, but it can be
controlled with proper planning and also with queries that will help you to
respond to runaway growth. Here, I will show how to battle the appetite of space-
killers with just a bit of planning, tempered with an understanding of how and why
data and log files grow to consume entire disks.

Chapter 5

There is a murder in this chapter. Someone or something is killed and most likely
you, the DBA, will be the lone killer. Of course, I am talking about processes,
SPIDs, that we see every day. Some are easier to kill than others. Some will just
not die and I will explain why, using ridiculous code that I hope you never see in
real life. The queries here were designed to help you get to the bottom of any issue
as quickly as possible without the need for DNA testing. And I am not talking
about Windows DNA, if you are old like me and remember this acronym for
Distributed Networking Architecture, precursor to .NET. No, no .NET here.

Chapter 6

To sleep...perchance to dream…about failures. Here, I will introduce the sleep
killer of DBAs everywhere, where jobs fail in the hours of darkness, and the on-
call DBA is awakened from slumber several times a night in order to sway,
zombie-like to the computer to restart failed backup jobs. You cannot resolve an
issue unless you know about it and here, while discussing notifications and
monitoring your SQL Server infrastructure, we will stay up late and tell horror
stories. But, in the end, you will sleep better knowing all is well.

Introduction

x

Chapter 7

Surely, like me, you are afraid of break-ins. I would not like to come home and
find my things strewn about, wondering what all was taken. If you work for a large
company that is regulated by one or more government mandates, like HIPAA or
SOX (Sarbanes-Oxley) you cannot afford to be without a security monitoring
solution. Here, I will introduce a set of scripts to show how to analyze login
accounts, the first barrier between the outside world and your data. I will also give
pointers to other solutions that will help you track down potential breaches in
your outer wall defenses.

Chapter 8

In this chapter I will unveil the monster. It is the Data Corruption beast. Despite
advances in hardware, the number one cause of corruption, it does still exist. You
will need to first hunt out corruption before you can slay it. And you need to find
it early in its lair so as to not spread the corruption to backup files. Here, I will
intentionally, though begrudgingly, corrupt a database and show some of the ways
to discover and fix it, emphasizing the need for a solid backup strategy.

Code Download

All of the scripts provided in this 'tacklebox', as well as the full DBA Repository
solution, presented in Chapter 2, are available to download from:

http://www.simple‐talk.com/RedGateBooks/
RodneyLandrum/SQL_Server_Tacklebox_Code.zip.

http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�
http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�

11

CHAPTER 1: EATING SQL SERVER

INSTALLATIONS FOR BREAKFAST

For many DBAs, choosing an appropriate SQL Server installation is a lot like
ordering breakfast at a diner: there is something to suit all appetites, tastes and
budgets, and the range of choices can often be mind-boggling. A sample SQL
Server breakfast menu might look something like this:

The Express Breakfast (For the cost-conscious)

• 1 SQL Server Express on top of a Windows XP Professional

• 1 large hard drive

• 2 Gig of RAM

The Continental (Enough to hold you over for a while)

• 1 SQL Server Standard Edition 32 bit on Windows Server 2003 Standard

• 1 instance of Reporting Server

• 1 instance of Analysis Server

• 250 Gig RAID 5 Disk Subsystem

• 4 Gigs of RAM

The Deluxe (When cost is no barrier to hunger)

• 1 SQL Server Enterprise Edition 64 bit Clustered

• 2 Windows Server 2003 Enterprise Edition servers

• 1 RAID 10 1TB Data Partition

• 1 RAID 10 200G Log Partition

• 1 RAID 0 100G TempDB Partition

• 64 G of RAM

It is the DBA's task to choose the SQL Server configuration that most accurately
reflects the specific needs of a given project, whether it is for cost-conscious
deployments, high availability, data analysis or high-performing online transactions
for a critical business application. In this chapter, I will investigate the myriad
available installation options and propose a custom post-installation script with
which to automate the most common configurations.

1 – Eating SQL Server installations for breakfast

12

Specification, installation, configuration

Once the project has been decided, there are many ensuing steps to climb to get
from concept to full deployment. Installing SQL Server on the chosen platform is,
in reality, only a small part of the overall pre-production setup process. Pre-
installation, you have the planning stage, where you need to define the capacity,
memory and CPU requirements, and required disk subsystems for your physical
server(s). Post-installation, the true work begins, when it is time for configuration.
Fortunately, both of the rote tasks of installation and configuration can be
automated, to some degree.

Specifying the physical server

Generally, the size of a given project, in terms of the number of expected users,
amount of data to be stored, and so on, will dictate the capacity of the physical
server, or servers, that comprise the SQL Server installation. The sort of breakfast
that lands on your plate is likely to differ wildly, depending on whether you work
for the ubiquitous "mom and pop" shop, or a large enterprise. In the former case,
you may well find yourself ordering the parts for the servers yourself, and putting
them all together, before moving on to the SQL Server installation. If you are a
DBA at the Fortune 100 end of the scale, you may never even get to see your
servers, let alone build them! You will just be informed, by way of an e-mail from
the server administration team, that your server is powered up, with the base OS
installed, and ready to endure your SQL witch-trickery.

In my career, I have sampled both the self-service buffet and the gourmet tasting
menu. While I consider it a luxury to no longer have to have to build my own
servers, I would not trade that experience. I am often asked how important it is
for a DBA to have a technical understanding of networking, storage or even
Windows Server systems. In my opinion, it is critical. I could go as far as to say
that every DBA should spend two years working in technical support,
troubleshooting problems and building systems from the ground up. But that is
topic for a different book. Suffice to say here that, regardless of whether you are
building your own server or having it delivered on a silver platter, it's vital that a
DBA understands a few important components of that physical server, and the
factors that affect how you choose these components.

1 – Eating SQL Server installations for breakfast

13

RAM

SQL Server, like any other application, is going to use memory. RAM, like CPU
and disk arrays, comes at a cost and how much RAM you are going to need
depends on several factors. If you know that you will have 250 users connected
simultaneously to a 200 Gigabyte database, then 4G of RAM on SQL Standard
32-bit and Windows 2003 is not going to be enough.

Without wishing to be overly formulaic, I will say that connections come at a
RAM cost. More connections equals more RAM. SQL Server will run comfortably
in 1G of memory, but you would not want to roll out a production server on that
amount. Ironically, one of the most important factors to consider is one that a
DBA has very little control over: what application is going to access your beloved
database objects? Is it "homegrown" or "third-party"? This is an important
question because, if you do not "own" the database schemas, you could find
yourself unable to employ basic performance tuning techniques, like adding
indexes. In these situations, you are at the mercy of the vendor, whose
recommendation is often to "add more RAM," even when all that is required is to
add an overlooked index.

At this planning stage, it is always safer to overestimate the need for memory. Get
as much as you "think" you will need, and more if performance outweighs cost,
which it should. Note though, that buying the additional physical RAM is not the
only cost and is seldom the cure. You will also have to purchase software that can
support the additional RAM and this might mean, for example, buying Windows
Server Enterprise instead of Standard Edition.

CPU

Specifying processor requirements for a SQL Server is a slightly more complex
task than specifying RAM. For one thing, software such as SQL Server can be
licensed per processor. This can be quite expensive. As a DBA, you must
understand the difference between the different processor types. For example, is
the processor 32- or 64-bit architecture? Is it single-core or multi-core, meaning
you can gain additional virtual processors with one physical processor? If it is
multi-core, is it dual-core or quad-core, or octa-core? I'm not even sure if that last
one exists yet, but it probably will soon.

Why is it important to know the answer to all these questions? Well, you do not
want to be the DBA who relays to your boss that your new 2-proc, quad-core
SQL Server is going to require 8 "per proc" licenses when, in fact, it will only
require 1 license per "physical" processor, even if SQL Server will use all 8 cores.

1 – Eating SQL Server installations for breakfast

14

The speed of the processor is important as well; what Gigabytes is to RAM,
Gigahertz is to processors in determining how your new server is going to
perform. Take a little time up front to investigate the server specifications,
especially if someone else was responsible for ordering it. It will save you 3
months of pain later on, when the server is ill-performing.

Disk subsystem

The choice of disk subsystem is the most difficult pre-installation hardware
decision that the DBA has to make. There are just so many options. Fortunately,
you have put together the documentation for your SQL Server infrastructure that
will help you narrow down the choices, right? You know, for example, that your
performance requirements dictate that you are going to need RAID 1-0 data and
log partitions, with a separate volume allocated for TempDB split across as many
spindles as possible.

OK, so you don't have that document; not a big deal. If you are able to at least
have a RAID 5 configuration then you are off to a good start. It is also worth
noting that if you are installing SQL Server in a clustered environment, you will
need to have a shared disk array, typically implemented via a Storage Area
Network (SAN) back end.

Free tools are available for you to stress test the disk subsystem of the SQL Server
installation, prior to moving it to production. One such tool is SQLIO, provided
by Microsoft:

http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-
4f24-8d65-cb53442d9e19&displaylang=en

Ready to install – almost

So, you have your server built and are ready to install SQL Server. Let's say that
you have chosen to install a 32-bit version of SQL Server 2008 Standard, on
Windows 2003 Enterprise, with 16 Gigabytes of RAM. You have been given a 350
Gigabyte data partition, and a 200 Gigabyte partition for the logs and TempDB.

One thing you can take comfort in is that this will be your server, at least for the
next several hours. If you're lucky, and the project is not as urgent, you may even
have a day or two. For this short, precious time, you have total control of this
server and can do with it whatever you will. Of course, you want to get the
installation right and this is where having an established, standard set of
installation procedures is priceless.

http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en�

1 – Eating SQL Server installations for breakfast

15

The pre-installation checklist

Some DBAs I know look at each server installation as an entirely new experience.
It becomes second nature to them to install, prep and release a SQL Server into
production. However, mistakes can and will happen. You rattle through the
installation process as normal, declare the server live, and then move on to other
tasks, not realizing that you have missed a small but important step. Later, or
probably sooner, someone discovers that the server is not sending mail, or that a
new database has not had a log backup and has filled up the log drive, and all hell
breaks loose.

It is a painful experience so, before you hunker down to install SQL Server, you
will want to review your SQL Server Installation Check List. It will contain multiple
instructions for different versions of SQL Server. Many of the configuration
options, such as the collation of the SQL Server instance, are best set during
installation so it is important to know beforehand what options you need to
choose.

Check lists will vary for everyone but there are a few configurations that will be
common to all lists. For example:

• Data and Log File Standard Location

• Data: E:\DataFiles
• Logs: F:\TLogs

• Service Account: (Created service account and grant local privileges)

• TempDB Location

• T:\TempDB

• Special Permissions (memory – AWE)

• Lock Pages in Memory

• Boot.ini

• Configure for /PAE switch if 32 bit Windows 2003 and SQL
Server Standard or Enterprise

• Additional vendor-supplied (Non SQL) applications

• Defragmentation
• SQL Backup Compression

Automated command line installation

Having gathered together your pre-installation information, it's time to install. We
will place our DVD into the drive, or mount our ISO, and double-click Setup.exe.
Yeah … sure we will.

1 – Eating SQL Server installations for breakfast

16

Installing SQL Server is, at best, a mundane task. If you do it twice a month then
it is probably OK to simply springboard through the GUI installation wizard,
manually choosing, clicking, and typing your way to a successful install. However,
for me and many other DBAs, standardization and automation are important. A
constant theme of this book is that whenever a task can be simplified, automated
and repeated, you should make it so.

Installation is no exception. I need a standard install process that can be controlled
programmatically, in order to eradicate costly mistakes. As such, I want to avoid
the GUI-driven installation altogether. Fortunately, Microsoft continues to
support command line installs and that is what I will be demonstrating here: how
to automate the installation with setup options, from the command line.

I'll begin by examining some of the installation options available for SQL Server
2008. There are many optional parameters that I'll ignore, but several that are
required. I'll show how to string together the command line and execute it on your
new server. When it is done, assuming there are no errors, you will be ready for
the real fun. If there are errors, then refer to my previous comment about the 2
years spent in Help Desk. They will stand you in good stead, as you will need
every ounce of perseverance to solve any issues. I have read volumes in the
various SQL Server forums on installation errors and how to overcome them.
However, let's assume, as is typical, that there will be no errors.

To get a full list of all of the available command line installation options for SQL
Server 2008, including the valuable samples, simply run Setup /?, as shown in
Figure 1.1.

Figure 1.1: A few of the command line setup options.

1 – Eating SQL Server installations for breakfast

17

Figure 1.2 shows the different, less friendly outcome performing the same step for
SQL Server 2005.

Figure 1.2: If you want the answer look in Books Online.

Once you've picked the options that are right for your install, you simply need to
string them together on the command line noting that, for a SQL Server 2008
installation, there are several required options. Listing 1.1 shows a sample
command for automating an install.

setup.exe /QUIETSIMPLE /ACTION=install /FEATURES=SQL,Tools
/INSTANCENAME=MSSQLSERVER /SQLSVCACCOUNT="Network Service"
/SQLSYSADMINACCOUNTS="domain\username" /AGTSVCACCOUNT="NT
AUTHORITY\Network Service" /SECURITYMODE=SQL /SAPWD="*********"
/SQLTEMPDBDIR="C:\TempDB\\" /SQLUSERDBDIR="C:\SQLData\\"
/SQLUSERDBLOGDIR="C:\SQLLog\\"

Listing1.1: A sample command line install.

Most of the options are intuitive. For example:

• /ACTION – this is required. It simply specifies whether the action is an
install, update or uninstall. In this case, I am going to install.

• /FEATURES – determines what SQL Server features to install. The choices
are "SQL, AS, RS, IS, Tools". For this install, I chose SQL and Tools,
which will install the SQL Database Engine and tools such as SQL Server
Management Studio, Business Intelligence Developments Studio and
configuration tools. I chose not to install Analysis Services (AS),
Reporting Services (RS) or Integration Services (IS).

Each feature also has its own set of properties, such as service account credentials
and installation location.

Running the command initiates the installation. If you choose the /QUIETSIMPLE
option, as I did here, then you will be able to view the progress of the installation.
However, there will be no user interaction. If the command executes as expected,
you'll see something similar to that shown in Figure 1.3, reporting the progress of
the installation.

1 – Eating SQL Server installations for breakfast

18

Figure 1.3: SQL Server 2008 installation progress.

When complete, you will have a fully installed SQL Server 2008 instance,
complete with tools. There is a good chance that you will not encounter any
errors. However, if you do, especially if you chose the silent mode installation,
then you can review the Summary.txt file, which captures any errors during
installation. You'll typically find the file in the <Install Drive>:\Program
Files\Microsoft SQL Server\100\Setup Bootstrap\Log folder.

As a DBA, you will find that it is par for the course that people bring their
troubleshooting installation problems to your door, and you will be looked upon
as an expert even though you may not have seen the specific error before.
Knowing where to look will at least buy you time to formulate a rational answer.
Of course, as DBA, you or your team should be performing all SQL installations
anyway, so you can always question why whoever got the error was brazen enough
to attempt the install in the first place.

If you have a service pack or hotfix to apply to your SQL Server installation, an
obvious next step, then you can automate the service pack installation in the same
way, by executing the setup.exe of the service pack with command line options.

NOTE
Starting with service pack 1 for SQL Server 2008, you can now "slipstream"
service packs for SQL Server, much like you can do for Windows service packs.
See http://msdn.microsoft.com/en-us/library/dd638062.aspx#Slipstream for
further details.

http://msdn.microsoft.com/en-us/library/dd638062.aspx#Slipstream�

1 – Eating SQL Server installations for breakfast

19

Installation done, now to configure

As I said earlier, installing SQL Server is the easy part. Once that portion of your
pre-production process is done, you still have many more options to configure.
Making the right choices will ensure that your SQL Server performs as you want it
to, and play amicably with whatever application will be beating it up every day.
Truly, that is what is going to happen. I have heard it said, only half-jokingly, that
the one thing you know will hinder the performance of SQL Server is to release it
to a production application.

In many organizations there exists a special area, call it staging, QA (Quality
Assurance) or Pre Production Modeling, where the entire system is deployed and
tested prior to a move to production. If you, as DBA, have the luxury of a QA
environment, you will at least know that, functionally, your server configuration is
performing as it should. However, often the QA environment is not an exact
physical copy of Production. For example, your SQL Server in QA may have only
4 Gigabytes of RAM and not 8. It is important to account for these performance
differences.

Standard configuration options

Throughout the version history of SQL Server, several configuration options,
though similar in name, functioned differently depending on a number of factors.
For example, "AWE enabled", "min server memory" and "max server memory"
are all configurable options in SQL Server 2000, 2005 and 2008. However, they
behave differently depending on the edition of SQL Server (standard, enterprise
or data center), as well as on the operating system on which SQL Server is
running. For example, SQL Server 2005 and 2008 Standard Editions allow you to
take advantage of all of the memory that the base OS can utilize; for Windows
2003 Server the amount of usable memory is variable depending on whether you
have Standard or Enterprise edition, and on whether you have a 32- or 64-bit
installation. However, for SQL Server 2000, to take advantage of memory beyond
the 4G range, you were required to purchase the Enterprise edition of SQL
Server, regardless of the OS version or edition.

With the proliferation of Windows Server 2003, many of these discrepancies have
been removed, but they are still very important when setting configuration
options. The sample installation being performed here is for SQL Server 2008 but
bear in mind that, for each option, there may be a caveat for prior versions.

There are some configuration settings that you will want to change, post-
installation, depending on whether you are running a 32- or 64-bit architecture.
For example, you will not need to enable AWE for 64-bit architecture, whereas if

1 – Eating SQL Server installations for breakfast

20

you do not enable it for 32-bit installations of SQL Server, on Windows 2003
Enterprise, you will not use the memory that you may think you should be using;
SQL Server will live within the 2G memory range to which 32-bit applications are
generally relegated.

However, there are also options that you will not want to change. Two of these
options are "priority boost" and "lightweight pooling". Changes to these options
are typically done only with affirmation from Microsoft Support that it will help
and not hinder your environment. In general, please do not change a configuration
unless you have thoroughly tested it.

The automated SQL Server configuration script

So, what configuration changes can we automate? There are many, and the base
script provided in the next section can be extended to support your particular
environment. The options fall into three categories:

• Server-level changes you can make with sp_configure

• Database-level changes you can make with sp_dboption

• Custom configurations that you will apply, specifically custom
administrative code, job schedules and DDL triggers.

What follows is the pseudo code for what the configuration script will automate
for you. All told, I would estimate that the configuration script will save about 30
minutes of manual configuration effort. More important than the time saving,
however, is the fact that this script offers a repeatable and accurate configuration
for each server.

• SQL Server Memory

• If 64-bit, do not enable AWE

• If 32-bit SQL 2008 Standard on Windows 2003 Enterprise and
RAM is more than 4G

• Set max server memory = 2G less than Total Server Memory

• If 32-bit SQL 2008 Standard on Windows 2003 Standard and
RAM is less than 4G

• Set max server memory = 2G

• E-Mail

• If > 2005 automate setup with DBMail SPs

• Send Test Mail

• If < 2005 Document necessity to create MAPI profile

• Print steps to configure e-mail

1 – Eating SQL Server installations for breakfast

21

• DDL Triggers

• Add Server Trigger to notify upon database create or drop

• Security

• Set to Log Successful and Failed logins

• DB Maintenance Database

• Create the _DBAMain database

• Create the stored procedures in the _DBAMain database

• Create and Schedule Maintenance Jobs via stored procedures

• Other Modifications

• Change Model Database Options.

Listing 1.2 displays the actual T-SQL automation script to implement the above
steps, which you can execute against your newly installed SQL Server instance. It
is documented at stages to distinguish between server, database and custom
additions.

/* SQL Server Automated Configuration Script
 2009 - Rodney Landrum
*/

--Create Temp table #SerProp. This table will be used
--to hold the output of xp_msver to control server property
configurations

SET NOCOUNT ON
GO

IF EXISTS (SELECT name
 FROM tempdb..sysobjects
 Where name like '#SerProp%')
--If So Drop it
 DROP TABLE #SerProp
create table #SerProp
 (
 ID int,
 Name sysname,
 Internal_Value int,
 Value nvarchar(512)
)

 GO

--Set Show Advanced Option
sp_configure 'Show Advanced Options', 1
Reconfigure
GO

1 – Eating SQL Server installations for breakfast

22

DECLARE @PhysMem int
DECLARE @ProcType int
DECLARE @MaxMem int

INSERT INTO #SerProp
 Exec xp_msver

Select @PhysMem = Internal_Value
from #SerProp
where Name = 'PhysicalMemory'

Select @ProcType = Internal_Value
from #SerProp
where Name = 'ProcessorType'

--Set Memory Configuration from server properties
--(memory level and processortype)

If @PhysMem > 4096 AND @ProcType = 8664
BEGIN
 SET @MaxMem = @PhysMem - 3072
 EXEC sp_configure 'max server memory', @MaxMem
 Reconfigure
END

ELSE
IF @PhysMem > 4096 AND @ProcType <> 8664
BEGIN
 SET @MaxMem = @PhysMem - 3072
 EXEC sp_configure 'awe enabled', 1
 Reconfigure
 EXEC sp_configure 'max server memory', @MaxMem
 Reconfigure
END

--Setup Database Mail (SQL Server > 2005)
--Turn on Mail XPs via sp_configure
--sp_configure (To turn on Mail XPs)

-- Add Profile

If @@microsoftversion / power(2, 24) > 8
BEGIN

EXECUTE msdb.dbo.sysmail_add_profile_sp
 @profile_name = 'Admin Profile',
 @description = 'Mail Profile For Alerts' ;

--Add Mail Account

 EXECUTE msdb.dbo.sysmail_add_account_sp

1 – Eating SQL Server installations for breakfast

23

 @account_name = 'Admin Account',
 @description = 'General SQL Admin Account for DBA
Notification',
 @email_address = '<Your DBA e-mail account>,
 @display_name = 'SQL Admin Account',
 @mailserver_name = '<Yourmailservername>;

--Add Mail Account to Profile

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
 @profile_name = 'Admin Profile',
 @account_name = 'Admin Account',
 @sequence_number = 1 ;

--Send Test Mail

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'Admin Profile',
 @recipients = '<Your DBA e-mail Account>,
 @body = 'Sever Mail Configuration Completed,
 @subject = 'Successful Mail Test;

 END
 ELSE

--Print Instructions for SQl Server 2000

 BEGIN
 PRINT 'For SQL Server 2000, you will need to
 configure a MAPI client'
 PRINT 'such as Outlook and create a profile to use
 for SQL Mail and SQL Agent'
 PRINT 'mail. Instructions can be found
 at:______________________________'
 END

--Setup Security Logging
--Enable Successful and Unsuccessful Login Attempts
--SQL Server Services must be restarted to take affect

exec master.dbo.xp_instance_regwrite N'HKEY_LOCAL_MACHINE',
N'Software\Microsoft\MSSQLServer\MSSQLServer',
N'AuditLevel', REG_DWORD,3

--Create Maintenance Database "_DBAMain"

USE [master]
GO

/****** Object: Database [_DBAMain]
 Script Date: 02/05/2009 20:41:24 ******/

1 – Eating SQL Server installations for breakfast

24

IF EXISTS (SELECT name FROM sys.databases
 WHERE name = N'_DBAMain')
DROP DATABASE [_DBAMain]
GO

/****** Object: Database [_DBAMain]
 Script Date: 02/05/2009 20:41:24 ******/
CREATE DATABASE [_DBAMain] ON PRIMARY
(NAME = N'_DBAMain_Data',
 FILENAME = N'C:\Data_DBAMain_Data.MDF',
 SIZE = 5120KB,
 MAXSIZE = UNLIMITED,
 FILEGROWTH = 10%)
 LOG ON
(NAME = N'_DBAMain_Log',
 FILENAME = N'C:\Logs_DBAMain_Log.LDF' ,
 SIZE = 3072KB ,
 MAXSIZE = 2048GB ,
 FILEGROWTH = 10%)
GO

/*
 Run Script To Create Stored Procedures
 In _DBAMain
*/

sp_configure 'xp_cmdshell', 1
Reconfigure

exec xp_cmdshell 'sqlcmd -i C:\Writing\Create_DBAMain_2.sql'

-- Schedule Indexing Stored Procedure

/*
Usage:
spxCreateIDXMaintenanceJob
 'Owner Name'
 , 'Operator'
 , 'Sunday'
 , 0
*/
Create Procedure
 [dbo].[spxCreateIDXMaintenanceJob]
 (
 @JobOwner nvarchar(75)
 , @ValidOperator nvarchar(50)
 , @DayToReindex nvarchar(8)
 , @NightlyStartTime int --230000 (11pm), 0 (12am), 120000
(12pm)
)
As
BEGIN TRANSACTION

1 – Eating SQL Server installations for breakfast

25

DECLARE
 @ReturnCode INT
 , @jobId BINARY(16)
 , @MyServer nvarchar(75)
 , @SQL nvarchar(4000)
 , @CR nvarchar(2)

SELECT
 @ReturnCode = 0
 , @CR = char(13) + char(10)

IF NOT EXISTS (
 SELECT
 name
 FROM
 msdb.dbo.syscategories
 WHERE
 name = N'Database Maintenance'
 AND
 category_class = 1
)
BEGIN
 EXEC @ReturnCode = msdb.dbo.sp_add_category
 @class = N'JOB'
 , @type = N'LOCAL'
 , @name = N'Database Maintenance'

 IF
 @@ERROR <> 0
 OR
 @ReturnCode <> 0
 Begin
 GOTO QuitWithRollback
 End
END

IF EXISTS (
 SELECT
 name
 FROM
 msdb.dbo.sysjobs
 WHERE
 name = N'IDX Maintenance'
 AND
 category_id = (
 Select
 category_id
 From
 msdb.dbo.syscategories
 Where
 name = 'Database Maintenance'

1 – Eating SQL Server installations for breakfast

26

)
)
Begin
 Exec msdb.dbo.sp_delete_job
 @job_name = 'IDX Maintenance'
End

EXEC @ReturnCode = msdb.dbo.sp_add_job
 @job_name = N'IDX Maintenance'
 , @enabled = 1
 , @notify_level_eventlog = 0
 , @notify_level_email = 0
 , @notify_level_netsend = 0
 , @notify_level_page = 0
 , @delete_level = 0
 , @description = N'Index Tuning'
 , @category_name = N'Database Maintenance'
 , @owner_login_name = @JobOwner
 , @job_id = @jobId OUTPUT

IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0
Begin
 GOTO QuitWithRollback
End

Select @SQL = 'exec spxIDXMaint '
 + char(39) + @DayToReindex + char(39)

EXEC @ReturnCode = msdb.dbo.sp_add_jobstep
 @job_id = @jobId
 , @step_name = N'Index Maintenance'
 , @step_id = 1
 , @cmdexec_success_code = 0
 , @on_success_action = 1
 , @on_success_step_id = 0
 , @on_fail_action = 2
 , @on_fail_step_id = 0
 , @retry_attempts = 0
 , @retry_interval = 0
 , @os_run_priority = 0
 , @subsystem = N'TSQL'
 , @command = @SQL
 , @database_name = N'_DBAMain'
 , @flags = 0

IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0

1 – Eating SQL Server installations for breakfast

27

Begin
 GOTO QuitWithRollback
End

EXEC @ReturnCode = msdb.dbo.sp_update_job
 @job_id = @jobId
 , @start_step_id = 1

IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0
Begin
 GOTO QuitWithRollback
End

EXEC @ReturnCode = msdb.dbo.sp_update_job
 @job_id = @jobId
 , @notify_level_email = 2
 , @notify_level_netsend = 2
 , @notify_level_page = 2
 , @notify_email_operator_name = @ValidOperator

IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0
Begin
 GOTO QuitWithRollback
End

EXEC @ReturnCode = msdb.dbo.sp_add_jobschedule
 @job_id = @jobId
 , @name = N'Nightly Index Tuning Schedule'
 , @enabled = 1
 , @freq_type = 4
 , @freq_interval = 1
 , @freq_subday_type = 1
 , @freq_subday_interval = 0
 , @freq_relative_interval = 0
 , @freq_recurrence_factor = 0
 , @active_start_date = 20080101
 , @active_end_date = 99991231
 , @active_start_time = @NightlyStartTime
 , @active_end_time = 235959

IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0
Begin
 GOTO QuitWithRollback

1 – Eating SQL Server installations for breakfast

28

End

EXEC @ReturnCode = msdb.dbo.sp_add_jobserver
 @job_id = @jobId
 , @server_name = N'(local)'
IF
 @@ERROR <> 0
OR
 @ReturnCode <> 0
Begin
 GOTO QuitWithRollback
End

COMMIT TRANSACTION

GOTO EndSave

QuitWithRollback:
 IF @@TRANCOUNT > 0
 Begin
 ROLLBACK TRANSACTION
 End

EndSave:

GO

--Create Index Maintenance Job

EXEC _dbaMain..spxCreateIDXMaintenanceJob
 'sa'
 , 'sqlsupport'
 , 'Sunday'
 , 0

--Setup DDL Triggers
--Setup Create Database or Drop Database DDL Trigger

/****** Object: DdlTrigger [AuditDatabaseDDL]
 Script Date: 02/05/2009 19:56:33 ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TRIGGER [AuditDatabaseDDL]
ON ALL SERVER
FOR CREATE_DATABASE, DROP_DATABASE
AS

1 – Eating SQL Server installations for breakfast

29

DECLARE @data XML,
 @tsqlCommand NVARCHAR(MAX),
 @eventType NVARCHAR(100),
 @serverName NVARCHAR(100),
 @loginName NVARCHAR(100),
 @username NVARCHAR(100),
 @databaseName NVARCHAR(100),
 @objectName NVARCHAR(100),
 @objectType NVARCHAR(100),
 @emailBody NVARCHAR(MAX)

SET @data = EVENTDATA()
SET @tsqlCommand =
EVENTDATA().value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]
','nvarchar(max)')
SET @eventType =
EVENTDATA().value('(/EVENT_INSTANCE/EventType)[1]','nvarchar(ma
x)')
SET @serverName =
EVENTDATA().value('(/EVENT_INSTANCE/ServerName)[1]','nvarchar(m
ax)')
SET @loginName =
EVENTDATA().value('(/EVENT_INSTANCE/LoginName)[1]','nvarchar(ma
x)')
SET @userName =
EVENTDATA().value('(/EVENT_INSTANCE/UserName)[1]','nvarchar(max
)')
SET @databaseName =
EVENTDATA().value('(/EVENT_INSTANCE/DatabaseName)[1]','nvarchar
(max)')
SET @objectName =
EVENTDATA().value('(/EVENT_INSTANCE/ObjectName)[1]','nvarchar(m
ax)')
SET @objectType =
EVENTDATA().value('(/EVENT_INSTANCE/ObjectType)[1]','nvarchar(m
ax)')

SET @emailBody = + '--------------------------------' +
CHAR(13)
 + '- DDL Trigger Activation Report -' +
CHAR(13)
 + '--------------------------------------' +
CHAR(13)
 + 'Sql Command: '
 + ISNULL(@tsqlCommand, 'No Command Given') +
CHAR(13)
 + 'Event Type: '
 + ISNULL(@eventType, 'No Event Type Given') +
CHAR(13)

1 – Eating SQL Server installations for breakfast

30

 + 'Server Name:
 ' + ISNULL(@serverName, 'No Server Given') +
CHAR(13)
 + 'Login Name: '
 + ISNULL(@loginName, 'No LOGIN Given') +
CHAR(13)
 + 'User Name: '
 + ISNULL(@username, 'No User Name Given') +
CHAR(13)
 + 'DB Name: '
 + ISNULL(@databaseName, 'No Database Given') +
CHAR(13)
 + 'Object Name: '
 + ISNULL(@objectName, 'No Object Given') +
CHAR(13)
 + 'Object Type: '
 + ISNULL(@objectType, 'No Type Given') +
CHAR(13)
 + '---';

EXEC msdb..sp_send_dbmail @profile_name='Admin Profile',
@recipients='<yourmail@yourmail.com>, @subject='DDL Alteration
Trigger', @body=@emailBody

GO

SET ANSI_NULLS OFF
GO

SET QUOTED_IDENTIFIER OFF
GO

ENABLE TRIGGER [AuditDatabaseDDL] ON ALL SERVER
GO

-- Change Model Database Recovery Option from Full to Simple
-- This will prevent unmitigated log file growth.

ALTER Database Model
SET RECOVERY SIMPLE

-- Turn configurations back off

sp_configure 'xp_cmdshell', 0
reconfigure

sp_configure 'Show Advanced Options', 0
Reconfigure

1 – Eating SQL Server installations for breakfast

31

-- End Script
PRINT 'All Done...Add Server to DBA Repository for further
documentation'

Listing 1.2: The SQL Server automated configuration script.

Using the above script you will, in about 3 seconds, have configured many options
that might have taken 30 minutes to do manually. Without such a script it is very
easy to miss an important configuration such as setting the model database to
"simple" recovery mode.

This script is a mere sampling of what you can control and automate, prior to
releasing the server into the wild. As we proceed through the rest of the book, I
will demonstrate many more scripts that can be used to make your life easier,
freeing up more of your time to write or extend your own scripts and then give
them back to me so I can use them. Ha!

Bon Appétit

Just because your server installation is now complete, and is stepping out into the
real world to be eaten alive by various applications, it is by no means out of your
hands. No, now you have the task of protecting it. Every day. The first step
toward that goal is to make sure you monitor, maintain and document the server
during the course of its life.

Documenting will be the focus of Chapter 2, where I will introduce you to the
DBA Repository, a tool that incorporates the combined reporting and data
migration strengths of SQL Server Reporting Services and SQL Server Integration
Services. It is within the DBA Repository that you will truly come to know your
servers.

32

CHAPTER 2: THE SQL SERVER

LANDSCAPE

I started my DBA career working for a small software development company,
where I had a handful of SQL Servers to administer. As in many small companies,
the term "DBA" was interpreted rather loosely. I was also, as required, a Windows
server administrator, network engineer, developer, and technical support
representative. I divided my day equally between these tasks and only actually
spent a fifth of my professional time managing the SQL infrastructure.

When I moved on to a much larger organization, I found that my first days, as a
DBA managing nearly 100 SQL Servers, were daunting, to the say the least. I was
astounded by the lack of documentation! Some fragmented efforts had been made
to pull together information about the SQL infrastructure, but it was sparse. As a
result, my first week found me manually and hastily clicking through server
property windows, perusing SQL Server error logs, pouring over reams of stored
procedure code, sifting through SQL Agent job failures on each server, and
generally just floundering about picking up whatever tidbits of information I
could.

I recall feeling very tired that first weekend and, to add insult to injury, also as
though I had accomplished very little. With the wonderful benefit of hindsight
that I have while writing this book, I can say that what I really needed in those
early weeks was a "documentation tool" that would have allowed me to automate
the collection of all of the essential information about every server under my
control, and have it stored in a single, central location, for reporting.

Over the course of this chapter, I'll describe how I built just such a documentation
tool. First, I'll describe the information that I felt I needed to have about each of
the servers under my control and the scripts to retrieve this information for each
server. I'll then move on to discuss the various ways of automating this data
collection process over all of your servers. Finally, I'll demonstrate how I actually
achieved it, using SSIS and a central DBA Repository database.

NOTE
The material in this chapter describing how to build a DBA Repository using
SSIS and SSRS is adapted with permission from my article "Use SSRS and
SSIS to Create a DBA Repository," which originally appeared in SQL Server
Magazine, February 2008, copyright Penton Media, Inc.

2 – The SQL Server landscape

33

What information is required?

Before I could even begin to build a documentation tool for my SQL Servers, I
had to answer one very important question: what information did I need to gather
in order to help me do my job better as a DBA? I am sure that many such lists
have been compiled, by numerous DBAs. My list encompasses the categories of
information that I saw as pertinent, and was as follows:

• Server Information (Server name, SQL Server version, collation
information, and so on)

• Database Management (Primarily to monitor data and log file growth)

• Database Backups (Have backups run successfully? Which databases
are in Full recovery mode versus Simple or Bulk-Logged? Are we doing
regular log backups of Full recovery databases?)

• Security (Who has access to do what?)

• SQL Agent Jobs (Which could include those that run your database
backups).

Over the following sections, I'll present a series of queries (I like that expression –
a series of queries) that I used to collect the required information in each category.

Server information

I needed to retrieve a number of useful pieces of server information for each of
my servers, such as:

• The server name

• The physical location of the server

• The SQL Server version, level and edition

• Security mode – Either Windows (Integrated) or Mixed mode

• SQL Server collation.

Listing 2.1 shows the script I developed to return this information (at least most
of it) for a given server.

SELECT CONVERT(CHAR(100), SERVERPROPERTY('Servername'))
 AS Server,
 CONVERT(CHAR(100), SERVERPROPERTY('ProductVersion'))
 AS ProductVersion,
 CONVERT(CHAR(100), SERVERPROPERTY('ProductLevel'))
 AS ProductLevel,
 CONVERT(CHAR(100),
 SERVERPROPERTY('ResourceLastUpdateDateTime'))
 AS ResourceLastUpdateDateTime,

2 – The SQL Server landscape

34

 CONVERT(CHAR(100), SERVERPROPERTY('ResourceVersion'))
 AS ResourceVersion,
 CASE WHEN SERVERPROPERTY('IsIntegratedSecurityOnly') = 1
 THEN 'Integrated security'
 WHEN SERVERPROPERTY('IsIntegratedSecurityOnly') = 0
 THEN 'Not Integrated security'
 END AS IsIntegratedSecurityOnly,
 CASE WHEN SERVERPROPERTY('EngineEdition') = 1
 THEN 'Personal Edition'
 WHEN SERVERPROPERTY('EngineEdition') = 2
 THEN 'Standard Edition'
 WHEN SERVERPROPERTY('EngineEdition') = 3
 THEN 'Enterprise Edition'
 WHEN SERVERPROPERTY('EngineEdition') = 4
 THEN 'Express Edition'
 END AS EngineEdition,
 CONVERT(CHAR(100), SERVERPROPERTY('InstanceName'))
 AS InstanceName,
 CONVERT(CHAR(100),
SERVERPROPERTY('ComputerNamePhysicalNetBIOS'))
 AS ComputerNamePhysicalNetBIOS,
 CONVERT(CHAR(100), SERVERPROPERTY('LicenseType'))
 AS LicenseType,
 CONVERT(CHAR(100), SERVERPROPERTY('NumLicenses'))
 AS NumLicenses,
 CONVERT(CHAR(100), SERVERPROPERTY('BuildClrVersion'))
 AS BuildClrVersion,
 CONVERT(CHAR(100), SERVERPROPERTY('Collation'))
 AS Collation,
 CONVERT(CHAR(100), SERVERPROPERTY('CollationID'))
 AS CollationID,
 CONVERT(CHAR(100), SERVERPROPERTY('ComparisonStyle'))
 AS ComparisonStyle,
 CASE WHEN CONVERT(CHAR(100),
SERVERPROPERTY('EditionID')) = -1253826760
 THEN 'Desktop Edition'
 WHEN SERVERPROPERTY('EditionID') = -1592396055
 THEN 'Express Edition'
 WHEN SERVERPROPERTY('EditionID') = -1534726760
 THEN 'Standard Edition'
 WHEN SERVERPROPERTY('EditionID') = 1333529388
 THEN 'Workgroup Edition'
 WHEN SERVERPROPERTY('EditionID') = 1804890536
 THEN 'Enterprise Edition'
 WHEN SERVERPROPERTY('EditionID') = -323382091
 THEN 'Personal Edition'
 WHEN SERVERPROPERTY('EditionID') = -2117995310
 THEN 'Developer Edition'
 WHEN SERVERPROPERTY('EditionID') = 610778273
 THEN 'Enterprise Evaluation Edition'
 WHEN SERVERPROPERTY('EditionID') = 1044790755
 THEN 'Windows Embedded SQL'

2 – The SQL Server landscape

35

 WHEN SERVERPROPERTY('EditionID') = 4161255391
 THEN 'Express Edition with Advanced Services'
 END AS ProductEdition,
 CASE WHEN CONVERT(CHAR(100),
SERVERPROPERTY('IsClustered')) = 1
 THEN 'Clustered'
 WHEN SERVERPROPERTY('IsClustered') = 0
 THEN 'Not Clustered'
 WHEN SERVERPROPERTY('IsClustered') = NULL
 THEN 'Error'
 END AS IsClustered,
 CASE WHEN CONVERT(CHAR(100),
SERVERPROPERTY('IsFullTextInstalled')) = 1
 THEN 'Full-text is installed'
 WHEN SERVERPROPERTY('IsFullTextInstalled') = 0
 THEN 'Full-text is not installed'
 WHEN SERVERPROPERTY('IsFullTextInstalled') = NULL
THEN 'Error'
 END AS IsFullTextInstalled,
 CONVERT(CHAR(100), SERVERPROPERTY('SqlCharSet'))
 AS SqlCharSet,
 CONVERT(CHAR(100), SERVERPROPERTY('SqlCharSetName'))
 AS SqlCharSetName,
 CONVERT(CHAR(100), SERVERPROPERTY('SqlSortOrder'))
 AS SqlSortOrderID,
 CONVERT(CHAR(100), SERVERPROPERTY('SqlSortOrderName'))
 AS SqlSortOrderName
ORDER BY CONVERT(CHAR(100), SERVERPROPERTY('Servername'))

Listing 2.1: Server information.

As you can see, it's a pretty simple script that makes liberal use of the
SERVERPROPERTY function to return the required data.

Figure 2.1: Collecting server information.

2 – The SQL Server landscape

36

NOTE
All of the various properties of the SERVERPROPERTY function can be
found in Books Online or MSDN, see http://msdn.microsoft.com/en-
us/library/ms174396.aspx.

If you were to run this query against one of your SQL Servers, you'd see results
similar to those shown in Figure 2.1, all of which will be useful in your daily
reporting of your infrastructure.

One piece of information that this script does not return is the location of the
server. There is no way to glean the location information from a query. Some
things, at present, still have to be manually gathered.

Database management

It is obviously important that DBAs know what databases are on each of their
servers. While DBAs may not be intimately familiar with every database schema
on every SQL Server, it is essential that they are aware of the existence of every
database, and at least understand the basic characteristics of each, such as what
server they are on, what size they are and where on disk they are located.

You can also gather the information you need to monitor the growth of the data
and log files for each database, or answer questions such as "where are the system
database files located?" This question brings up the interesting topic of
implementing standards across all of your servers. Are the data files for each
server stored on the correct, predetermined data drive? The log files on the correct
log drive? Are naming conventions consistently enforced? Is each database using
the correct default recovery model (e.g. SIMPLE) unless specified otherwise?

You may find that the answer is, generally, "no". It is an unfortunate reality that,
often, a DBA will inherit an infrastructure whereby a hodge-podge of different
standards have been set and only erratically imposed by a variety of former DBAs.
However, once you've got all of this data stored in a central repository, for every
server, you can quickly report on how well your current standards have been
enforced, and can start the job of pulling the "non-standard" ones into shape. And
then, who knows, if you can stay in the position long enough, say ten years, you
may actually get to see an infrastructure that properly adheres to all the standards
you set forth.

To gather this database management information, you will need to run the same
two queries on each SQL 2000, 2005 and 2008 instance. The first of these queries
is shown in Listing 2.2. It makes use of the sp_msforeachdb system stored
procedure, which issues the same query for each database on a server, and saves

http://msdn.microsoft.com/en-us/library/ms174396.aspx�
http://msdn.microsoft.com/en-us/library/ms174396.aspx�

2 – The SQL Server landscape

37

you the time of writing your own cursor or set-based query to iterate through each
database. I create a temp table, HoldforEachDB and then populate that table with
the results from each database. In this way, I have one result set for all databases
on the server, instead of individual result sets for each database, which would have
otherwise been the case. Also, since I know that I will ultimately want to get this
information from SSIS, and into a central DBA repository, having the temp table
pre-defined is ideal.

IF EXISTS (SELECT *
 FROM tempdb.dbo.sysobjects
 WHERE id =
OBJECT_ID(N'[tempdb].[dbo].[HoldforEachDB]'))
 DROP TABLE [tempdb].[dbo].[HoldforEachDB] ;
CREATE TABLE [tempdb].[dbo].[HoldforEachDB]
 (
 [Server] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NULL,
 [DatabaseName] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Size] [int] NOT NULL,
 [File_Status] [int] NULL,
 [Name] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Filename] [nvarchar](260) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Status] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NULL,
 [Updateability] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NULL,
 [User_Access] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NULL,
 [Recovery] [nvarchar](128) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NULL
)
ON [PRIMARY]
INSERT INTO [tempdb].[dbo].[HoldforEachDB]
 EXEC sp_MSforeachdb 'SELECT CONVERT(char(100),
SERVERPROPERTY(''Servername'')) AS Server,
 ''?'' as DatabaseName,[?]..sysfiles.size,
[?]..sysfiles.status, [?]..sysfiles.name,
[?]..sysfiles.filename,convert(sysname,DatabasePropertyEx(''?''
,''Status'')) as Status,

2 – The SQL Server landscape

38

convert(sysname,DatabasePropertyEx(''?'',''Updateability'')) as
Updateability,
 convert(sysname,DatabasePropertyEx(''?'',''UserAccess'')) as
User_Access,
convert(sysname,DatabasePropertyEx(''?'',''Recovery'')) as
Recovery From [?]..sysfiles '

Listing 2.2: Placing database information into a temporary table.

The second query, shown in Listing 2.3, simply selects from the HoldforEachDB
temporary table.

SELECT [Server]
 ,[DatabaseName]
 ,[Size]
 ,[File_Status]
 ,[Name]
 ,[Filename]
 ,[Status]
 ,[Updateability]
 ,[User_Access]
 ,[Recovery]
 FROM [tempdb].[dbo].[HoldforEachDB]

Listing 2.3: Selecting data from the temporary table, HoldForEachDB.

The output of this query can be seen in Figure 2.2, which displays the server
name, as well as the database name, size, filename and recovery model.

Figure 2.2: Output of database info query.

2 – The SQL Server landscape

39

Database backups

Having backup information is critical for the DBA, especially when working with
a large infrastructure. Knowing where the full, differential or log backups are
located is more than helpful; it is essential. This type of information can easily be
gathered directly from the MSDB database, which has not changed substantially
from SQL Server 2000 to 2008. Listing 2.4 shows the driving query for gathering
from MSDB the vital database backup information that you need for each server,
including information such as backup start date, end data and size. Notice, in the
WHERE clause, that this query actually retrieves 30 days worth of history.

SELECT CONVERT(char(100), SERVERPROPERTY('Servername'))
 AS Server,
 msdb.dbo.backupmediafamily.logical_device_name,
 msdb.dbo.backupmediafamily.physical_device_name,
 msdb.dbo.backupset.expiration_date,
 msdb.dbo.backupset.name,
 msdb.dbo.backupset.description,
 msdb.dbo.backupset.user_name,
 msdb.dbo.backupset.backup_start_date,
 msdb.dbo.backupset.backup_finish_date,
 CASE msdb..backupset.type
 WHEN 'D' THEN 'Database'
 WHEN 'L' THEN 'Log'
 END AS backup_type,
 msdb.dbo.backupset.backup_size,
 msdb.dbo.backupset.database_name,
 msdb.dbo.backupset.server_name AS Source_Server
FROM msdb.dbo.backupmediafamily
 INNER JOIN msdb.dbo.backupset ON
msdb.dbo.backupmediafamily.media_set_id =
msdb.dbo.backupset.media_set_id
WHERE (CONVERT(datetime,
msdb.dbo.backupset.backup_start_date, 102) >= GETDATE()
 - 30)

Listing 2.4: Query to gather database backup information.

Figure 2.3 shows the output of this backup history query.

Figure 2.3: Gathering database backup information.

2 – The SQL Server landscape

40

Security

For security reporting, we essentially want to know who has access to which
databases, and with which permissions. A sample query of the kind of information
that can be gathered is in shown in Listing 2.5.

IF EXISTS (SELECT *
 FROM tempdb.dbo.sysobjects
 WHERE id =
OBJECT_ID(N'[tempdb].[dbo].[SQL_DB_REP]'))
 DROP TABLE [tempdb].[dbo].[SQL_DB_REP] ;
GO

CREATE TABLE [tempdb].[dbo].[SQL_DB_REP]
 (
 [Server] [varchar](100) NOT NULL,
 [DB_Name] [varchar](70) NOT NULL,
 [User_Name] [nvarchar](90) NULL,
 [Group_Name] [varchar](100) NULL,
 [Account_Type] [varchar](22) NULL,
 [Login_Name] [varchar](80) NULL,
 [Def_DB] [varchar](100) NULL
)
ON [PRIMARY]

INSERT INTO [tempdb].[dbo].[SQL_DB_REP]
 Exec sp_MSForEachDB 'SELECT
 CONVERT(varchar(100), SERVERPROPERTY(''Servername''))
AS Server,
 ''?'' AS DB_Name,usu.name u_name,
 CASE WHEN (usg.uid is null) THEN ''public''
 ELSE usg.name
 END as Group_Name,
 CASE WHEN usu.isntuser=1 THEN ''Windows Domain
Account''
 WHEN usu.isntgroup = 1 THEN ''Windows Group''
 WHEN usu.issqluser = 1 THEN''SQL Account''
 WHEN usu.issqlrole = 1 THEN ''SQL Role''
 END as Account_Type,
 lo.loginname,
 lo.dbname AS Def_DB
FROM
 [?]..sysusers usu LEFT OUTER JOIN
 ([?]..sysmembers mem INNER JOIN
 [?]..sysusers usg ON mem.groupuid = usg.uid)
 ON usu.uid = mem.memberuid LEFT OUTER JOIN
 master.dbo.syslogins lo ON usu.sid = lo.sid

WHERE

2 – The SQL Server landscape

41

 (usu.islogin = 1 AND
 usu.isaliased = 0 AND
 usu.hasdbaccess = 1) AND
 (usg.issqlrole = 1 OR
 usg.uid is null)'

Listing 2.5: Query to return security information about database access.

As for the database management query, a temp table is populated again using
sp_msforeachdb. Ultimately, our SSIS package (Populate_DBA_Repository)
will read the data from this temp table and then store it in our central repository
(DBA_Rep).

A simple Select * from [tempdb].[dbo].[SQL_DB_REP], the output of
which is shown in Figure 2.4, delivers a lot of information about security, some of
which may be surprising. You might be interested to know, for example, that
"MyDomain\BadUser" has DBO access to several user databases.

Figure 2.4: Database user access levels.

Over time, policies about who can access production SQL instances inevitably
change. You can use this data to formulate a new policy, or bolster your existing
policy, to guarantee that only users that you are aware of have access to your
database.

2 – The SQL Server landscape

42

SQL Agent jobs

Finally, it is critical that a DBA monitors closely the status of any SQL Agent jobs
running on their servers so that they are aware of any failed jobs, unscheduled
jobs, disabled jobs, notifications and so on. In most large shops, failed jobs will
notify the on-call DBA and they will be expected to respond immediately,
especially in the case of failed backup jobs.

When using SQL Agent to schedule your jobs, it is very important that you know
how the jobs are performing. Over time, jobs are added and modified and these
changes need to be known to the DBA team in case any issues arise. Also, some
jobs, such as business processes scheduled to move data, will not be owned by the
DBA. Any delay or failure of these jobs would be unsettling for business users
waiting to make decisions on the loaded data.

For these reasons, I make sure to collect almost every piece of information about
SQL Agent jobs, for storage in the repository. Listing 2.6 shows the query I
use. As you can see, it returns many fields from the system database,
MSDB. Unfortunately, the MSDB schema changed from version 2000 to 2005,
primarily for the job schedule information, so you'll need two different versions of
the query depending on whether you're using SQL 2000 or 2005/2008. Listing 2.6
shows the SQL Server 2005/2008 version. The SQL 2000 version will be

available in the script download file for the book (see http://www.simple‐
talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip).

SELECT CONVERT(nvarchar(128), SERVERPROPERTY('Servername')) AS
Server,
 msdb.dbo.sysjobs.job_id,
 msdb.dbo.sysjobs.name,
 msdb.dbo.sysjobs.enabled AS Job_Enabled,
 msdb.dbo.sysjobs.description,
 msdb.dbo.sysjobs.notify_level_eventlog,
 msdb.dbo.sysjobs.notify_level_email,
 msdb.dbo.sysjobs.notify_level_netsend,
 msdb.dbo.sysjobs.notify_level_page,
 msdb.dbo.sysjobs.notify_email_operator_id,
 msdb.dbo.sysjobs.date_created,
 msdb.dbo.syscategories.name AS Category_Name,
 msdb.dbo.sysjobschedules.next_run_date,
 msdb.dbo.sysjobschedules.next_run_time,
 msdb.dbo.sysjobservers.last_run_outcome,
 msdb.dbo.sysjobservers.last_outcome_message,
 msdb.dbo.sysjobservers.last_run_date,
 msdb.dbo.sysjobservers.last_run_time,
 msdb.dbo.sysjobservers.last_run_duration,
 msdb.dbo.sysoperators.name AS Notify_Operator,
 msdb.dbo.sysoperators.email_address,

http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�
http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�

2 – The SQL Server landscape

43

 msdb.dbo.sysjobs.date_modified,
 GETDATE() AS Package_run_date,
 msdb.dbo.sysschedules.name AS Schedule_Name,
 msdb.dbo.sysschedules.enabled,
 msdb.dbo.sysschedules.freq_type,
 msdb.dbo.sysschedules.freq_interval,
 msdb.dbo.sysschedules.freq_subday_interval,
 msdb.dbo.sysschedules.freq_subday_type,
 msdb.dbo.sysschedules.freq_relative_interval,
 msdb.dbo.sysschedules.freq_recurrence_factor,
 msdb.dbo.sysschedules.active_start_date,
 msdb.dbo.sysschedules.active_end_date,
 msdb.dbo.sysschedules.active_start_time,
 msdb.dbo.sysschedules.active_end_time,
 msdb.dbo.sysschedules.date_created AS
Date_Sched_Created,
 msdb.dbo.sysschedules.date_modified AS
Date_Sched_Modified,
 msdb.dbo.sysschedules.version_number,
 msdb.dbo.sysjobs.version_number AS Job_Version
FROM msdb.dbo.sysjobs
 INNER JOIN msdb.dbo.syscategories ON
msdb.dbo.sysjobs.category_id =
msdb.dbo.syscategories.category_id
 LEFT OUTER JOIN msdb.dbo.sysoperators ON
msdb.dbo.sysjobs.notify_page_operator_id =
msdb.dbo.sysoperators.id
 LEFT OUTER JOIN msdb.dbo.sysjobservers ON
msdb.dbo.sysjobs.job_id = msdb.dbo.sysjobservers.job_id
 LEFT OUTER JOIN msdb.dbo.sysjobschedules ON
msdb.dbo.sysjobschedules.job_id = msdb.dbo.sysjobs.job_id
 LEFT OUTER JOIN msdb.dbo.sysschedules ON
msdb.dbo.sysjobschedules.schedule_id =
msdb.dbo.sysschedules.schedule_id

Listing 2.6: SQL Agent Job Information query.

Figure 2.5 shows the output of the SQL Agent Job Information query.

2 – The SQL Server landscape

44

Figure 2.5: SQL Agent Job Information query output.

Automating information retrieval

The information provided by these scripts, regarding database backups, SQL
Agent jobs, data file management, security and so on, is moderately useful when
examined on a server-by-server basis. However, the real power comes when you
can automate the collection of this data, from multiple servers, and store the
output centrally, for reporting. It really does make finding potential issues orders
of magnitude faster.

There are several options for building a "repository of DBA information". All of
them would require you to create a central database to store all the data, but there
any several different ways in which you can automate the collection of this data
across all your servers. The following list shows some of the tools or techniques I
have reviewed that provide solutions to the problem of gathering and centrally
storing SQL Server administrative data.

• SQL Server Health and History Tool – though quite dated now, this is
one of the first free tools I found that would collect information from
numerous databases and store it in a central database for reporting. It also
includes a separate report download. The tool can still be downloaded
from:

2 – The SQL Server landscape

45

http://www.microsoft.com/downloads/details.aspx?FamilyID=eedd10d
6-75f7-4763-86de-d2347b8b5f89&displaylang=en

• PowerShell – while I am not necessarily a developer, I do aspire,
occasionally, to expand my knowledge base and find tools that will make
my life easier. One of these tools is PowerShell, which has been
incorporated into SQL Server 2008 and promoted extensively
by Microsoft. While I have not used this tool to build DBA solutions,
others have and it is worth reviewing some of their solutions.
One such solution, by Allen White, can be found at:
http://www.simple-talk.com/sql/database-administration/let-powershell-
do-an-inventory-of-your-servers/

• SQL Server 2008 Data Collector – this is a new feature in
SQL Server 2008 that you may choose to use in your day-to-day
DBA data gathering tasks. Once such technique, performance data
gathering, is described by Brad McGehee at:
http://www.simple-talk.com/sql/learn-sql-server/sql-server-2008-
performance-data-collector/.

In addition to free tools and technologies, you could certainly acquire a vendor
application that will provide some form of out-of-the-box "DBA repository".
There is no shame in that whatsoever. Many DBAs think that the only way they
will get the solution they really want is to build it themselves, often believing that
they will save their company lots of money in the process. While this attitude is
admirable, it is often misguided. For one, it is unlikely that you'll be able to create
a documenting solution that will match the capability of a vendor product, the
most obvious reason being that you are one person and your time will be limited.
If your time can be given full bore to such an endeavor, you will then have to
weigh the man-hours it will take you to build, test, and deploy and maintain the
solution.

Even without huge time constraints, a vendor-supplied solution is likely to have
features that a home-grown one will never have, plus updates are regularly
dispersed and features continually added. In general, my advice to DBAs is that it's
certainly worth researching vendor tools: if you find one that works for you, then
that's probably the best route to go down.

However, despite the apparent advantages of going down the Microsoft or vendor
tool route, that is not the way that I went and here is why: I reasoned that as a
DBA I would need to use SSIS often, either because I would be directly
responsible for data loading/ transfer tasks that needed SISS, or I would have to
work with developers who used SSIS.

In short, a considerable fringe benefit of building my own repository solution
would be that it would require me to expand my knowledge of creating all kinds of

http://www.microsoft.com/downloads/details.aspx?FamilyID=eedd10d6-75f7-4763-86de-d2347b8b5f89&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=eedd10d6-75f7-4763-86de-d2347b8b5f89&displaylang=en�
http://www.simple-talk.com/sql/database-administration/let-powershell-do-an-inventory-of-your-servers/�
http://www.simple-talk.com/sql/database-administration/let-powershell-do-an-inventory-of-your-servers/�
http://www.simple-talk.com/sql/learn-sql-server/sql-server-2008-performance-data-collector/�
http://www.simple-talk.com/sql/learn-sql-server/sql-server-2008-performance-data-collector/�

2 – The SQL Server landscape

46

SSIS packages and use objects I would not normally use. Also, I did not want to
be in a position where I did not know more than the developer. That is just me.

So, in fact, I set out on the project primarily to gain valuable experience in SSIS.
Fortunately for me, and many other DBAs with whom I have shared the solution,
it turned out to be quite useful. For the remainder of this chapter, I will focus on
how to create and use the DBA Repository, how to load it with all of the
previously-described database information, using SSIS, and finally how to generate
reports on the assembled data using SSRS.

The DBA repository solution

The DBA Repository solution consists of three components:

• A SQL Server database call DBA_Rep

• An SSIS package that contains data flow tasks designed to query a list of
SQL Servers and store the results in the DBA_Rep database

• A series of Reporting Services reports and queries that the DBA team
can use to make important decisions about their SQL Server
infrastructure.

I will introduce each piece of the solution individually and then marry them
together to show how a DBA can use this solution every day.

The code download file for the book (http://www.simple‐
talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip)
includes all the components of this solution, so that you can deploy and extend as
you see fit.

The DBA_Rep database

If you are going to store all of this information centrally in SQL Server, you need a
database. When I designed the DBA_Rep database, I decided to link each category
of information, such as Server, Database Management, Security, and job
information, using the SQL Server name as the key field.

With hindsight, the database design could have been a bit more normalized, with
key columns other than the server name, for example, but for the most part it has
worked as I intended and performs well. Many of the joining queries you will see,
when reporting off the DBA_Rep database, use this SQL Server Name key field.
Figure 2.6 shows the tables in the DBA_Rep database, as well as the columns
specific to the SQL_Servers table.

As you can see, the DBA_Rep database is fairly straightforward in terms of the
scope of information it stores. There are tables for logins (SQL_Logins),

http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�
http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�

2 – The SQL Server landscape

47

Databases, (Database_Info and Databases), SQL Agent job information (Jobs),
server-specific data (SQL_Servers) and the server location (Server_Location).
In this case, location refers to the geographical location of the server, like Beijing
or Houston or even Pensacola (shameless hometown plug). This is the one piece
of information that will need to be manually identified for the DBA repository.

Figure 2.6: DBA_Rep sample schema.

2 – The SQL Server landscape

48

On this note, it is a pity that Microsoft, at present, does not offer "Extended
Server Properties", in the same way that they provide Extended Properties for the
internal documentation of database objects. For example, I can create a table in a
database and add an extended property that explains the purpose of the table but I
cannot do the same at the server level. If there was an extended Server property
that held the location of the server, and its primary function, I could automate the
collection of this data and store it in the SQL_Servers table, which is designed to
store the bevy of Server information that we have collected about our SQL
servers, including version, edition, collation and so on.

To demonstrate how the DBA repository works, I will walk through an example
using the SQL_Servers table, and how it is populated using the SSIS package. The
other tables in the database, aside from Server_Location, are populated in the
same way.

The SSIS package to load the DBA_Rep database

When I embarked on this project, the only previous attempt to consolidate and
document server information had taken the form of a fairly primitive DTS
package. The main problems with it were:

• The package had to be updated manually with each new server addition

• It became unwieldy when more than 10 servers existed because every
server connection was manually created and maintained.

With over 100 servers for which to gather information, it was clear that this DTS
package was not up to the job.

SQL Server Integration Services contains three objects that make the process of
gathering information from multiple servers clean and efficient: Variables,
Foreach Loop Containers and Expressions. These three objects provided the
basis for the entire DBA_Rep documentation solution.

When I want to add or remove a server, all I need to do is add this server to,
or update a bit flag on, a driving table, called ServerList_SSIS (more on
this shortly).

The SSIS package that populates the DBA_Rep database is called
Populate_DBA_Rep. Figure 2.7 shows several of the tasks that comprise the
SSIS package.

2 – The SQL Server landscape

49

Figure 2.7: Populate_DBA_Rep SSIS package.

Over the following sections, I'll walk through every step that is required to retrieve
Server information from your SQL Server instances, and store the data in the
SQL_Servers tables of DBA_Rep. Once you've seen how this section of the
package works, you'll understand how the others work too.

The only information the package needs in order to do its work is the names of
the SQL instances that we wish to document. In a way, this is a manual discovery
process. If you were to shell out to a command prompt where you have SQL
Server installed and execute "sqlcmd /Lc", you may see something similar to that
shown in Figure 2.8.

Figure 2.8: List of SQL Servers using SQLCMD.

2 – The SQL Server landscape

50

In this simple example, we have discovered one server, with two instances of SQL
Server, MW4HD1 and MW4HD1\SRVSAT. The former is a version 10, or SQL
Server 2008, instance, and the latter a version 9, or SQL Server 2005, instance.
This is a simple scenario, but the principles would be exactly the same were the
instances installed on two separate servers on the network, or if there were
hundreds of instances distributed across 10, 50 or 200 servers on your network. In
short, this solution will work with any number of servers.

All I need to do is place these server instance details into a table, called
ServerList_SSIS, which can then be used to "seed" the
Populate_DBA_Repository SSIS package. The ServerList_SSIS table is
shown in Figure 2.9.

Figure 2.9: The Serverlist_SSIS table.

As you can see, the Server column stores the instance names. The other columns
in the table are as follows:

• Connect – a smallint data type. If it has a value of "1" for the server, the
SSIS package will attempt to connect otherwise it will skip the server.

• Version – version of the SQL Server instance, 8, 9 or 10 for SQL Server
2000, 2005 and 2008 respectively. This field is used after the package
execution to update the servers that are added to the SQL_Servers table
that contains the information for each SQL Server from Listing 2.1 of
this chapter.

• DMZ – used for specific connection types where SQL Authentication
has to be employed.

• LocationID – denotes the geographic location of the server. A join to
the Server_Location table, on LocationID, will reveal the location
details, such as a city name or region.

We are now ready to walk through the steps that comprise the SSIS package. The
basic objective is to have the package load, and "spin" through, the list of SQL

2 – The SQL Server landscape

51

Server instances in our Serverlist_SSIS table and, one by one, connect to the
appropriate server, execute the queries, and then store the results in the DBA_Rep
database.

Truncate tables in DBA_REP

The top portion of the package, shown in Figure 2.7, simply truncates all of the
tables so that you can subsequently insert fresh, clean data. So, in this case, we will
simply have a "Truncate SQL_Servers" control flow task that truncates the
SQL_Servers table. While there is no archival process for the SQL_Servers table,
there is simple archiving functionality for the Jobs query. If you need to maintain
archival information for your server information all that is required is that you add
another data flow to append data to an archive table, prior to performing the
truncate.

Populate ADO variable with server names from Serverlist_SSIS

This task populates an ADO System Object variable, called SQL_RS, with the
server instances names, which it retrieves from the ServerList_SSIS table. The
query that is used to populate the SQL_RS object variable is shown in Listing 2.7.

SELECT LTRIM(RTRIM(Server)) AS servername
FROM ServerList_SSIS
WHERE (Connect = 1) AND (DMZ = 0)
ORDER BY LTRIM(RTRIM(Server))

Listing 2.7: Populating the SQL_RS variable.

In SSIS you can use many types of variables, such as a String variable and a System
Object variable. In order to iterate through each server in the ServerLIst_SSIS
table, I had to use both. The ForEachLoop container that iterates through the list
of server requires the ADO object source type of variable. However, the
Expressions that dynamically control the actual connection string of the target
servers (explained shortly) require a string variable. Figure 2.10 shows the
"Populate ADO Variable with Server Named from Serverlist_SSIS" task, as
well as the list of variables that I use.

2 – The SQL Server landscape

52

Figure 2.10: Populating the ADO System Object Variable, SQL_RS.

Figure 2.11: Using the SQL_RS ADO variable in the Foreach Loop
container.

2 – The SQL Server landscape

53

Load server info

Once the SQL_RS Object variable is populated with a list of servers from the
ServerList_SSIS table, which in this case will be two instances, this ADO
variable is fed into the next task, "Load Server Info". In this task, a Foreach Loop
Container object enumerates through the list of servers in the SQL_RS variable, as
shown in Figure 2.11.

Notice that the SQL_RS variable is referenced now as User::SQL_RS. If you click
to the "Variable Mappings" tab of the Foreach Loop editor, you will see that this
object variable will be used to populate a string variable called SRV_Conn, as
shown in Figure 2.12.

Figure 2.12: Mapping the ADO Object variable to a string variable,
SRV_Conn.

This mapping of Object-to-String ultimately leads to the final dynamic association,
and that is to the Connection Manager object.

2 – The SQL Server landscape

54

Connection manager

The Connection Manager object, called MultiServer, controls which servers to
connect to in order to execute the underlying SQL code, in this case the script
shown in Listing 2.1. In other words, the Multiserver Connection Manager
object is used to connect to each listed SQL Server instance, for every Foreach
Loop Container in the Populate_DBA_Rep package. You can see other
Connection Manager objects, as well as the MultiServer object, in Figure 2.13.

Figure 2.13: Connection Manager objects in Populate_DBA_Rep SSIS
package.

All of the Multi_Server_XXX objects are used in the same way as Multiserver,
but control connections to various locations and versions; Multi_Server_9, for
example, is for connections to SQL Server 2005 instances, and
Multi_Server9_DMZ connects to SQL Server 2005 instances in the DMZ, and
thus knows to use SQL authentication and not Windows authentication in cases
where cross domain authentication may not exist for the account executing the
package. The Local.DBA_Rep object is the Connection Manager for the DBA_Rep
database, where the gathered server information will be stored.

Figure 2.14 shows the Properties window for the MultiServer Connection
Manager object.

2 – The SQL Server landscape

55

Figure 2.14: Connection Manager property with blank Server name.

Notice that the Server name property value is blank. This is because this value is
populated at runtime from the SRV_Conn string variable, from every Foreach
Loop Container object in the SSIS package.

So how do you populate the server name property with the values stored in the
SRV_Conn string variable? That is easy. SSIS, along with other Microsoft
technologies like Reporting Services, allows you to use Expressions, which are
very useful in controlling object properties including, in this case, the server name.
Figure 2.15 shows the Properties window for the Multiserver object.

2 – The SQL Server landscape

56

Figure 2.15: Assigning the User::SRV_Conn variable to the ServerName
property.

Notice that the expression @[User::SRV_Conn] variable is assigned to the
ServerName property. At runtime the ServerName Expression, which is part of
the Connection Manager, is populated with the current value of the SRV_Conn
variable. As the Foreach Loop container iterates through the server list that was
derived from the Populate_ADO Variable From ServerList_SSIS task, the
value for the expression changes dynamically and the next server in the list is
assigned to variable, and queried. This continues until there are no more servers in
the list. All that is required is that you know that they are in the
ServerList_SSIS table and have the Connect field set to 1.

Executing the package

Now that we know how to populate DBA_Rep, via the SSIS Populate_DBA_Rep
package, let's execute the package and review the results. Figure 2.16 shows the
Populate_DBA_Rep package executing in real time (the task to populate the
SQL_Servers table is on the left).

2 – The SQL Server landscape

57

Figure 2.16: Populate_DBA_Rep package executing.

At the start of this chapter, I ran a script that retrieved Server information for a
single server. With this package, I can execute this script, and all the others, against
as many servers as necessary, and return all the results to the central DBA_Rep
repository.

Listing 2.8 shows a typical reporting query against the recently-populated
repository.

select SQL_Servers.Server,
 SQL_Servers.ProductVersion,
 SQL_Servers.ProductLevel,
 SQL_Servers.ResourceLastUpdateDateTime,
 SQL_Servers.ResourceVersion,
 SQL_Servers.IsIntegratedSecurityOnly,
 SQL_Servers.EngineEdition,
 SQL_Servers.InstanceName,
 SQL_Servers.ComputerNamePhysicalNetBIOS,
 SQL_Servers.LicenseType,
 SQL_Servers.NumLicenses,

2 – The SQL Server landscape

58

 SQL_Servers.BuildClrVersion,
 SQL_Servers.[Collation],
 SQL_Servers.CollationID,
 SQL_Servers.ComparisonStyle,
 SQL_Servers.ProductEdition,
 SQL_Servers.IsClustered,
 SQL_Servers.IsFullTextInstalled,
 SQL_Servers.SqlCharSet,
 SQL_Servers.SqlCharSetName,
 SQL_Servers.SqlSortOrderID,
 SQL_Servers.SqlSortOrderName,
 SQL_Servers.LocationID
from SQL_Servers

Listing 2.8: Selecting rows from the DBA_Rep table SQL-Servers.

The output, as you can see in Figure 2.17, shows data for the two SQL Server
instances, MW4HD1 and MW4HD1\SRVSAT.

Figure 2.17: Output of multiple servers in the DBA_Rep database.

After assuring that all is successful, you can schedule this package to run via SQL
Agent. I have done this in my environment and I find that running it during
production hours, say once every 3 hours, has no overhead and keeps data
relatively fresh for immediate viewing. I have seen it run in about 15 minutes for
70 servers.

2 – The SQL Server landscape

59

SSRS reporting

More powerful than ad hoc querying of DBA_Rep is designing fully fledged
Reporting Services reports that can be scheduled and subscribed to. You can also
offer a level of historical data viewing via SSRS execution snapshots.

While I have created and written about many SSRS reports that I have developed
for the DBA_Rep solution, one SSRS report, in particular, stands out for me, as I
use it daily for many tasks. It is the Job Interval Report and it allows me to filter
out SQL Agent Job information by a range of criteria, including whether or not
the job is scheduled or enabled, if it is a database backup job, and also if it failed
or succeeded on the last run. Additional details tell me how long the job ran, at
what time and even how many jobs exist on each monitored server.

Figure 2.18 shows the Job Interval Report listing all jobs that are labeled as
"backups", based on the parameter "Backup Jobs Only". This helps me narrow
down my search criteria, for server, location and job status. While a detailed
description of creating such reports is outside the scope of this chapter, I've
included several of them in the code download for the book.

Figure 2.18: SSRS Job Interval report based on DBA_Rep database query.

Summary

Whether you build your own, deploy someone else's, or purchase one from a
vendor, having a documentation solution is critical for a DBA, especially when
dealing with more than 20 servers. In this chapter, I dove headlong into how to

2 – The SQL Server landscape

60

document a SQL Server infrastructure, using some T-SQL scripts, a DBA
Repository, SSIS and SSRS. If you are interested in deploying this solution in your
environment, it is available to download from:

http://www.simple‐talk.com/RedGateBooks/
RodneyLandrum/SQL_Server_Tacklebox_Code.zip.

It can easily be modified to suit your needs.

With this repository, or something similar, in place you will have a means to easily
get to know, and monitor, your SQL Server environment. Next, it is time to
consider the sort of tasks that this SQL Server environment needs to do, and what
others want it to do. A common request, just when you've got the environment
nice and settled down, is to move the data around a bit. The migratory data, as it is
often referred to, at least by me, is the subject of the next chapter.

http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�
http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�

61

CHAPTER 3: THE MIGRATORY

DATA

When someone, usually a developer or project manager, enters my office and
states, "We are going to need to move data from X to Y …" there usually follows
a short inquisition, starting with the question, "Why?" Of course, I can probably
guess why, as it is such a common request. As a data store grows, it often becomes
necessary to "offload" certain processes in order to maintain performance levels.
Reporting is usually the first to go, and this can involve simply creating a mirror
image of the original source data on another server, or migrating and transforming
the data for a data warehouse. QA and Dev environments also need to be
refreshed regularly, sometimes daily.

As a DBA, I have to consider many factors before deciding how to allocate the
resources required in building a data migration solution. As Einstein may have
posited, it is mostly a matter space and time or, more correctly, space time. The
other, less scientific, variable is cost. Moving data is expensive. Each copy you
need to make of a 1.5 Terabyte, 500-table production database is not only going to
double the cost of storage space, but also the time required for backup and
restore, or to push the data to target systems for reporting, and so on.

In this chapter, I am going to cover the myriad ways to push, pull, or pour data
from one data store to another, assessing each in terms of space, time and cost
criteria. These data migration solutions fall into three broad categories:

• Bulk Data Transfer solutions – this includes tools such as Bulk Copy
Program (BCP) and SSIS

• Data Comparison solutions – using third party tools such as Red Gate's
SQL Data Compare, a built-in free tool such as TableDiff, or perhaps a
homegrown T-SQL script that uses the new MERGE statement in SQL
2008.

• "High Availability" solutions – using tools for building highly available
systems, such as log shipping, replication, database mirroring and
database snapshots.

I'll review some of the available tools in each category, so that you're aware of the
options when you come to choose the best fit for you, and your organization, and
I will provide sample solutions for BCP, SSIS and TableDiff. I will also cover log
shipping in some detail as, in my experience, it continues to be one of the most
cost effective data migration solutions, in terms of cost, space and time.

3 – The migratory data

62

Mapping out the data migration solution

As always, the most appropriate solution will depend on your exact requirements,
and each option varies in terms of complexity and the time it will take you as DBA
to plan and implement it. A common mistake of the novice DBA is to declare
recklessly to a manager, on receiving a relatively straightforward data migration
request, that moving the data "should only take 10 or 15 minutes". I can say, with
utmost confidence, that there is absolutely no data migration solution that takes
10-15 minutes to design, document and implement.

There is also the question of monetary cost. Some of the tools are comparatively
expensive whereas others, such as Log Shipping and BCP, are essentially "free".
However, that can be misleading too. Free is never really free. There is no free
lunch, no free data. One thing is for sure though: regardless of cost, most data
migration requests are approved because they satisfy an important business need
and this means that a DBA will be tasked with moving data at some point,
regardless of cost, space or time.

When the topic of moving data from one location to another arises, I turn to my
trusty wall-sized whiteboard and plethora of dry erase markers. I quickly assess the
data migration needs with a series of probing questions, which I map out in a
flowchart format on the white board. Here are some of the typical questions, with
some typical answers:

• "How much data are we talking about?"
["Roughly 15 Gigs worth of data a month"]

• "How often do you need the data refreshed?"
["Daily"]

• "Do you need the whole database(s) or a subset of data?"
["A subset of data."]

• "Who is going to need access to the data?"
["Developers/Analysts"]

• "Does the data need to be modified on the target, or do we need to
apply indexes on the target?"
["We need to apply indexes independent of the source"]

• "What version SQL are you using on the source, and can the target
be a different version and edition?"
["SQL Server 2000 and 2005 … unclear on the edition … that is your job
Mr. or Mrs. DBA"]

At this point, I have the information that I need. There are several possible
solutions, in this case, and which one you choose largely depends on cost.

3 – The migratory data

63

Log Shipping is a solution that has served me well in my career, across the space,
time and cost boundaries. However, this solution would not allow us to add
indexes on the target system. In addition, it is not possible to log ship between
different versions of SQL Server, say SQL 2000 to 2005, and reap all of the
benefits for a reporting instance because you will be unable to leave the target
database in Standby mode and therefore can not access the database. There are
many potential solutions to the "once-a-day refresh" requirement. Database
snapshots may be a viable option, but require Enterprise Edition and that the
snapshot resides on the same SQL Server instance as the source database.

While, on our imaginary whiteboard, we might cross off Log Shipping and
Snapshots as potential solutions, for the time being, it would be a mistake to rule
them out entirely. As I mentioned before, log shipping has served me well in
similar scenarios, and it's possible that some future criteria will drive the decision
toward such a solution. Bear in mind also that, with log shipping in place, it is
possible to use your log shipped database target instance as both a hot standby
server for disaster recovery as well as a server to offload reporting processes.

However, for now let's assume that another solution, such as SSIS, BCP or
TableDiff, would be more appropriate. Over the following sections, I'll
demonstrate how to implement a solution using these tools, noting along the way
how, with slight modifications to the criteria, other data migration solutions could
easily fit the need.

The data source

Most of the examples for data migration will use the DBA repository database,
DBA_Rep, discussed in the previous chapter, as the data source. The data that I will
be working with for bulk loading via BCP, and data comparisons using
TableDiff.exe, comes from the SQL_Conn table, whose schema is defined in
Listing 3.1.

CREATE TABLE [dbo].[SQL_Conn](
 [Run_Date] [datetime] NULL,
 [Server] [varchar](100) NULL,
 [spid] [int] NULL,
 [blocked] [bit] NULL,
 [waittime] [int] NULL,
 [name] [nvarchar](128) NULL,
 [lastwaittype] [nvarchar](150) NULL,
 [cpu] [int] NULL,
 [login_time] [datetime] NULL,
 [last_batch] [datetime] NULL,
 [status] [nvarchar](50) NULL,
 [hostname] [nvarchar](128) NULL,

3 – The migratory data

64

 [program_name] [nvarchar](150) NULL,
 [cmd] [nvarchar](60) NULL,
 [loginame] [nvarchar](128) NULL,
 [duration] [datetime] NULL
) ON [PRIMARY]

Listing 3.1: Schema for the SQL_Conn table.

This table is a heap; in other words it has no indexes. It is populated using an SSIS
job that collects connection information from each SQL Server instance defined
in the DBA Repository, and merges this data together.

NOTE
For a full article describing the process of gathering this data, please refer to:
http://www.simple-talk.com/sql/database-administration/using-ssis-to-
monitor-sql-server-databases-/

I chose this table only because it provides an example of the sort of volume of
data that you might be faced with as a DBA. Over time, when executing the
scheduled job every hour for many tens of servers, the table can grow quite large.
However, as a side note, it is worth gathering as the data offers many insights into
how your servers are being utilized.

TIP
If you would like to view the data from a sample data file that might be
otherwise too large to open in Notepad, I use tail.exe to view the last n lines of
the data file. Tail.exe is available in the Windows 2003 Resource Kit.

Bulk data transfer tools

The bulk loading of data is not a new concept. It has been around since the very
early days of SQL Server. Loading data in bulk typically involves taking a subset of
data, say all of the data in one or more tables, dumping it out to a flat file and
subsequently loading it into a secondary source, such as another database on a
secondary server. Though the terminology has changed somewhat, from "bulk
loading" to "fast loading", this basic concept remains the same across all versions.

Such a process is generally effective both in terms of cost and time; in the former
case, because the tools that are available to do it, such as BCP and SSIS, are freely
distributed with SQL Server and in the latter case because these methods have the
ability to bypass logging, in certain circumstances, and so are extraordinarily
efficient. You can expect as much as 20K records per second in some cases,
depending on what the hardware subsystem that performs the reads and writes of

http://www.simple-talk.com/sql/database-administration/using-ssis-to-monitor-sql-server-databases-/�
http://www.simple-talk.com/sql/database-administration/using-ssis-to-monitor-sql-server-databases-/�

3 – The migratory data

65

data from source to target can accommodate, and on the speed of your network
link.

The two bulk transfer tools that we'll consider here are:

• Bulk Copy Program (BCP) – This tool has been around for nearly as
long as SQL Server itself. DBAs have a hard time giving it up. It is a
command line tool and, if speed of data loading is your main criteria, it is
still hard to beat. There are several caveats to its use, though, which I will
cover.

• SQL Server Integration Services (SSIS) – I have found that SSIS is
one of the best choices for moving data, especially in terms of cost, and
in situations where near real-time data integration is not a requirement,
such as you may achieve with native replication or Change Data Capture
technologies. Transforming data is also a chore that SSIS handles very
well, which is perfect for data warehousing. I will show how to use SSIS
to load data from a source to destination, and watch the data as it flows
through the process.

Whether you choose to use BCP or SSIS will depend on the exact nature of the
request. Typically, I will choose BCP if I receive a one-time request to move or
copy a single large table, with millions of records. BCP can output data based on a
custom query, so it is also good for dumping data to fulfill one-off requests for
reports, or for downstream analysis.

SSIS adds a level of complexity to such ad-hoc requests, because DBAs are then
forced to "design" a solution graphically. In addition, many old school DBAs
simply prefer the command line comfort of BCP. I am not sure how many old
school DBAs remain, but as long as Microsoft continues to distribute BCP.exe, I
will continue to use it and write about it, for its simple and fast interface.

SSIS has come a long way from its forebear, Data Transformation Services (DTS)
and, in comparison to BCP, can be a bit daunting for the uninitiated DBA.
However, I turn to it often when requested to provide data migration solutions,
especially when I know there may be data transformations or aggregations to
perform, before loading the data into a data warehouse environment. SSIS
packages are easy to deploy and schedule, and Microsoft continues to add
functionality to the SSIS design environment making it easy for developers to
control the flow of processing data at many points. Like BCP, SSIS packages
provide a way to import and export data from flat files, but with SSIS you are not
limited to flat files. Essentially any ODBC or OLEDB connection becomes a data
source. Bulk data loads are also supported; they are referred to as "fast Load" in
SSIS vernacular.

3 – The migratory data

66

Over the coming section, I'll present some sample solutions using each of these
tools. First, however, we need to discuss briefly the concept of minimally logged
transactions.

Minimally logged transactions

When bulk loading data using BCP or SSIS, it is important to know how this
massive import of data will effect data and log growth. In this regard, it is
important to review the concept of "minimally logged" transactions. If the
database to which you are bulk loading the data is using the Full recovery model,
then such operations will be "fully logged". In other words, the transaction log will
maintain a record for each and every inserted record or batch. This transaction
logging, in conjunction with your database backups, allows for point-in-time
recovery of the database.

However, if you were to load in 50 million records into a database in Full recovery
mode this could eventually be a nightmare for the DBA. Transactions in the log
file for a Full recovery database are only ever removed from the log upon a
transaction log backup and so, in the absence of frequent log backups, log file
growth would spiral out of control.

As such, you may consider switching to one of the other available recovery
models, Simple or Bulk-logged, for the duration of the bulk import operation. In
these recovery modes, such operations (and a few others) are only minimally
logged. Enough information is stored to recover the transaction, but the
information needed to support point-in-time recovery is not written to the
transaction log. Note, however, that there are a few caveats to this exemption
from full logging. If, for example, there is a clustered index on the table that you
are bulk loading, all transactions will be fully logged.

So, for example, in order to minimize logging for bulk activities, such as those
used by BCP.exe, you can temporarily switch from Full recovery mode to Bulk-
logged mode, while retaining the ability to back up the transaction log. One
downside of Bulk-logged mode, however, is that you lose the ability to restore to a
point in time if there are any bulk transactions, though you can still restore the
entire transaction log in Bulk-logged mode.

Alternatively, you can set the database to Simple mode, in which bulk operations
are also minimally logged. By definition, the Simple mode does not support point-
in time recovery, since the transaction log cannot be backed up, and is truncated
each time a checkpoint is issued for the database. However, this "truncate on
checkpoint" process does have the benefit that the log is continually freed of
committed transactions, and will not grow indefinitely.

3 – The migratory data

67

The dangers of rampant log file growth can be mitigated to some extent by
committing bulk update, inserts or delete transactions in batches, say every
100,000 records. In BCP, for example, you can control the batch size using the
batch size flag. This is a good practice regardless of recovery model, as it means
that the committed transaction can be removed from the log file, either via a log
backup or a checkpoint truncate.

The model in normal use for a given database will depend largely on your
organization's SLAs (Service Level Agreements) on data availability. If point-in-
time recovery is not a requirements, than I would recommend using the Simple
recovery model, in most cases. Your bulk operations will be minimally logged, and
you can perform Full and Differential backups as required to meet the SLA.

However, if recovering to a point in time is important, then your databases will
need to be in Full recovery mode. In this case, I'd recommend switching to Bulk
logged mode for bulk operations, performing a full backup after bulk loading the
data and then subsequently switching back to Full recovery and continuing log
backups from that point.

NOTE
I cover many tips and tricks for monitoring file growth in Chapter 4, on
managing space.

BCP.EXE

BCP has been a favorite of command line-driven DBAs ever since it was
introduced in SQL Server 6.5. It has retained its popularity in spite of the
introduction of smarter, prettier new tools with flashy graphical interfaces and the
seeming ability to make data move just by giving it a frightening glare. I have used
BCP for many tasks, either ad hoc, one-off requests or daily scheduled loads. Of
course, other tools and technologies such as SSIS and log shipping shine in their
own right and make our lives easier, but there is something romantic about
BCP.exe and it cannot be overlooked when choosing a data movement solution
for your organization.

Basic BCP

Let's see how to use BCP to migrate data from our SQL_Conn table in the
DBA_Rep database. We'll dump the 58K rows that currently exist in my copy of the
table to a text file, and then use a script to repeatedly load data from the file back
into the same SQL_Conn table, until we have 1 million rows.

Knowing that the table SQL_Conn is a heap, meaning that there are currently no
indexes defined for the table, I rest easy knowing that I should be minimally

3 – The migratory data

68

logging transactions, as long as the database is set for the Bulk logged or Simple
recovery model.

With BCP, just like with SSIS dataflow, data is either going in or coming out.
Listing 3.2 shows the BCP output statement, to copy all of the data rows from the
SQL_Conn table on a local SQL Server, the default if not specified, into a text file.

bcp dba_rep..SQL_Conn out "C:\Writing\Simple Talk
Book\Ch3\Out1.txt" -T –n

Listing 3.2: BCP output statement.

After the bcp command, we define the source table, in this case
dba_rep..SQL_Conn. Next, we specify out, telling BCP to output the contents of
the table to a file, in this case, "C:\Writing\Simple Talk Book\Ch3\Out1.txt".
Finally, the -T tells BCP to use a trusted connection and -n instructs BCP to use
native output as opposed to character format, the latter being the default.

Native output is recommended for transferring data from one SQL Server
instance to another, as it uses the native data types of a database. If you are using
identical tables, when transferring data from one server to another or from one
table to another, then the native option avoids unnecessary conversion from one
character format to another.

Figure 3.1 shows a BCP command line execution of this statement, dumping all
58040 records out of the the SQL_Conn table.

According to Figure 3.1, BCP dumped 17 thousand records per second in a total
of 3344 milliseconds, or roughly 3 seconds. I would say, from first glance, that this
is fast. The only way to know is to add more data to this table and see how the
times change. Remember that at this point, we are just performing a straight
"dump" of the table and the speed of this operation won't be affected by the lack
of indexes on the source table. However, will this lack of indexes affect the speed
when a defined query is used to determine the output? As with any process, it is
fairly easy to test, as you will see.

Let's keep in mind that we are timing how fast we can dump data out of this
sample table, which in the real world may contain banking, healthcare or other
types of business critical data. 58 thousand is actually a miniscule number of
records in the real world, where millions of records is the norm. So let's simulate a
million records so that we may understand how this solution scales in terms of
time and space. I roughly equate 1 million records to 1 Gigabyte of space on disk,
so as you are dumping large amounts of data, it is important to consider how
much space is required for the flat file and if the file will be created locally or on a
network share. The latter, of course, will increase the amount of time for both
dumping and loading data.

3 – The migratory data

69

Figure 3.1: Dumping 58K records out of the SQL_Conn table.

In order to simulate a million or more records, we can load up the 58,000 records
into a table multiple times so that we cross the plateau of 1 million records. I have
created a batch file to do this, which is shown in Listing 3.3. In this case, I am
loading the data back into the same table from which it came, SQL_Conn.

 set n=%1
 set i= 1
 :loop
 bcp dba_rep..SQL_Conn in
 C:\Writing\Simple Talk Book\Ch3\Out1.txt"
 -n -b 50000 –T -h "TABLOCK"
 if %i% == %n% goto end
 set /a i=i+1
 goto loop
 :end

Listing 3.3: Batch file to load 1 million records from 58,000.

You will see that the main difference between this BCP statement and the
previous one is that instead of out I am specifying in as the clause, meaning that

3 – The migratory data

70

we are loading data from the text file back in to the SQL_Conn table, which
currently holds 58K rows.

The -h TABLOCK hint forces a lock on the receiving table. This is one of the
requirements to guarantee minimally logging the transactions. The –b option tells
BCP to batch the transactions at n rows, in this case every 50,000 rows. If there
are any issues during the BCP load process, any rollback that occurs will only
rollback to the last transaction after the n load. So, say I wanted to load 100,000
records, and I batched the BCP load every 20,000 records. If there were an issue
while loading record 81,002 I would know that 80,000 records were successfully
imported. I would lose 1,002 transactions as they would roll back to the last
20,000 mark, which would be 80,000 records.

The batch file takes one parameter, which is the number of times to run the BCP
command in order to load the required number of rows into the table. How did I
choose 20 iterations? Simple math: 20 * 58,040 = 1,160,800 records.

As you can see in Figure 3.2, this is exactly the number of rows that is now in the
SQL_Conn table, after 20 iterations of the BCP command, using the 58,040 records
in the f1_out.txt file as the source.

Figure 3.2: Query to count SQL_Conn after loading over 1 million records.

NOTE
For what it is worth, I have also used this batch file to load a Terabyte worth of
data to test how we could effectively manage such a large data store.

If you re-run the BCP command in Listing 3.2, to output the query results to a
file, you will find that the process takes more than a minute for a million rows, as
opposed to the previous 3 seconds for 58K rows, indicating that the time to
output the records remains good (58,040 / 3 = 19,346 records per second * 60

3 – The migratory data

71

seonds = 1.16 million). I am still seeing nearly 20,000 records per second times(?)
despite the increase in data, attesting to the efficiency of the old tried and true
BCP.

Filtering the output using queryout

Rather than working with the entire table, you can use the queryout option of
BCP to limit the data you will be exporting, by way of a filtered T-SQL query.
Suppose I want to export data only from a particular time period, say for a
run_date greater than October 1st of 2008.The query is shown in Listing 3.4.

Select * from dba_rep..SQL_Conn where run_date > '10/01/2008'

Listing 3.4: Query to filter BCP output.

There are many duplicate rows in the SQL_Conn table, and no indexes defined, so
I would expect that this query would take many seconds, possibly half a minute to
execute. The BCP command is shown in Listing 3.5.

bcp "Select * from dba_rep..SQL_Conn
 where run_date > '10/01/2008'"
 queryout
 "C:\Writing\Simple Talk Book\Ch3\bcp_query_dba_rep.txt" -n –T

Listing 3.5: BCP output statement limiting rows to specific date range,
using the output option.

As you can see in Figure 3.3, this supposedly inefficient query ran through more
than a million records and dumped out 64,488 of them to a file in 28 seconds,
averaging over 2,250 records per second.

Figure 3.3: BCP with queryout option.

3 – The migratory data

72

Of course, at this point I could fine tune the query, or make recommendations for
re-architecting the source table to add indexes if necessary, before moving this
type of process into production. However, I am satisfied with the results and can
move safely on to the space age of data migration in SSIS.

SSIS

We saw an example of an SSIS package in the previous chapter, when discussing
the DBA Repository. The repository is loaded with data from several source
servers, via a series of data flow objects in an SSIS package (Populate_DBA_Rep).
Let's dig a little deeper into an SSIS data flow task. Again, we'll use the SQL_Conn
table, which we loaded with 1 million rows of data in the previous section, as the
source and use SSIS to selectively move data to an archive table; a process that
happens frequently in the real world.

Figure 3.4 shows the data flow task, "SQL Connections Archive", which will copy
the data from the source SQL_Conn table to the target archive table,
SQL_Conn_Archive, in the same DBA_Rep database. There is only a single
connection manager object. This is a quite simple example of using SSIS to
migrate data, but it is an easy solution to build on.

Figure 3.4: Simple SSIS data flow.

3 – The migratory data

73

Inside the SQL Connections Archive data flow, there are two data flow objects, an
OLE DB Source and OLE DB Destination, as shown in Figure 3.5.

Figure 3.5: Source and destination OLE DB objects in SSIS.

We'll use the OLE DB source to execute the query in Listing 3.4 against the
source SQL_Conn table, to return the same 64,488K records we dumped out to a
file previously. Instead of a file, however, the results will be sent to the OLE DB
destination object, which writes them to a SQL_Conn_Archive table. Figure 3.6
shows the Source Editor of the OLE DB source object, including the qualified
query to extract the rows from the source table, SQL_Conn.

For the Data Access Mode, notice that I am using "SQL command"; other
options are "Table or view", "Table Name or View Name Variable" and "SQL
Command from variable". I am using SQL command here so as to have control
over which fields and subset of data I wish to move, which is often a criteria for
real world requests. Notice that I am filtering the data with a WHERE clause,
selecting only transactions with a run_date greater than '10/01/08'.

3 – The migratory data

74

Figure 3.6: Source Editor for SQL_Conn query.

Figure 3.7 shows the Source Editor for the OLE DB Destination object, where
we define the target table, SQL_Conn_Archive, to which the rows will be copied.

There are a few other properties of the destination object that are worth noting. I
have chosen to use the Fast Load option for the data access mode, and I have
enabled the Table Lock option, which as you might recall from the BCP section,
is required to ensure minimally logged transactions.

3 – The migratory data

75

Figure 3.7: OLE DB Destination Editor properties.

Although I did not use it in this example, there is also the Rows per batch option
that will batch the load process so that any failures can be rolled back to the
previous commit, rather than rolling back the entire load.

It is worth noting that there are other Fast Load options that you cannot see
here. In SSIS, these options are presented to you only in the Properties window
for the destination object. Additional fast load properties include:

• FIRE_Triggers, which forces any triggers on the destination table to
fire. By default, fast or bulk loading bypasses triggers.

• ORDER, which speeds performance when working with tables with
clustered indexes so that the data being loaded is pre-sorted to match the
physical order of the clustered index.

3 – The migratory data

76

These properties can be manually keyed into the FastLoadOptions property
value. In this example, I also used the FIRE_TRIGGERS fast load option, as shown
in Figure 3.8.

Figure 3.8: Additional options for Fast Loading data within SSIS
destination objects.

It is almost time to execute this simple data migration package. First, however, I
would like to add a data viewer to the process. A data viewer lets you, the package
designer, view the data as it flows through from the source to the destination

3 – The migratory data

77

object. To add a data viewer, simply right-click on the green data flow path and
select "Data Viewer". This will bring up the "Configure Data Viewer" screen, as
shown in Figure 3.9. The data viewer can take several forms: Grid, Histogram,
Scatter Plot and Column Chart. In this example, I chose Grid.

Figure 3.9: Selecting a data viewer.

When we execute the package, the attached data viewer displays the flow of data.
You can detach the data viewer to allow the records to flow through without
interaction. The data viewer is useful while developing a package to ensure that
the data you are expecting to see is indeed there. Of course, you will want to
remove them before deploying the package to production, via a scheduled job.
Figure 3.10 shows the data viewer, as well as the completed package, as the 64,488
records are migrated.

3 – The migratory data

78

Figure 3.10: Completed package execution with data viewer.

If this was indeed an archive process, the final step would be to delete the data
from the source table. I will not cover this step except to say that it too can be
automated in the SSIS package with a simple DELETE statement, matching the
criteria we used for the source query when migrating the data.

I am always careful when deleting data from a table, not because I am fearful of
removing the wrong data (good backup practices and transactions are safety
measures) but because I am mindful of how it might affect my server. For
example, how will the log growth be affected by deleting potentially millions of
records at a time? Should I batch the delete process? Will there be enough space
for log growth when accounting for each individual delete? How long will it take?
These are all questions the answers to which have, over the years, taught me to
tread carefully when handling the delete process.

Data comparison tools

Now that we have investigated how to bulk load and move data with BCP and
SSIS, it is time to turn our attention to the other very popular and efficient ways to
get selected data from source to target. Sometimes you do not have to resort to
the truncate and load processes that are prevalent in many data load facilities like
BCP or SSIS. Sometimes, merging the data from one location to another is a
much quicker way of synchronizing two data stores.

Some third party tools that perform these comparisons incur cost but offer
substantial savings in terms of space and time because you do not need to store
multiple Gigabytes of data in output files, or transfer those same large files across
slow network connections.

3 – The migratory data

79

With data comparison, you are migrating a much smaller subset of transactions,
for example those that have occurred over the last day, or even hour for that
matter. This is similar in nature to log shipping in the sense that only new
transactions are migrated, but with the added benefit of maintaining much more
control over the target data. For example, once the data is migrated from source
to target, via a data comparison tool, you can add indexes to the target that did not
exist on the source. This is not possible with log shipping, as I will discuss shortly.

Several tools come to mind immediately, for performing this data comparison and
"merge" process:

• Native Change Data Capture (SQL Server 2008 only) – this new
technology allows you to capture date changes and push them to a target
in near-real time. I have been anxiously awaiting such a technology in
SQL Server but I would have to say that I have not found CDC to be
fully realized in SQL Server 2008, and I don't cover it in this book. Don't
get me wrong, it is there and it works but, much akin to table partitions
and plan guides, it is a bit daunting and not very intuitive.

• T-SQL Scripts – Pre SQL Server 2008, many DBAs developed their
own ways of merging data from one source to another, using T-SQL
statements such as EXCEPT and EXISTS. Essentially, such code tests for
the existence of data in a receiving table and acts appropriately upon
learning the results. This was not difficult code to produce; it was just
time consuming.

• TableDiff – this is another tool that has been around for many years. It
was designed to help compare replication sets for native SQL Server
replication but it is also a handy tool for comparing and synchronizing
data.

• Third party Data Comparison tools – there are several available on the
market, but I am most familiar with Red Gate's SQL Data Compare.
Where tablediff.exe is excellent for comparing one table to another, SQL
Data Compare allows you to compare entire databases, or subsets of
objects, and data therein. The process can be scripted and automated to
ensure data is synchronized between data sources. It is particularly
valuable for synching your production environment to your test and dev
environments, or for reporting.

I will cover TableDiff.exe in this chapter. While I do not cover SQL Data
Compare here, I would highly recommend trying it out if you do a lot of data
migration and synchronization:

http://www.red-gate.com/products/SQL_Data_Compare/index.htm.

However, before I present the sample solution, using TableDiff, we need to
discuss briefly the concept of uniqueness.

http://www.red-gate.com/products/SQL_Data_Compare/index.htm�

3 – The migratory data

80

Guaranteeing unique data

Regardless of the data comparison tool you use, you will need to guarantee
uniqueness in your source and target data sources, in order for these techniques to
work. Heretofore, in a frenzy to load data as fast as possible, I have not been
concerned with duplicate data rows or indexes. For this next section, however, I
need to start with a clean slate and refactor the SQL_Conn and SQL_Conn_Archive
tables in such a way that we can guarantee uniqueness of data.

The SISS package that populates the SQL_Conn table runs every 15 minutes, and
captures the date and time that the package ran as a field value, so this "run time"
would be a good candidate for a unique column. However, to truly guarantee
uniqueness, the clustered index will be a composite of the package run date and
several other fields. I will also add an identity column (ID) to the tables.

Since the tables currently contain duplicate rows, in this example, I will first need
to clean up a bit by truncating both the SQL_Conn and SQL_Conn_Archive. I can
then run the package to populate the SQL_Conn table with current process
information. Figure 3.11 shows the new record count for the SQL_Conn table, a
mere 32 records.

Figure 3.11: Repopulated SQL_Conn table ready for merging data.

The SQL_Conn_Archive table currently holds zero records, as we would expect,
clean slate and all. Figure 3.12 shows the empty table, in preparation for the
prestidigitation to follow.

3 – The migratory data

81

Figure 3.12: Empty SQL_Conn_Archive table.

So, now I am going to add the clustered index and an identity column (ID) to both
tables. Figure 3.13 shows the 5 fields from the SQL_Conn table that I used to
guarantee uniqueness. I am heartened by the fact that, as this table fills up over
time, the clustered index will also benefit me when running interrogative queries
for reports of sever activity.

Figure 3.13: Building clustered index for SQL_Conn table.

3 – The migratory data

82

With the newly built index and identity column on both source (SQL_Conn) and
target (SQL_Conn_Archive), it is time to introduce Tablediff.exe, which we will
use to keep the two tables in sync.

Tablediff.exe

Tablediff.exe is a little known and free tool that comes with SQL Server, and has
done so for many releases. It was designed to assist with comparing replication
sets for native SQL Server replication. However, even if you are not using SQL
replication, it can be put to good use in comparing and synchronizing source and
target tables.

It compares one table at a time and displays the differences between the two
tables. Further, it can generate scripts that will sync the two tables, if there are
differences. For SQL Server 2005, Tablediff.exe can be found in the C:\Program
Files\Microsoft SQL Server\90\COM\ folder. It has options that allow you to
define the source and destination servers, as well the required databases and tables.

Listing 3.6 shows the command line execution that will compare the freshly
loaded SQL_Conn source table and the destination SQL_Conn_Archive. The
options -q and -t 200, respectively, tell tablediff to do a simple record count
rather than a full blown compare, and to timeout after 200 seconds. You also have
the ability to lock the source and target tables, as I am doing here with
-sourcelocked and –destinationlocked.

C:\Program Files\Microsoft SQL Server\90\COM\tablediff.exe" -
sourceserver MW4HD1 -sourcedatabase DBA_Rep -sourcetable
SQL_Conn -sourcelocked -destinationlocked -destinationserver
MW4HD1 -destinationdatabase DBA_Rep -destinationtable
SQL_Conn_Archive -q -t 200

Listing 3.6: Tablediff with source and destination options.

Figure 3.14 shows the 32 records that are different in SQL_Conn and
SQL_Conn_Archive tables, by doing a simple row count. It took less than a tenth
of a second to deliver the results.

3 – The migratory data

83

Figure 3.14: Tablediff.exe row count differences.

Without the -q option, you will get a list of differences, by ID column, as shown
in Figure 3.15. This comparison took 0.15 seconds for the 32 records.

Figure 3.15: Tablediff showing detailed differences.

3 – The migratory data

84

The best thing about Tablediff.exe is that it will generate a script that will bring the
two tables in sync. That option is -f which takes a filename and path, as shown in
Listing 3.7.

C:\Program Files\Microsoft SQL Server\90\COM\tablediff.exe" -
sourceserver MW4HD1 -sourcedatabase DBA_Rep -sourcetable
SQL_Conn -sourcelocked -destinationlocked -destinationserver
MW4HD1 -destinationdatabase DBA_Rep -destinationtable
SQL_Conn_Archive -q -t 200 –f C:\Output\SQL_Conn.sql

Listing 3.7: The tablediff comand to synch the two tables.

Running this tablediff command, with the -f option, generates a file containing all
of the T-SQL statements to make the two tables identical. Figure 3.16 show the
SQL_Conn.sql file that the command created.

Figure 3.16: Output of fix file for Tablediff.exe

Executing the script against the SQL_Conn_Archive table and then re-running the
tablediff.exe will show that the two tables are now identical.

"High Availability" tools

Finally, we move on to a discussion of what I have termed "high availability" data
migration tools, simply because these tools generally form part of an organizations
strategy in minimizing downtime and maximizing the availability of its data.

Up to now we have been working with single source tables, whereas these
techniques are more applicable when whole databases need to be migrated, and

3 – The migratory data

85

the data in them needs to be regularly resynched with the source. The added
benefit of using a tool such as log shipping is that you can segregate reporting
processes from transactional processes, which can offer performance gains in
some scenarios.

Log shipping vs. mirroring vs. replication

There are three main tools that you can choose from, when implementing a "HA"
solution for data migration:

Log Shipping – I have used log shipping for a variety of data migration tasks and
it is probably the most reliable mechanism that I have found. However, it does
have its downsides and a big one is that refreshing the data requires everyone to
be out of the target database, and data is only as fresh as the last restore on the
target.

Log shipping can be setup natively, or using third party tools like RedGate SQL
Backup, which sets up all of the automated schedules for you and also compresses
the backed up logs, making for much faster data loads. In terms of financial cost,
the only significant consideration is the secondary server instance, though you can
also log ship to the same server, as I will show. The space required to store log
backups is much less than the space required to implement a solution that
performs a full backup and restore of a database, and the time to synch two
databases, via log shipping, is drastically lowered.

Native SQL Server Replication – This is one of the few solutions that provide
near-real time data on a target. However, to be quite honest, I have avoided native
SQL replication for a long time. It is not so much the overhead of maintenance or
administration that has prevented me from deploying it to production, but the
learning curve of the technology and need for "compliant schemas". In order to
use native replication, the database schema has to fit into a normalized structure,
with unique primary keys defined for each replicated table. For whatever reason,
many third party vendors do not always adhere to this requirement.

Database Mirroring (SQL Server 2005 and Database snapshots) – This
technology was introduced in SQL Server 2005. Mirroring is a way of introducing
high-availability to SQL Server by allowing the secondary server to become the
main server, instantly. In a mirrored setup, the secondary database is never online,
or accessible to the end user, until failure occurs on the source. The only way to
get around this, if you wish to offload reporting to the secondary server, is to set
up database snapshots. Unfortunately, snapshots are only available in Enterprise
editions of SQL Server so cost is definitely a factor for this solution. As such,
Database Mirroring is primarily used for high availability, rather than as a more
casual data migration technique.

3 – The migratory data

86

It is when you start using these techniques that the issues of cost, space and time
really come to the fore and it is important to understand what problems each will
solve, compared to their cost. Native replication and database mirroring, while
certainly valid solutions, come with a higher price tag if you want to cross breed a
high availability solution with a reporting solution.

While I may choose replication or mirroring as options at some stage, so far I
have found that, in my career as a stolid, bang-for-the-buck DBA and manager,
log shipping has come out ahead of the three solutions nearly 100% of the time,
when considering cost, space and time. Therefore, it is the solution I will focus on
here.

Log shipping considerations

Log shipping is a method, based on SQL Server Agent jobs, by which the
transaction log backups from a primary server are applied to secondary servers. In
this way, one can keep one or more spare "warm standby" servers in a state of
readiness to take over in the event of failure of the primary server.

Log shipping is a solution that sounds like it would be a breeze to set up, but there
are often complications. Let's reconsider our (slightly modified) original
requirements:

• Migrating roughly 15 Gigs worth of data a month

• Data needs to be refreshed daily

• Need to migrate the whole database

• Developers/Analysts need access permission to the target database

• Indexes do not need to be applied independent of the source

• Source databases are both SQL Server 2005

In this case the log shipping solution sounds straightforward until … you discover
that the source database is in Simple recovery mode, so you can't take log backups.
Also, wait a second, how are we going to add permissions that are different from
the source, as the target database will be in read-only/stand mode, so I cannot add
users to it. This has gotten a bit more complex than I may have anticipated.

The time required for log shipping is not insubstantial. On a 1 Gigabit network,
where both the source and target are on different servers, or even if the source
and target databases are on the same SQL Server instance, it is going to take time
to backup and restore the data on the target. However, this time is negligible if
done in off peak hours, like in the early AM before the start of business
operations. Also, it is easy to gauge the time it takes to backup, transfer and
restore the log file. Furthermore, you can reduce the required time by
incorporating a scheduled, compressed log shipping solution with, say, Red Gate's

3 – The migratory data

87

SQL Backup. However, of course, one then needs to add the cost of this tool to
the overall cost of the solution.

However, what if there were 2 G worth of log data, and the target server was
reached via a 3MB WAN connection? What if the request was for more than one
target? What could have taken 15 minutes, on first analysis, is now taking 45
minutes or more, and pushing past the start of business. DBAs constantly find
themselves making accommodations based on unexpected changes to the original
requests. Proper communication and expectations need to be set upfront so that
planning follows through to execution as seamlessly as possible, with
contingencies in circumstances of failure.

Don't forget also that if the target database ever gets out of synchronization with
the source logs for whatever reason (it happens), then the entire database needs to
be restored from a full backup to reinstate the log shipping. If the full database is
over 200G and you have a slow WAN link, then this could be a big issue. Those
45 minutes just became hours. No one likes seeing a critical, tier 1 application
down for hours.

Finally, there will be a need to store this redundant data. As you add servers to the
mix, the amount of space required grows proportionately. Soon, the 200G
database, growing at a rate of 2G per day, becomes a space management
nightmare. It is always best to perform upfront capacity planning, and over
estimate your needs. It is not always easy to add disk space on the fly without
bring down a server, which is especially true of servers with local disk arrays not
SAN attached. If you have SAN storage, the process is more straightforward, but
comes with issues as well. Also, consider if the disk subsystem is using slower
SATA drives (often used for QA and Dev environments) or faster SCSI drives,
which are more expensive per Gig, to the tune of thousands of dollars.

3 – The migratory data

88

Setting up log shipping

With all of the considerations out of the way for log shipping, I want to take a
quick look at how to setup a log shipping solution. Fortunately, Microsoft SQL
Server has made it very easy to implement. One requirement is that the source
database must be in Full recovery mode. As you can see in Figure 3.17, showing
the Properties dialogue of the DBA_Rep database, Transaction Log Shipping has its
own set of properties including the backup setting for the source database.

Figure 3.17: Transaction log shipping for DBA_Rep database.

If you click the backup Settings button, you can specify:

• A network share to store the transaction log backups for the source
database.

• A retention policy, expressed as the number of hours to keep the backup
log files.

• A backup job name and schedule. Transaction Log Shipping uses the
SQL Agent service to schedule both the source log backups and target
server (can be the same as the source) restores.

The settings I chose are shown in Figure 3.18.

3 – The migratory data

89

Figure 3.18: Selecting Transaction Log Backup settings.

Having specified the backup location, it is time to add the information for the
secondary database, where the source transaction logs will be applied. A nice
feature, when setting up log shipping for the first time, is the ability to let
Management Studio ready the secondary database for you, by performing the
initial backup and restore, as seen in Figure 3.19. The secondary database, non-
creatively enough, is DBA_Rep1.

Most often, you will want to transfer the log files to a different server from the
source. By selecting the "Copy Files" tab in Figure 3.19, you can specify where the
copied transaction log backup files will reside for the subsequent restores to the
target database. However, in our simple example, both the backup and restore will
reside on the same server, as shown in Figure 3.20.

3 – The migratory data

90

Figure 3.19: Setting up initial restore of secondary database for Log
Shipping.

Figure 3.20: Setting up Copy Files options for Transaction Log Shipping.

3 – The migratory data

91

The next and final, "Restore Transaction Log", tab is very important. This is
where you set the database state to either "No Recovery" or "Standby" mode. You
will want to use Standby mode if you are planning on using the target database as
a reporting database, while still allowing subsequent logs to be applied. The other
important option is "Disconnect users in the database when restoring backups",
seen in Figure 3.21. Without this important option, the log restore would fail
because the database would be in use.

Figure 3.21: Checking Standby Mode and Disconnect Users.

Once all of the backup and restore options are set, you can choose whether or not
you want to use the log shipping monitoring service. Essentially, this is an alerting
mechanism in case there are any issues with the log shipping process. I do not
typically set up the monitoring service, though it may be useful in your
environment. Once you are happy with the backup and restore options, select
OK, and everything else will be done for you, including backing up and restoring
the source and target databases, and setting up all SQL Agent jobs to backup,
copy and restore the transaction logs on an automated schedule. Figure 3.22
shows the completion of these steps.

3 – The migratory data

92

Figure 3.22: Log Shipping setup completed.

With log shipping setup and configured for Standby mode, you have conquered
two very important DBAs tasks:

• Separating source data from transaction data for reporting to reduce the
risk of contention with online processes on production

• Assuring a secondary backup of the source data in case there is disaster.

As I mentioned earlier, however, there are downsides to log shipping, such as the
difficulty in creating indexes on the target and assigning specific permissions to
users (both hard to do when the database is read only).

There is one final trick I will leave you with for log shipping and security. You can
assign a login and user on the source, so that the user is created in the database,
and then delete the login on the source but not the database user. Next, create the
login on the target system, preferably a Windows account which will always sync
up login to user. If it is a SQL authenticated account you are trying to align on the
target, you will need to insure that the account Security ID (SIDs) are the same.
This is where you will want to use the ultra-handy sp_help_revlogin stored
procedure (http://support.microsoft.com/kb/246133). Because user permission
assignment is a logged transaction in the source database, it will move with the
next log restore and the user and login on the target system will align. Thus, you
have no access on the source and the access you desire on the target.

3 – The migratory data

93

Summary

In this chapter, we covered several tools that will facilitate the migration of data
from a source to a target, or multiple targets. Data is moved for several reasons,
the main ones being either for Disaster Recovery, High Availability, or to offload
reporting from the source to increase performance of an application. There are as
many reasons to move data as there are ways and means. Fortunately, you and I,
as DBAs, can make informed decisions that will ultimately equate to cost savings
for the companies we work for. Speaking of saving money, the next chapter is
devoted to storing all of this migratory data. It is sometimes challenging to
capacity plan for new projects, and even more challenging, as your SQL
infrastructure grows, to force adherence to standards that would mitigate many
storage issues. I will show you how I try to do this daily, in the next compartment
of our SQL Server tacklebox.

94

CHAPTER 4: MANAGING DATA

GROWTH

When I look back over my career as a SQL Server DBA, analyzing the kinds of
issues that I have had to resolve, usually under pressure, nothing brings me out in
a colder sweat than the runaway data, log or TempDB file. I would estimate that
for every time I've had to deal with an emergency restore, including point in time
restores using transaction log backups, I've probably had to deal with a hundred
disk capacity issues. Overall, I would estimate that such issues account for around
80% of the problems that a DBA team faces on a weekly basis.

Occasionally, the cause of these space issues is just poor capacity planning. In
other words, the growth in file size was entirely predictable, but someone failed to
plan for it. Predictable growth patterns are something that should be analyzed
right at the start, preferably before SQL Server is even installed. In my experience,
though, these space issues are often caused by bugs, or failure to adhere to best
practices.

In this chapter, I'll delve into the most common causes of space management
issues, covering model database configuration, inefficient bulk modifications,
indexes and TempDB abuse, and how to fix them. I will finish the chapter by
describing a query that you should store securely in your the SQL Server
tacklebox, SizeQuery. I use this query on more or less a daily basis to monitor
and track space utilization on my SQL Server instances. Used in conjunction with
the DBA repository to query multiple SQL Servers, it has proved to be an
invaluable reporting tool.

I have given a name to the time in the morning at which a DBA typically staggers
in to work, bleary eyed, having spent most of the previous night shrinking log files
and scouring disks for every precious Gigabyte of data, in order to find enough
space to clear an alert. That name is DBA:M (pronounced D-BAM), and it's
usually around 9.30AM. My main goal with this chapter is to help fellow DBAs
avoid that DBA:M feeling.

4 – Managing data growth

95

Common causes of space issues

The following issues are among the most-common of DB space-related sorrow:

• Poorly configured Model database – meaning that subsequent
databases adopt properties (AutoGrowth, Recovery Model and so on)
that are inappropriate for their intended use.

• Inefficient Delete, Insert or Bulk Insert statements – such processes,
plus those that create temp tables, can very quickly fill the log file with
unnecessary data. The situation is exacerbated by incorrect Model
database configuration.

• Indexes and large row counts – clustered indexes can take up a lot of
space for tables that contain millions of rows of data. However, you
simply need to plan for this because the consequences of not having
these indexes can severely impact performance.

• Blatant misuse of TempDB – Temporary tables often play an
important role when developers are tasked with comparing millions of
rows of data, to return a small subset of results. This practice can have
unwanted consequences, such as inadvertently filling the TempDB
database. It is our job, as DBAs, to make sure this does not happen, often
by performing a code review and offering an alternate solution.

Over the coming sections, I am going to delve into each of these issues, and
discuss the techniques I have used to analyze and fix each one, where possible. I
say "where possible" because sometimes data growth really does exceed all
expectation and confound even the most rigorous capacity planning. The only
course of action, in such cases, is to expand disks or add additional SAN space,
things only peripherally known to many DBAs.

I want to stress that this chapter is not going to shine a light on SQL Server
internals. I will not be taking you on a journey to the heart of the database engine
to explore the esoteric concepts of leaf level storage. Every DBA needs to
understand where and how objects, such as tables and indexes, use up space on
your servers, and be very familiar with core concepts such as pages, extents, fill
factors, as well as internal and external fragmentation. However, I will leave those
details to Books Online. Here, I intend to drive the All Terrain Vehicle of my
experience right to the source of the space allocation issues that wreak havoc on
the waking and sleeping life of the on-call DBA.

4 – Managing data growth

96

Being a model DBA

This chapter is about space utilization in SQL Server and there is no better place
to begin than with the Model database. The first thing I will say about the Model
database is that, if it were up to me, I would rename it. Out of the box, there is
nothing "model" about it; it is not a "model" citizen nor should it be considered a
"role model" for other databases. Nevertheless, it is the template upon which all
subsequent databases are based, including TempDB. In other words, new
databases created on the server, unless otherwise specified, will inherit the
configuration settings of the model database.

The full list of options for the Model database, including their default settings, can
be found at http://technet.microsoft.com/en-us/library/ms186388.aspx. The
defaults for most of the options are fine for most databases. Most significantly,
however, the model database settings determine the following:

• Autogrowth properties for the data and log files

• Recovery model for the database

The default settings for each of these are definitely not appropriate for all
databases, and it's easy for new DBAs, or even us old haggard DBAs, to forget to
check these settings especially where we're working with a server configured by a
previous DBA.

Beware of default autogrowth and recovery

By default, the data file (modeldev) for the Model database, for both SQL Server
2005 and 2008 will be roughly 3MB in size initially, and is set to autogrow in 1 MB
(1024 K) increments, unrestricted, until the disk is full. The log file is set at an
initial size of 2MB and is set to grow in 10% increments, again until the disk is full.
These settings are shown in Figure 4.1.

NOTE
Microsoft SQL Server 2008 Books Online states: "The sizes of these files can
vary slightly for different editions of SQL Server." I am using Standard Edition
for the examples in this chapter.

In SQL Server storage terms, 1024K is 128 pages; pages are stored in 8K blocks.
For applications that are going to potentially load millions of records, growing the
data file of a database every 128 pages incurs a large performance hit, given that
one of the major bottlenecks of SQL Server is I/O requests.

4 – Managing data growth

97

Figure 4.1: Initial sizes and growth characteristics for the model database
data and log files.

Rather than accept these defaults, it is a much better practice to size the data file
appropriately at the outset, at say 2G. The same advice applies for the log file.
Generally, growth based on a percentage is fine until the file reaches a threshold
where the next growth will consume the entire disk. Let's say you had a 40G log
file on a 50G drive. It would only take two 10% growths to fill the disk, and then
the alerts go out and you must awake, bleary-eyed, to shrink log files and curse the
Model database.

Coupled with the previously-described file growth characteristics, our databases
will also inherit from the default model database a recovery model of Full.
Transactions in the log file for a Full recovery database are only ever removed
from the log upon a transaction log backup. This is wonderful for providing point
in time recovery for business critical applications that require Service Level
Agreements (SLAs), but it does mean that if you do not backup the transaction
log, you run the risk of eventually filling up your log drive.

If you have a database that is subject to hefty and /or regular (e.g. daily) bulk
insert operations, and you are forcing the data file to be incremented in size
regularly, by small amounts, then it's likely that the performance hit will be
significant. It is also likely that the size of your log file will increase rapidly, unless
you are performing regular transaction log backups.

4 – Managing data growth

98

To find out how significant an impact this can have, let's take a look at an
example. I'll create a database called All_Books_Ever_Read, based on a default
model database, and then load several million rows of data into a table in that
database, while monitoring file growth and disk I/O activity, using Profiler and
PerfMon, respectively. Loading this amount of data may sound like an extreme
case, but it's actually "small fry" compared to many enterprise companies, that
accumulate, dispense and disperse Terabytes of data.

NOTE
I just happen to own a file, Books-List.txt, that allegedly contains a listing of all
books ever read by everyone on the planet Earth, which I'll use to fill the table.
Surprisingly the file is only 33 MB. People are just not reading much any more.

The first step is to create the All_Books_Ever_Read database. The initial sizes of
the data and log files, and their growth characteristics, will be inherited from the
Model database, as described in Figure 4.1. Once I've created the database, I can
verify the initial data (mdf) and log file (ldf) sizes are around 3 and 2 MB
respectively, as shown in Figure 4.2.

Figure 4.2: Data and log files sizes prior to data load.

The next step is to back up the database. It's important to realize that, until I have
performed a full database backup, the log file will not act like a typical log file in a
database set to Full recovery mode. In fact, when there is no full backup of the
database, it is not even possible to perform a transaction log backup at this point,
as demonstrated in Figure 4.3.

Figure 4.3: Can't backup log if no full database backup exists.

Until the first full backup of the database is performed, this database is acting as if
it is in Simple recovery mode and the transaction log will get regularly truncated at

4 – Managing data growth

99

checkpoints, so you will not see the full impact of the data load on the size of the
log file.

With the database backed up, I need to set up Profiler and PerfMon so that I can
monitor the data load. To monitor auto growth behavior using Profiler, simply
start it up, connect to the SQL Server 2008 instance that holds the
All_Books_Ever_Read database, and then set up a trace to monitor Data and
Log file Auto Grow events, as shown in Figure 4.4.

Figure 4.4: Setting SQL Server Profiler to capture data and log file growth.

All you have to do then is click "Run".

Next, I'll set up Perfmon (Administrative Tools | Performance) in order to
monitor disk I/O activity. Click on the "+" button in the toolbar of the graph;
Perfmon will connect to the local server by default. Select "Physical Disk" as the
performance object, as shown in Figure 4.5, and then select "% Disk Time" as the
counter and click" Add".

Next, change to the Physical Disk object and select the "Average Disk Queue
Length" and "Current Disk Queue Length" counters. These settings will capture
the amount of disk activity, to review after the data load.

4 – Managing data growth

100

Figure 4.5: Physical Disk performance object in Perfmon.

With all monitoring systems a go, I am ready to load up a heap table called
book_list that I created in the All_Books_Ever_Read database. The Books-
List.txt file has approximately 58 thousand records, so I'm going to use the BCP
batch file technique (see Listing 3.3, in Chapter 3) to iterate through the file 50
times, and load 2.9 million records into the database. Now it is time to begin the
load. A quick peek at Perfmon, see Figure 4.6, shows the current absence of
activity prior to executing a hefty query.

Figure 4.6: Perfmon low disk activity.

Executing Load … now! Please don't turn (or create) the next page …!!

Sorry! I could not resist the Sesame Street reference to The Monster at the End of
This Book. In fact, the load proceeds with little fanfare. Imagine this is being done
in the middle of the afternoon, perhaps after a big lunch or, worse, early in the
AM (DBA:M most likely) before your second sip of coffee, with you blissfully
unaware of what's unfolding on one of your servers. Figure 4.7 shows the BCP
bulk insert process running.

4 – Managing data growth

101

Figure 4.7: BCPing data into the All_Books_Ever_Read database.

You can see that the batch process ran 50 times at an average of 2.5 seconds a run,
with a total load time of roughly 2 minutes. Not bad for 2.9 million records. Now
for the bad news: Figure 4.8 shows how much growth can be directly attributed to
the load process.

Figure 4.8: Log file growth loading millions of records into table.

NOTE
For comparison, in a test I ran without ever having backed up the database,
the data file grew to over 3 GB, but the log file grew only to 150 MB.

4 – Managing data growth

102

Both the data file and the log file have grown to over 3GB. The Profiler trace, as
shown in Figure 4.9, reveals that a combined total of 3291 Auto Grow events took
place during this data load. Notice also that the duration of these events, when
combined, is not negligible.

Figure 4.9: Data and log file growth captured with Profiler.

Finally, Figure 4.10 shows the Perfmon output during load. As you can see, %
Disk Time obviously took a hit at 44.192 %. This is not horrible in and of itself;
obviously I/O processes require disk reads and writes and, because "Avg Disk
Queue Length" is healthily under 3, it means the disk is able to keep up with the
demands. However, if the disk being monitored has a %DiskTime of 80%, or
more, coupled with a higher (>20) Avg Disk Queue Length, then there will be
performance degradation because the disk can not meet the demand. Inefficient
queries or file growth may be the culprits.

Figure 4.10: Perfmon disk monitor.

4 – Managing data growth

103

Average and Current Disk Queue Lengths are indicators of whether or not
bottlenecks might exist in the disk subsystem. In this case, an Average Disk Queue
Length of 1.768 is not intolerably high and indicates that, on average, fewer than 2
requests were queued, waiting for I/O processes, either read or write, to complete
on the Disk.

What this also tells me is that loading 2.9 million records into a heap table,
batching or committing every 50,000 records, and using the defaults of the Model
database, is going to cause significant I/O lag, resulting not just from loading the
data, but also from the need to grow the data and log files a few thousand times.

Furthermore, with so much activity, the database is susceptible to unabated log file
growth, unless you perform regular log backups to remove inactive log entries
from the log file. Many standard maintenance procedures implement full backups
for newly created databases, but not all databases receive transaction log backups.
This could come up to bite you, like the monster at the end of this chapter, if you
forget to change the recovery model from Full to Simple, or if you restore a
database from another system and unwittingly leave the database in Full recovery
mode.

Appropriately sizing your data and log files

Having seen the dramatic impact of such bulk load operations on file size, what I
really want to know now is how much I could reduce the I/O load, and therefore
increase the speed of the load process, if the engine hadn't had to grow the files
3291 times, in 1 MB increments for the data file, and 10% increments for the log
file.

In order to find out, I need to repeat the load process, but with the data and log
files already appropriately sized to handle it. I can achieve this by simply truncating
the table and backing up the transaction log. This will not shrink the physical data
or log files but it will free up all of the space inside them. Before I do that, take a
look at the sort of space allocation information that is provided by the
sp_spaceused built-in stored procedure in Figure 4.11.

Figure 4.11: Output of sp_spaceused for the loaded Book_List table.

4 – Managing data growth

104

As you can see, the Book_List table is using all 3.3 GB of the space allocated to
the database for the 2.9 million records. Now simply issue the TRUNCATE
command.

Truncate Table Book_List

And then rerun sp_spaceused. The results are shown in Figure 4.12.

Figure 4.12: sp_spaceused after truncation.

You can verify that the data file, although now "empty", is still 3.3GB in size using
the Shrink File task in the SSMS GUI. Right click on the database, and select
"Tasks |Shrink | Files". You can see in Figure 4.13 that the
All_Books_Ever_Read.mdf file is still 3.3 GB in size but has 99% available free
space.

What this means to me as a DBA, knowing I am going to load the same 2.9
million records, is that I do not expect that the data file will grow again. Figure
4.14 shows the command window after re-running the BCP bulk insert process,
superimposed on the resulting Profiler trace.

4 – Managing data growth

105

Figure 4.13: Free space in data file after truncate table statement.

Figure 4.14: Minimal log file growing with data load.

4 – Managing data growth

106

This time there were no Auto Grow events for the data file, and only 20 for the
log file. The net effect is that the average time to load 50,000 records is reduced
from 2.5 seconds to 1.3 seconds. A time saving of just over 1 second per load may
not seem significant at first, but consider the case where the same process
normally takes an hour. Just by ensuring log and data growth was controlled, you
have cut the process down to under 30 minutes, and saved a lot of I/O processing
at the same time.

Handling space problems

I've shown that having incorrectly sized data and log files and inappropriate Auto
Grow properties, both inherited from the model database, can significantly
increase the I/O load during bulk insert processes. I've also demonstrated the
dangers of unabated log file growth, unless you change the default recovery model
or perform regular log backups.

Even for a database that is subject to as few as 50K transactions per day, I have
seen the database log file grow to over 220G over the course of a few months,
because no log backups have been taken. The reason for this is that, generally,
there are databases with low level SLAs, meaning that a full nightly backup is all
that is required.

As I've stressed previously, handling these space issues is mainly about planning.
The DBA needs to:

• Correctly size the files – if you know that the database you are
managing can expect a 2 Gig growth per month, size the data file(s) at 4G
initially, not the 3 MB size that will be the default from the Model
database.

• Set correct auto grow properties – while 10% growth for data and log
files may be sufficient for low utilization databases, typically I set at least
500 MB for the auto growth settings for the data and log files. Unless I
expect there to be unusually high data growth, 500 MB represents a good
average growth rate, and keeps space utilization at a manageable level but
allows for growth over time without heavy I/O impact.

• Make sure only those databases that need FULL recovery are using
it – you will determine this from the business and will be part of the SLA
for the application and database. If point-in-time recovery is required,
make sure you have regular log backups taken of the databases in Full
recovery mode.

• Switch to bulk-logged mode for bulk insert operations (see Chapter
3) – bulk loading is a common practice and, if done correctly, will incur
minimal log growth, while reaping the performance benefits bulk loading
brings. However, make sure you understand the consequences of

4 – Managing data growth

107

changing the recovery models while bulk loading data. For instance, you
will be unable to perform a point-in-time recovery for the bulk
transactions.

If you fail to plan properly, or are simply subject to unexpected and unpredictable
file growth, what does this mean for the DBA?

Suppose a database has been inadvertently set to Full recovery with no log
backups. The log file has gown massively in size and, ultimately, the drive will run
out of space. If you are lucky enough, as I am to have an alerting system (see
Chapter 6), the problem will be caught before that happens and I will get an alert,
predictably at 2:30 AM when I have just gone to bed after resolving a different
issue.

What I do in such situations, after cursing myself or other innocent people on my
team for not catching this sooner, is to issue the following simple statement:

BACKUP LOG <databasename> WITH Truncate_Only

This statement has the net effect of removing all of the inactive transactions from
the log file that would have otherwise been removed with a standard log backup.

Next, I shrink the log file via the GUI (or, if I am not too tired, with code) and
then change the recovery model to Simple and go back to bed. Doing this will
generally reclaim the necessary disk space to clear all alerts, and ensure that no
further log growth will ensue. You can use DBCC to physically shrink a data or
log file, as follows:

DBCC SHRINKFILE (filename, target_size)

Many of the situations that require you to shrink a log file can be avoided simply
by planning accordingly and being diligent and fastidious in your installation
process (see Chapter 1), in particular by making sure the model database is always
set to Simple and not Full recovery mode. It only needs to happen to you once or
twice. I quote George W. Bush, "Fool me once … shame on … shame on you …
Fool me can't get fooled again."

Take that, SQL Server Model Database.

Indexes and large row counts

All DBAs know that indexes are necessary for Olympic style query performance.
We also know that they come at a price; and that price is paid in the currency of
space and maintenance time. As much as I desperately yearn for the developer's
queries to work efficiently, the DBA is still the gatekeeper of the data and feels

4 – Managing data growth

108

obliged to point out the specifics of why queries will and will not benefit from the
indexes that the developers suggest.

Often, these index recommendations come from sources like the Database Tuning
Advisor (DTA), so we DBAs often eschew them in favor of our own. I do not
mean to seem high-minded on this point, my DBA nose pointed straight up in the
air. However, rightly or wrongly, DBAs want to control the types of objects
(triggers, temp tables, linked servers, and so on) that are added to their servers,
and indexes are just another type of object that DBAs must understand, manage
and maintain.

I am all in favor of a clustered index on almost every table, backed by a healthy
volume of covering non-clustered indexes, but I also know from experience that
indexes, for all their good, will only be utilized when proper code is executed that
will take advantage of them. It is always worthwhile to explain to SQL developers
why their queries do not perform as they expect, with their proposed indexes.

In this section, I am going to add indexes to the Book_List table in order to find
out:

• How much extra space is required in order to add a clustered index to a
table containing 2.9 million rows.

• Whether this space consumption is justified, by examining the proposed
queries that intend to take advantage of the indexes.

Let's first get a "before" glimpse of space utilization in our Book_List table, using
the sp_spaceused stored procedure, as shown in Figure 4.15. Notice the 8K of
index size.

Figure 4.15: index_size of Book_List table.

Before I can add a clustered index, I need to add an identity column, called
Read_ID, on which to place the clustered index. Adding the identity column is, in
itself, an expensive task for 2.9 million records. The code is as follows:

ALTER TABLE Book_list ADD
Read_ID INT IDENTITY

We can now create the clustered index on this Read_ID column, as shown in
Listing 4.1.

4 – Managing data growth

109

USE [All_Books_Ever_Read]
GO
CREATE UNIQUE CLUSTERED INDEX [Read_ID] ON [dbo].[Book_List] (
[Read_Date] ASC)
 WITH (
 STATISTICS_NORECOMPUTE = OFF,
 SORT_IN_TEMPDB = OFF,
 IGNORE_DUP_KEY = OFF,
 DROP_EXISTING = OFF,
 ONLINE = OFF,
 ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

Listing 4.1: Creating a clustered index on the Read_ID column of the
Book_List table.

As you can see from Figure 4.16, building a clustered index on almost 3 million
records takes some time and processing power.

Figure 4.16: It takes over 12 minutes to build the clustered index.

4 – Managing data growth

110

Also, it should be noted that users will be unable to connect to the Book_List
table for the duration of the index build. Essentially, SQL Server has to physically
order those millions of records to align with the definition of the clustered index.

Let's see what the index took out of my hide by way of space. The former index
space for this table was 8K and data space was over 3 Gig. What does
sp_spaceused tell me now? See Figure 4.17.

Figure 4.17: Building the clustered index has increased the index_size to
5376KB.

An increase in index_size to 5376K does not seem too significant. When you
create a clustered index, the database engine takes the data in the heap (table) and
physically sorts it. In the simplest terms, both a heap and a clustered table (a table
with a clustered index) both store the actual data, one is just physically sorted. So,
I would not expect that adding a clustered index for the Read_ID column to cause
much growth in index_size.

However, while the data size and index size for the Book_List table did not grow
significantly, the space allocated for the database did double, as you can see from
Figure 4.18.

4 – Managing data growth

111

Figure 4.18: Creating the clustered index caused the data file to double in
size.

So not only did the index addition take the table offline for the duration of the
build, 12 minutes, it also doubled the space on disk. The reason for the growth is
that SQL Server had to do all manner of processing to reorganize the data from a
heap to a clustered table and additional space, almost double, was required to
accommodate this migration from a heap table to a clustered table. Notice,
though, that after the process has completed there is nearly 50% free space in the
expanded file.

The question remains, did I benefit from adding this index, and do I need to add
any covering non-clustered indexes? First, let's consider the simple query shown in
Listing 4.2. It returns data based on a specified range of Read_ID values (I know I
have a range of data between 1 and 2902000 records).

Select book_list.Read_ID,
 book_list.Read_Date,
 book_list.Book,

4 – Managing data growth

112

 book_list.Person
from book_list
where Read_Id between 756000 and 820000

Listing 4.2: A query on the Read_ID column.

This query returned 64,001 records in 2 seconds which, at first glance, appears to
be the sort of performance I'd expect. However, to confirm this, I need to
examine the execution plan, as shown in Figure 4.19.

Figure 4.19: Beneficial use of clustered index for the Book_list table.

You can see that an Index Seek operation was used, which indicates that this index
has indeed served our query well. It means that the engine was able to retrieve all
of the required data based solely on the key values stored in the index. If, instead,
I had seen an Index Scan, this would indicate that the engine decided to scan every
single row of the index in order to retrieve the ones required. An Index Scan is
similar in concept to a table scan and both are generally inefficient, especially
when dealing with such large record sets. However, the query engine will
sometimes choose to do a scan even if a usable index is in place if, for example, a
high percentage of the rows need to be returned. This is often an indicator of an
inefficient WHERE clause.

Let's say I now want to query a field that is not included in the clustered index,
such as the Read_Date. I would like to know how many books were read on July
24th of 2008. The query would look something like that shown in Listing 4.3.

Select count(book_list.Read_ID),
 book_list.Read_Date
from book_list
where book_list.Read_Date between '07/24/2008 00:00:00'
 and '07/24/2008 11:59:59'
Group By book_list.Read_Date

Listing 4.3: A query that is not covered by the clustered index.

4 – Managing data growth

113

Executing this query, and waiting for the results to return, is a bit like watching
paint dry or, something I like to do frequently, watching a hard drive defragment.
It took 1 minute and 28 seconds to complete, and returned 123 records, with an
average count of the number of books read on 7/24/2008 of 1000.

The execution plan for this query, not surprisingly, shows that an index scan was
utilized, as you can see in Figure 4.20.

Figure 4.20: Clustered index scan for field with no index.

What was a bit surprising, though, is that the memory allocation for SQL Server
shot up through the roof as this query was executed. Figure 4.21 shows the
memory consumption at 2.51G which is pretty drastic considering the system only
has 2G of RAM.

Figure 4.21: Memory utilization resulting from date range query.

The reason for the memory increase is that, since there was no available index to
limit the data for the query, SQL Server had to load several million records into
the buffer cache in order to give me back the 123 rows I needed. Unless you have
enabled AWE, and set max server memory to 2G (say) less than total server
memory (see memory configurations for SQL Server in Chapter 1), then the
server is going to begin paging, as SQL Server grabs more than its fair share of
memory, and thrashing disks. This will have a substantial impact on performance.

If there is one thing that I know for sure with regard to SQL Server configuration
and management, it is that once SQL Server has acquired memory, it does not like
to give it back to the OS unless prodded to do so. Even though the query I ran

4 – Managing data growth

114

has completed many minutes ago, my SQL Server instance still hovers at 2.5G of
memory used, most of it by SQL Server.

It's clear that I need to create indexes that will cover the queries I need to run, and
so avoid SQL Server doing such an expensive index scan. I know that this is not
always possible in a production environment, with many teams of developers all
writing their own queries in their own style, but in my isolated environment it is an
attainable goal.

The first thing I need to do is restart SQL Server to get back down to a
manageable level of memory utilization. While there are other methods to reduce
the memory footprint, such as freeing the buffer cache (DBCC
DROPCLEANBUFFERS), I have the luxury of an isolated environment and restarting
SQL Server will give me a "clean start" for troubleshooting. Having done this, I
can add two non-clustered indexes, one which will cover queries on the Book field
and the other the Read_Date field.

Having created the two new indexes, let's take another look at space utilization in
the Book_List table, using sp_spaceused, as shown in Figure 4.22.

Figure 4.22: Increased index size for 2 non clustered indexes.

The index_size has risen from 5MB to 119MB, which seems fairly minimal, and
an excellent trade-off assuming we get the expected boost in the performance of
the read_date query.

If you are a DBA, working alongside developers who give you their queries for
analysis, this is where you hold your breath. Breath held, I click execute. And …
the query went from 1 minute 28 seconds to 2 seconds without even a baby's burp
in SQL Server memory. The new execution plan, shown in Figure 4.23, tells the
full story.

4 – Managing data growth

115

Figure 4.23: Addition of covering indexes leads to an efficient index seek
operation.

So, while indexes do indeed take space, this space utilization is usually more than
warranted when they are used correctly, and we see the desired pay-off in query
performance.

The issue with indexes arises when development teams adopt a scattergun
approach to indexes, sometimes to the point of redundancy and harm to the
database. Adding indexes arbitrarily can often do as much harm as good, not only
because of the space that they take up, but because each index will need to be
maintained, which takes time and resources.

TempDB

No DBA who has been working with SQL Server for long will have been immune
to runaway TempDB growth. If this growth is left unchecked, it can eventually fill
up a drive and prohibit any further activity in SQL Server that also requires the use
of the TempDB database.

SQL Server uses the TempDB database for a number of processes, such as sorting
operations, creating indexes, cursors, table variables, database mail and user
defined functions, to name several. In addition to internal processes, users have
the ability to create temporary tables and have free reign to fill these tables with as
much data as they wish, assuming that growth of the TempDB data file is not
restricted to a specific value, which by default it is not.

I do not recommend restricting growth for TempDB files, but I do recommend
that you be aware of what will happen if TempDB does fill up. Many SQL Server
processes, including user processes, will cease and an error message will be
thrown, as I will show.

The TempDB database is created each time SQL Server is restarted. It is never
backed up nor can it be. It is always in Simple mode and the recovery model
cannot be changed.

4 – Managing data growth

116

There are a couple of TempDB "properties", though, that you can and should
change when configuring your server:

• Its location

• Its autogrowth rate

By default, TempDB is created in the default data folder, which is set during SQL
installation. It is highly recommended that, if possible, this location be changed so
that TempDB resides on its own disk. Many DBAs also create multiple TempDB
files, typically one per processor, with the aim of boosting performance still
further. However, be warned that you will need to spread the load of these
multiple files across multiple disks, in order to achieve this.

Like all other databases, TempDB adopts the default configuration of the model
database, which means that it will grow in 10% increments with unrestricted
growth, unless you specify otherwise. In my opinion, having an autogrowth of
10% on TempDB is a bad idea because when rogue queries hit your server, calling
for temporary tables, as they will do eventually, you do not want the TempDB
database filling up the drive. Let's assume that you have a 30G TempDB database
sitting on a 50G drive and autogrowing in 10% (i.e. 3G) increments. It would take
only 6 growth events to fill the drive. Ideally, you will want to set a fixed growth
rate of 3G for TempDB and use multiple TempDB data files across multiple
disks.

When loading multiple tens of millions of records into TempDB, bearing in mind
that 1 million records is roughly equivalent to 1G, you can see how this can
happen fairly easily. So, what happens when TempDB fills up? Let's find out!

I'd have to generate a lot of TempDB activity to fill up 50GB of disk, so I am
going to artificially restrict the data file for TempDB to a size of 200 MB, via the
"maximum file size" property. Figure 4.24 shows the configuration.

4 – Managing data growth

117

Figure 4.24: Changing the TempDB maximum file size to 2 Gigabytes for
simulation.

Now that I've set the maximum file size for TempDB, it is time to fill it up and for
that I will turn to our old friend, the endless loop. I have seen only a few of these
in the wild but they do exist, I promise, and when you combine an endless loop
with data or log space limitation, something has to give. Listing 4.4 shows the
loopy code.

CREATE TABLE #HoldAll
 (
 Read_ID INT,
 Read_Date DATETIME,
 Person VARCHAR(100)
)
GO
DECLARE @cnt int = 1
WHILE @cnt = 1
 BEGIN

 INSERT INTO #HoldAll
 SELECT Read_ID,
 Read_Date,
 Person
 FROM All_Books_Ever_Read.dbo.book_List
 WHERE Read_Date > '05/21/08'
 END
GO

Listing 4.4: The dreaded endless loop.

4 – Managing data growth

118

Notice that @cnt is given the value of 1, but nowhere subsequently is the value
changed, so this query will run and run until it fills up a drive or surpasses a file
size threshold, whichever comes sooner. In this example, the query runs for 3
minutes before we hit the 200MB file size limit, as shown in Figure 4.25, and get
an error that the filegroup is full.

Figure 4.25: Filling up TempDB.

At this point the query fails, obviously, as will any other queries that need to use
TempDB. SQL Server is still functioning properly, but as long as the temp table
#HoldAll exists, TempDB will stay filled.

Hopefully, you've got notifications and alerts set up to warn you of the imminent
danger, before the file actually fills up (I will cover notifications, alerts and
monitoring in depth in Chapter 6). In any event, you are likely to experience that
DBA:M feeling, having spent half the night trying to track down the problem
query and resolve the issue.

Your three options, as a DBA, are to:

• Restart SQL Server.

• Try to shrink the TempDB database.

• Find the errant query and eradicate it.

Generally speaking, restarting is not always an option in a production system.
Shrinking TempDB is a valid option, assuming that it can be shrunk. Sometimes,
when there are open transactions, it is not possible. Therefore, finding and killing
the offending query is the more likely course of action. The techniques you can
use to do this are the focus of the very next chapter, on Troubleshooting.

For now, I am going to simply close the query window which should force the
temp table to be deleted and so allow the shrink operation to go ahead. Sure

4 – Managing data growth

119

enough, once I'd closed the connection I was able to select Tasks | Shrink
|Database from within SSMS, and so shrink TempDB from 200 MB back down
to its original size of 8K. Problem solved.

Now, back to bed with a sleepy note to self to find the developer who wrote this
code, and chastise him or her. Wait, I am the DBA who let this get into
production in the first place, so new list … chastise self, get back to sleep, find the
developer tomorrow and chastise him or her anyway; if they ask how it got into
production … change subject.

A query to determine current space utilization

I have written a few articles about various queries that help me with my day to day
job as a DBA. The following query is one that I use every single day to monitor
potential space issues on my servers. If I notice a "danger signal" I can then dig
deeper and determine the root cause, which is usually one of the issues discussed
in this chapter i.e. log file growth due to incorrect recovery models, too many
indexes, TempDB filling up, or just poor capacity planning.

The SizeQuery query, shown in Listing 4.5, combines output from several
sources, such as sp_MSForEachDB and xp_fixeddrives, and merges them to
show how much data and log space is used, what drive that space is used on, and
how much free space is available.

Set NoCount On
--Check to see the temp table exists
IF EXISTS (SELECT Name
 FROM tempdb..sysobjects
 Where name like '#HoldforEachDB%')
--If So Drop it
 DROP TABLE #HoldforEachDB_size
--Recreate it
CREATE TABLE #HoldforEachDB_size
 (
 [DatabaseName] [nvarchar](75) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Size] [decimal] NOT NULL,
 [Name] [nvarchar](75) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Filename] [nvarchar](255) COLLATE
SQL_Latin1_General_CP1_CI_AS
 NOT NULL,

)
ON [PRIMARY]

4 – Managing data growth

120

IF EXISTS (SELECT name
 FROM tempdb..sysobjects
 Where name like '#fixed_drives%')
--If So Drop it
 DROP TABLE #fixed_drives
--Recreate it
CREATE TABLE #fixed_drives
 (
 [Drive] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [MBFree] [decimal] NOT NULL
)
ON [PRIMARY]
--Insert rows from sp_MSForEachDB into temp table
INSERT INTO #HoldforEachDB_size
 EXEC sp_MSforeachdb 'Select ''?'' as DatabaseName, Case
When [?]..sysfiles.size * 8 / 1024 = 0 Then 1 Else
[?]..sysfiles.size * 8 / 1024 End
AS size,[?]..sysfiles.name,
[?]..sysfiles.filename From [?]..sysfiles'
--Select all rows from temp table (the temp table will auto
delete when the connection is gone.

INSERT INTO #fixed_drives
 EXEC xp_fixeddrives

Select @@Servername
print '' ;
Select rtrim(Cast(DatabaseName as varchar(75))) as
DatabaseName,
 Drive,
 Filename,
 Cast(Size as int) AS Size,
 Cast(MBFree as varchar(10)) as MB_Free
from #HoldforEachDB_size
 INNER JOIN #fixed_drives ON
LEFT(#HoldforEachDB_size.Filename, 1) = #fixed_drives.Drive
GROUP BY DatabaseName,
 Drive,
 MBFree,
 Filename,
 Cast(Size as int)
ORDER BY Drive,
 Size Desc
print '' ;
Select Drive as [Total Data Space Used |],
 Cast(Sum(Size) as varchar(10)) as [Total Size],
 Cast(MBFree as varchar(10)) as MB_Free
from #HoldforEachDB_size

4 – Managing data growth

121

 INNER JOIN #fixed_drives ON
LEFT(#HoldforEachDB_size.Filename, 1) = #fixed_drives.Drive
Group by Drive,
 MBFree
print '' ;
Select count(Distinct rtrim(Cast(DatabaseName as
varchar(75)))) as Database_Count
from #HoldforEachDB_size

Listing 4.5: Size query.

Example results of the Size query are shown in Figure 4.26.

Figure 4.26: Output of Size query.

You can see that the All_Books_Ever_Read database has 6.4G of allocated space
on the C: drive. Since my sample databases reside only on the C: drive, all
allocation is for this drive. However, if I were to have my log files on E: and
TempDB on F:, for example, then query output would show the breakdown for
each drive that actually stores any database file. You can see there is 61G free on
the C: drive and of that 11G consists of database files.

4 – Managing data growth

122

Summary

In this chapter, I have explored some of the scenarios where disk space is
consumed by processes, in many cases because of incorrect configurations for
recovery models, data growth for large objects and queries that overtax TempDB
resources. Many of these scenarios can be avoided with proper planning.
However, it can be expected that, at some point, there will arise a situation that
requires the DBA team to jump in and rescue the SQL Server.

When this happens, and it happens quite frequently, DBAs need to have an
arsenal of troubleshooting tools at their disposal. In the next chapter I am going to
introduce some of the tools and techniques that I have used to quickly
troubleshoot common problems that crop up for DBAs.

Hey, there was no monster at the end of this chapter after all. Surely it will be in
the next chapter.

123

CHAPTER 5: DBA AS DETECTIVE

If you consider it fun to find and fix SQL Server problems then I can say without
fear of contradiction that this chapter is going to come at you in a clown suit.

I always feel better at the end of the day if I've been able to isolate a problem and
offer a fix. Being a SQL Server DBA, overseeing terabytes of critical business data,
can be both highly stressful and highly rewarding. Frightening? Yes, like a horror
movie with suspect code lurking in every shadow. Fulfilling? Absolutely, when you
discover that you are only one temp table or sub-query away from being the day's
hero or heroine.

This chapter is all about sleuthing in SQL Server, peeling back layer after layer of
data until you've uncovered the bare metal of the problem. It can be both fun and
painstaking. Words like "Deadlock" and "Victim" are common, so we must tread
with care through this twilight world. And, if worse comes to worse, we may have
to "Kill" something. These murderous tendencies in a DBA make many, mainly
developers, fearful to approach us. They creep up to our cubicle and tempt us
with their feigned courtesy; "Can you please kill me?" they ask expectantly.

"Absolutely" is our reply.

System tables versus DMVs

Before I start troubleshooting, it is important to note that the steps that I take as a
DBA, at this point in my career, are ones that allow for querying across multiple
versions of SQL Server: 2000, 2005 and 2008. While I certainly can appreciate the
utility of the Dynamic Management Views (DMVs) in SQL 2005 and 2008, there
are many companies in the real world that still use SQL 2000. As much as I would
love to say that all of the servers that I manage are SQL 2005, that is just not the
case. The reason that companies may be slow to upgrade are many-fold, although
cost and third party application support are the two primary reasons.

However, the system tables that I use here will be deprecated in a few years, and I
surely will as well. For this reason, I would strongly recommend that anyone who
works primarily with SQL Server 2005 and higher should use the DMVs. With
slight modification, the queries I present here can utilize DMVs in lieu of system
tables or system stored procedures.

For additional information on mapping Distributed Management Views to system
tables in 2000, 2005 and 2008, please see Books Online topic "Mapping System
Tables to System Views."

5 – DBA as detective

124

Tracking down database performance issues

You are a DBA sitting at your cubicle, or if you are fortunate, your corner office
with wrap around tinted windows overlooking a flowing brook with squirrels and
hibiscus, the rustling of nothing special blowing through your perfectly set A/C
vent … OK, your cubicle … and your phone rings. It is from the Help Desk and
they are asking you to take a look at application Z, because User X called and said
Department Y's screens are all (W)hite and they are "frozen", presumably not
because of the efficient A/C vent.

One of the users has received a timeout issue related to S.Q.L., which is why you
are being called. I do not know about you, but when you have more than 100
applications that tie to the SQL Servers in your infrastructure, you do not always
know what server/database combination are linked from the frontend to the
backend. So you have to do some upfront interrogation:

"What SQL Server are they connecting to?" you ask.

"I am not really sure, let me find out," Help Desk says. Pause. "They do not know
what that is."

"OK, what is the application?"

"Oh, um, it is Accounts_Receivable_Generation1.4."

"That is server 'G' you say confidently." Some DBA, long before you arrived,
decided it would be fun to name all servers on letters of the alphabet, one letter at
a time. "G" in this case is, of course, the intuitive name for where the A.R.G
application must reside because it is an accounts receivable application and "G"
stands for "Gold", from the DBA's favorite online game. After jotting down a
note to change that server name in the next maintenance weekend, you tell the
Help Desk that you will look into the matter and get right back with them. You
are on.

What follows is an example of how I track down and resolve such issues, often
misdiagnosed as "database performance" issues.

Using sp_who2

The first troubleshooting tool in every DBA's tackle box is the tried-and-true
stored procedure, sp_who2. Granted there is Activity Monitor, which is also quite
handy, but I have found that there are two things wrong with Activity Monitor.
Firstly, when the server is heavily burdened with locks or temporary tables,
Activity Monitor often cannot be launched, and you generally receive an error
message to this effect. Secondly, Activity Monitor for SQL Server 2008 is radically

5 – DBA as detective

125

different and, in my opinion, too difficult to maneuver when trying to home in on
a problem as quickly as possible. That is primarily the reason I am compelled to
run both 2005 and 2008 versions of the client tools.

Sp_who2, on the other hand, always works and the results are generally
instantaneous. It displays, among many other things, any blocking on the SQL
Server instance on which the problem has been reported. Running sp_who2 on
the affected server reveals that there are indeed blocked processes, as is evidenced
by the BlkBy field in the results, see Figure 5.1.

Figure 5.1: Blocked processes uncovered by sp_who2.

I can tell at first glance that SPID 55 is blocked by SPID 51, and that SPID 54 is
blocked by 55. I can also see that the database context of the blocking SPID is the
DBA_Rep database, which ironically and for argument's sake is the same database
that the fictitious A.R.G application uses.

5 – DBA as detective

126

With sp_who2, I have discovered a blocking process and it has been blocking for
quite some time now. Users are getting frantic, and soon this will escalate and
there will be three or four people at my cubicle, who otherwise would not give the
SQL Server infrastructure a second glance, laser beam focused on my every action,
and fully expecting me to solve the problem quickly.

In order to do so, I am going to have to find fast answers to the following
questions:

• Who is running the query and from where?

• What is the query doing?

• Can I kill the offending query?

• If I kill the query, will it rollback successfully and will this free up the
blocked processes?

Who is running the query?

Finding out who is running the query, and from where, is usually easy and, in fact,
may be readily apparent from the output of sp_who2. In this case, figure 5.1 tells
me that the query is being executed by sa from Microsoft SQL Server
Management Studio and it is coming from the local server "G".

However, in the real world, it might not always be quite so straightforward to
answer the "who" question. Some applications use a generic login as an
abstraction from the user. The user may possess a valid login account, but this
account is not used to directly connect to the database. Instead, the account is
controlled by the application, and usually stored in a table within the application
database. In these cases, you will often see the generic application login and not
the user's login.

What you may also find is that the query is issued by an application residing on
another server, potentially a web server, in which case the ProgramName field
from the sp_who2 results will likely show ".Net Client". That does not tell you
much. You may also see the Web server name but, again, this may be expected.
Occasionally, you may strike lucky and see an unexpected application, like
Management Studio, Query Analyzer, Microsoft Access or some other application
that should not be connecting to production data directly, outside of the front end
application. If so, then you have made progress and can continue with the
confidence that you now have a user name, program name and location. If you
have not captured anything out of the ordinary, that is OK; you will still be able to
find the answer to the next most important question, "What is the query doing?"

5 – DBA as detective

127

DBCC: What is the query doing?

Microsoft has been kind enough to provide us with many tools to diagnose such
issues. One such tool is the DBCC set of commands. DBCC, which if you are a
SQL Server DBA you are very familiar with, can be used for a variety of important
tasks, from checking for and fixing corrupt databases (DBCC CHECKDB), which I
cover in Chapter 8, to checking how memory is being used on your SQL Server
instance (DBCC MEMORYSTATUS). There is another DBCC command,
INPUTBUFFER, which allows you to see the underlying query that a specific SPID
is executing. It is quite helpful, nay, indispensible, for the sleuthing DBA.

Using DBCC INPUTBUFFER is as easy as passing in the SPID number, as shown in
Figure 5.2, to uncover the "Bad Query" that is blocking the other process.

Figure 5.2: Output of DBCC INPUTBUFFER.

As you can see the output lacks formatting when returned in a grid format. I could
expand the EventInfo field to get a better look at the query, but it would still lack
proper formatting. Returning the results to text, which is simply a matter of
clicking the "Results to Text" button on the Management Studio toolbar, usually
delivers better results, as shown in Figure 5.3.

Clearly, someone has been tasked with filling the Important_Data table (shown
in Listing 5.1 for those who want to work through the example) with values and
will do whatever it takes to get the job done!

5 – DBA as detective

128

Figure 5.3: Results to Text for DBCC INPUTBUFFER.

CREATE TABLE [dbo].[Important_Data](
 [T_ID] [int] IDENTITY(1,1) NOT NULL,
 [T_Desc] [nchar](40) NOT NULL,
 [T_Back] [datetime] NULL,
 [T_Square] [uniqueidentifier] NULL
) ON [PRIMARY]
GO

Listing 5.1: CREATE statement for Important_Data table.

5 – DBA as detective

129

Let's take a look at this "Bad Query" in all its ugly glory, as shown in Listing 5.2.

BEGIN Tran T_Time

DECLARE @SQL_Alphabet varchar(26)
SET @SQL_Alphabet = '
ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DECLARE @rnd_seed int
SET @rnd_seed = 26
DECLARE @DT datetime
SET @DT = '05/21/1969'
DECLARE @counter int
SET @counter = 1
DECLARE @tempVal NCHAR(40)

WHILE @counter < 100
 BEGIN
 SET @tempVal = SUBSTRING(@SQl_alphabet, Cast(RAND()
* @rnd_seed as int) + 1, CAST(RAND() * @rnd_seed as int) + 1)

 Insert Into Important_Data WITH (XLOCK)
 Values (
 @tempVal,
 DATEDIFF(d, cast(RAND() * 10000 as int) + 1,
@DT),
 NewID()
)
 WAITFOR DELAY '00:00:01'
 SET @counter = @counter + 1

 END
 Exec xp_cmdshell 'C:\Windows\notepad.exe'

Commit Tran T_Time

Listing 5.2: Really "Bad Query".

If I saw this query on a real system, my concern would begin to build at around
line 15, and by line 24 I think I would be a bit red-faced. At line 29, where I see
the query call xp_cmdshell and execute Notepad.exe, I would need a warm
blankie and soft floor where I would lie in a fetal position for a few hours thinking
about happy things.

Of course, at this stage I should make it clear that this query is an exercise in the
ridiculous; it is one that I specifically designed to cause locking and blocking so
that I could demonstrate how to resolve similar issues on your servers. The "bad
query" is not the work of a reasonable person but that does not mean that
something similar will never occur on one of your servers (although it would
probably never occur twice). Wrapped in a transaction called T_Time, it inserts

5 – DBA as detective

130

one row at a time, 1,000 times, into the Important_Data table, based on random
patterns for T_Desc and T_Back. It does this insert every 1 second. While doing
so, it explicitly locks out the Important_Data table using a table hint (XLock) so
that no other query can access the Important_Data table until it is complete,
which will not be until 1020 seconds, or 17 minutes, passes.

Finally, we have the heinous call to xp_cmdshell. Again, one would think that no
one would really do this in the real world. Unfortunately, I know for a fact that
some developers make liberal use of xp_cmdshell. Sometimes, it is the path of
least resistance to kicking off another process that will return a value to the calling
query. But what if, at some point, the expected value is not returned and a
dialogue box appears instead, awaiting user input? Suffice it to say that it would be
very bad, but I am getting ahead of myself. All we need to know right now is that,
for the sake of our example, this query is "happening" and I do not have a few
hours or soft floor, and the warm blankie was wrenched from my grasp by my
boss who is standing over me. So, it is best to just proceed ahead to resolution.

Killing the offending query

At this point, my goal is simply to kill the blocking SPID so that any queries
backing up behind it can start to flow through. So, after confirming that the
business has signed off on killing the offending SPID (trust me, eventually, you
will get the OK to KILL this SPID), the next step seems easy enough, and the
command would look something like this:

KILL SPID 51

And that is it, right? If you issue this command in SSMS, you will receive the usual
reassuring "success" message, as shown in Figure 5.4.

Figure 5.4: Killing the Bad Query process (51).

5 – DBA as detective

131

However, that message can be misleading. In some cases, the SPID will indeed be
killed but there may be a significant time lag while the offending statement is
being rolled back. An option of the KILL command exists that I was not aware of
at one point in my career, and that is WITH STATUSONLY. After killing a SPID you
can issue the KILL command again with this option and get a status of how long
SQL Server estimates that a ROLLBACK will take. If you have been rebuilding an
index for 10 minutes, for example, and kill that process, you can see the "%
completion of rollback" counting up to 100%.

In other cases, it may be that, despite issuing the KILL command, the SPID will
not be dead at all and the blocking will still be evident. If you issue the KILL WITH
STATUSONLY command for the Bad Query, you will see something similar to
Figure 5.5.

Figure 5.5: SPID that will not be killed.

As you can see, the SPID shows an estimated time rollback completion of 0%,
and an estimated time remaining for rollback of 0 seconds, indicating that it is not
going to be possible to kill this SPID directly. This situation can occur for the
reason that I foreshadowed earlier: the blocking process has kicked off another
process, such as an executable, and SQL Server is waiting, indefinitely, for that
other process to complete. The only way to kill the blocking SPID is either to
restart SQL Server or find and kill the executable that SQL Server is waiting for.

In this example, I know that the Bad Query launched Notepad.exe so I have a
head start. Figure 5.6 shows the culprit in Task Manager.

Figure 5.6: Offending Notepad.exe preventing killing SPID 51.

5 – DBA as detective

132

Remember that Notepad is only an example; this could have been any
other process that got called from xp_cmdshell and was waiting for user input
to finish.

All I should have to do is end the Notepad.exe process and the blocking
will be cleared and the resources freed. Notice that the user name for Notepad.exe
is SYSTEM. When SQL Server issued the command to the OS, via xp_cmdshell,
Notepad was launched as a System process, not as a user process.
Right-clicking Notepad.exe and selecting "End Process" finishes off the Notepad
executable, allowing SPID 51 to be killed, and all previously blocked processes to
move forward.

Any INSERT statements that were issued as part of the transaction, before
Notepad was executed, should be considered discarded, as Figure 5.7 shows.

Figure 5.7: Discard any transaction for the killed SPID.

This can be confirmed by issuing a quick query against the Important_Data
table, as shown in Figure 5.8, to verify that no records exist after the KILL
statement was run and Notepad.exe was terminated.

5 – DBA as detective

133

Figure 5.8: No committed records in Important_Data after KILL.

Using sp_lock

Before I deliver a query that is going to automate the discovery of problem queries
(there I go foreshadowing again), I want to talk about another important
characteristic of poorly performing queries, namely their rampant use of resources.

It is very important to monitor usage of CPU and I/O resources and I will cover
those in great detail in the next chapter, on Performance Monitoring and
Notifications. However, here I want to focus on locking resources. While
sp_who2 gives you a good picture of processes that may be blocking other
processes, and some initial insight in to the resource utilization via CPU and Disk
I/O, it does not give you any details about the various locks that have been
acquired in order to execute the process.

Locking is a "normal" activity in SQL Server, in that it is the mechanism by
which SQL Server mediates the concurrent access of a given resource by several
"competing" processes. However, as a DBA you will come to recognize
certain locking behavior that is an immediate tell-tale sign of something being
intrinsically wrong.

5 – DBA as detective

134

Some common lock types are:

• RID – single row lock

• KEY – a range of keys in an index

• PAG – data or index page lock

• EXT – Extent Lock

• TAB – Table Lock

• DB – Database Lock

In addition to lock types that refer to resources or objects that can be locked, SQL
Server has common lock modes:

• S – Shared lock

• U – Update Lock

• X – Exclusive lock

• IS – Intent shared

• IU – Intent Update

• IX – Intent Exclusive

• BU – Bulk update

In the above list of lock types and modes, combinations of resources and modes
can be created. So, for example, you can have a table lock (TAB) that has a mode
of "X" for exclusive. This means that a process has requested or been granted an
exclusive lock on a table. Of course, this may indeed cause blocking issues if the
lock is held for a substantial duration.

SQL Server provides a stored procedure, called sp_lock, which provides a lot of
information that is useful to a DBA regarding the number and type of locks that a
process has requested.

NOTE
The SQL Server 2005, and above, equivalent of sp_lock would be the DMV
sys.dm_tran_locks.

Figure 5.9 shows the output of sp_lock for SPID 51, the Bad Query.

5 – DBA as detective

135

Figure 5.9: Number of locks from Bad Query.

You can see that there are many locks acquired, mostly exclusive locks at the row
level, as indicated by the mode "X" and the type "RID". When I see one SPID
that has acquired this number of locks, especially exclusive locks, I get very
concerned that something is definitely not as it should be.

Often, a simple count of the locks and, more importantly, the types of locks for a
specific SPID, is enough to help me locate a poorly performing query, even if
there is no obvious blocking. Acquiring locks, just like acquiring connections,
requires memory resources and even shared locks, which may not block others
from accessing data, can sometimes have a major performance impact due to
memory or other resource pressures.

5 – DBA as detective

136

Automating discovery of problems

Up to this point we have used sp_who2 to seek out SPIDs that are causing
blocking issues, DBCC INPUTBUFFER to elicit the SQL being executed by such a
blocking SPID, and then sp_lock to discover some information about the locks
being acquired by the offending process. All of this took quite a bit of time to
manually discover and resolve, and when a query is locking out an entire table, and
depleting any number of other precious resources, this is time you don't
necessarily have.

What is missing is a single query that will tell all in a single execution. Faced with
this pressing need, I have developed just such a query. It returns all of the
previously discovered information, and more, in an easily-digestible format,

While sp_who2 gives good "at a glance" information, my query dives into the
underlying system table, called sysprocesses, in order to retrieve some additional
information regarding the blocking and blocked processes.

With sp_lock, the underlying system table is syslockinfo. This table does not
display intuitive information in the manner of sysprocesses. Specifically, the
type of locks have to be identified,via a join to the spt_values table in the
Master database. When developing the query, I found it much easier to create a
table to store the output of sp_lock and then do a simple count of lock types
per SPID.

TIP
The stored procedure, sp_helptext, is one of those "hidden gems" that I
have used many times over the years. When passed any object, such as a view
or stored procedure, it will display the code that makes up that object.
Running sp_lock through sp_helptext will show the join to the
spt_values table.

Listing 5.3 shows the query that will, in one fell swoop, find and report on blocked
and blocking processes and the number of locks that they are holding. First it
creates a temp table to store the output of sp_lock and then it lists all locked and
blocked processes, along with the query that each process is currently executing,
or that is waiting on resources before it can be executed.

SET NOCOUNT ON
GO

-- Count the locks

IF EXISTS (SELECT Name
 FROM tempdb..sysobjects
 WHERE name LIKE '#Hold_sp_lock%')

5 – DBA as detective

137

--If So Drop it
 DROP TABLE #Hold_sp_lock
GO
CREATE TABLE #Hold_sp_lock
 (
 spid INT,
 dbid INT,
 ObjId INT,
 IndId SMALLINT,
 Type VARCHAR(20),
 Resource VARCHAR(50),
 Mode VARCHAR(20),
 Status VARCHAR(20)
)
INSERT INTO #Hold_sp_lock
 EXEC sp_lock
SELECT COUNT(spid) AS lock_count,
 SPID,
 Type,
 Cast(DB_NAME(DBID) as varchar(30)) as DBName,
 mode
FROM #Hold_sp_lock
GROUP BY SPID,
 Type,
 DB_NAME(DBID),
 MODE
Order by lock_count desc,
 DBName,
 SPID,
 MODE

--Show any blocked or blocking processes

IF EXISTS (SELECT Name
 FROM tempdb..sysobjects
 Where name like '#Catch_SPID%')
--If So Drop it
 DROP TABLE #Catch_SPID
GO
Create Table #Catch_SPID
 (
 bSPID int,
 BLK_Status char(10)
)
GO
Insert into #Catch_SPID
 Select Distinct
 SPID,
 'BLOCKED'
 from master..sysprocesses
 where blocked <> 0
 UNION

5 – DBA as detective

138

 Select Distinct
 blocked,
 'BLOCKING'
 from master..sysprocesses
 where blocked <> 0

DECLARE @tSPID int
DECLARE @blkst char(10)
SELECT TOP 1
 @tSPID = bSPID,
 @blkst = BLK_Status
from #Catch_SPID

WHILE(@@ROWCOUNT > 0)
 BEGIN

 PRINT 'DBCC Results for SPID ' + Cast(@tSPID as
varchar(5)) + '('
 + rtrim(@blkst) + ')'
 PRINT '-----------------------------------'
 PRINT ''
 DBCC INPUTBUFFER(@tSPID)

 SELECT TOP 1
 @tSPID = bSPID,
 @blkst = BLK_Status
 from #Catch_SPID
 WHERE bSPID > @tSPID
 Order by bSPID

 END

Listing 5.3: Automated discovery query.

There is nothing overly complicated about this query. It is a base starting point
from which you can quickly analyze locking and blocking issues in SQL Server. In
the case of non-blocking locks, it will show you any query that is a potential issue
with regard to other resources such as memory or I/O.

Figure 5.10 shows the output of this query, captured while the "Bad Query"
was executing.

5 – DBA as detective

139

Figure 5.10: Output of SPID count and Blocking query in Automated
Discovery.

Notice the high lock count of 99 for SPID 51, the culprit query. The next output
section shows that, in this case, SPID 51 is indeed causing blocking, and the code
that the SPID is executing follows, as we have seen previously from DBCC
INPUTBUFFER.

In addition, the Automated Discovery Query also lists all of the blocked SPIDs
behind the main blocking SPID. Figure 5.11 shows the queries, in this case simple
select statements against the Important_Data table, which are blocked by
SPID 51.

5 – DBA as detective

140

Figure 5.11: Blocked SPIDs found using Automated Discovery query.

You might decide that you would like to take this query, and make it into a stored
procedure. You can then load it into a maintenance database on each server so
that you have it always available. It also means that you can parameterize it to
control its behavior. For example, you may decide that you do not want to execute
the portion of the query that counts locks, which on a very busy system could take
quite a bit of time.

Listing 5.4 shows the code to create this stored procedure, named
usp_Find_Problems, with a flag to execute the lock count portion based on
need.

USE [DBA_Rep]
GO
/****** Object: StoredProcedure [dbo].[usp_Find_Problems]
Script Date: 06/22/2009 22:41:37 ******/

5 – DBA as detective

141

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[usp_Find_Problems] (@count_locks BIT =
1)
AS
 SET NOCOUNT ON
-- Count the locks
 IF @count_locks = 0
 GOTO Get_Blocks
 ELSE
 IF @count_locks = 1
 BEGIN

 CREATE TABLE #Hold_sp_lock
 (
 spid INT,
 dbid INT,
 ObjId INT,
 IndId SMALLINT,
 Type VARCHAR(20),
 Resource VARCHAR(50),
 Mode VARCHAR(20),
 Status VARCHAR(20)
)
 INSERT INTO #Hold_sp_lock
 EXEC sp_lock
 SELECT COUNT(spid) AS lock_count,
 SPID,
 Type,
 CAST(DB_NAME(DBID) AS VARCHAR(30)) AS
DBName,
 mode
 FROM #Hold_sp_lock
 GROUP BY SPID,
 Type,
 CAST(DB_NAME(DBID) AS VARCHAR(30)),
 MODE
 ORDER BY lock_count DESC,
 DBName,
 SPID,
 MODE

--Show any blocked or blocking processes

 Get_Blocks:

 CREATE TABLE #Catch_SPID
 (

5 – DBA as detective

142

 bSPID INT,
 BLK_Status CHAR(10)
)

 INSERT INTO #Catch_SPID
 SELECT DISTINCT
 SPID,
 'BLOCKED'
 FROM master..sysprocesses
 WHERE blocked <> 0
 UNION
 SELECT DISTINCT
 blocked,
 'BLOCKING'
 FROM master..sysprocesses
 WHERE blocked <> 0

 DECLARE @tSPID INT
 DECLARE @blkst CHAR(10)
 SELECT TOP 1
 @tSPID = bSPID,
 @blkst = BLK_Status
 FROM #Catch_SPID

 WHILE(@@ROWCOUNT > 0)
 BEGIN

 PRINT 'DBCC Results for SPID '
 + CAST(@tSPID AS VARCHAR(5)) + '('
+ RTRIM(@blkst)
 + ')'
 PRINT '--------------------------------
---'
 PRINT ''
 DBCC INPUTBUFFER(@tSPID)

 SELECT TOP 1
 @tSPID = bSPID,
 @blkst = BLK_Status
 FROM #Catch_SPID
 WHERE bSPID > @tSPID
 ORDER BY bSPID

 END

 END

Listing 5.4: Statement to create usp_Find_Problems.

5 – DBA as detective

143

Executing usp_Find_Problems with no parameters will return the lock counts as
well as the blocked and blocking SPIDs, whereas executing it with a value of 0 as
the input parameter will exclude the lock counts. Figure 5.12 shows both
executions in SSMS, using vertical tab groups.

Figure 5.12: Executing the usp_Find_Problems stored procedure with
parameters.

Summary

In this chapter I demonstrated how I go about detecting SQL Server problems in
the form of excessive locking, and blocking. While this is a good start for the
DBA detective, there is much more ground to cover. I mentioned CPU and I/O
in this chapter only peripherally, as it relates to problem code. In the next chapter,
I will continue on the path of analyzing performance issues, but will extend the
topic to explain how to make sure you get notified immediately of performance,
and other, issues.

After all, if you do not know about the problem, you can't fix it. I would much
rather be notified of a potential issue from a system that is monitoring such events
than from an irate application user, or from the Help Desk. Granted, you will be
hard pressed to totally escape emails from users and that is OK, generally they are
understanding. It is their bosses that are not. If you can find and fix, or even just

5 – DBA as detective

144

report, an issue before anyone else, it appears that you are ahead of the game. And
you are … you are a DBA after all. Now let's delve into performance monitoring
and notifications for SQL Server before someone beats us to it.

145

CHAPTER 6: MONITORING AND

NOTIFICATIONS

As is probably clear by this stage, there are many potential monsters, lurking
around corners, waiting to pounce upon the unwary DBA as he goes about his
day-to-day duties. Often, however, the biggest problem is not the monster itself
but the fact that the DBA is unaware that it exists.

Imagine a problem as trivial as a SQL Agent Service that fails to start; a very easy
problem to fix once you know about it. But what if you don't know about it and
then suddenly find out that the backup process that this service was supposed to
be running has not been executed for over two weeks! The feeling at this moment
for a DBA, or DBA manager, is one of frustration and disbelief. These emotions
are quickly displaced however, perhaps after a few minutes alone with the warm
blankie and a soft floor, by an unswerving confidence. This confidence derives
from that fact that you know that positive steps will be taken to ensure that this
never happens again.

In this chapter, I will describe how I use monitoring tools and techniques to make
sure that my Blackberry will always buzz whenever a backup fails, a disk drive fills
up, or a rogue process is threatening the performance of a SQL Server.

When the inevitable happens, and the e-mail notification hits your mobile device,
probably at some awful hour of the morning, I'll show what you can do to easily
ascertain the problem and be notified, using a mix of third party tools, such as Red
Gate's SQL Response, and standard tools like Database Mail.

Types of monitoring and notifications

The DBA's life is one of vigilantly overseeing not only the SQL Servers
themselves, but all of the events that take place on the servers. When I say
events, I am not specifically referring to error events that cause entries to be added
to the Windows Event log or SQL Server Error log, though these are certainly
included in an overall monitoring and notification strategy. Here, I am referring to
events such as SQL Server Agent job failure, or an abnormal SQL Server
performance condition, or excessive resource (e.g. disk space) utilization, or SQL
Services availability.

It is not possible for a DBA team, no matter how large, to keep this vigil by
themselves. They need automated notifications that will let them know when

6 – Monitoring and notifications

146

something goes awry, so that they can respond to the event and resolve any issues
arising from it. There are many ways that DBAs can set up such notifications,
either using native SQL Server tools, such as Database Mail or SQL Agent Mail
(two separate entities), or a third party monitoring and notification system. There
are quite a number of such applications on the market.

In my career, I have generally employed a hybrid solution of both native and
third-party monitoring, because of the benefits and limitations of each. For
example, a third-party application may not be able to retrieve the internal error
messages of a failed SQL Agent database backup job. Conversely, it would be
impractical to set up performance monitoring, say for a sustained level of high
CPU utilization, for each instance of a 200-strong SQL Server farm, when a
centralized third party solution could easily be maintained.

In this chapter, I will expound upon the types of events that would require such a
monitoring and notification system to be in place and then give examples of
solutions for each.

SQL Agent Job failures

We all know that failures occur and that the reasons for the failures are many-fold.
SQL Agent Jobs, which kick off SSIS packages or maintenance tasks, such as
database backups or integrity checks, are common points of failure. It is your job
as DBA to respond to the failure, overcome it, and finally to understand why the
failure occurred in the first place and make sure it does not happen again.

In this chapter, I will cover only one such type of failure, but it is one close to the
DBA's heart and that is database backup failure. Regardless of whether you run
your database and transaction log backup jobs via a third party tool or natively,
perhaps using a Database Maintenance Plan, they are scheduled processes and if
there is a failure you must be made aware of it. I happen to use Red Gate's SQL
Backup utility (not a plug, just reality), which has built-in notifications for backup
failures. However, being a duly cautious DBA, I do not rely on this notification
mechanism being fail proof. I will show how to setup notifications for
failed backup jobs at several different points, so that if one notification fails,
others will not.

Adverse performance conditions

SQL Server is adept at managing memory, I/O requests and multi-threading
across multiple CPUs. Occasionally, however, a "rogue" query will push the SQL
Server to its very limits and it becomes unresponsive, as if its feelings have been
hurt by the indignity of it all.

6 – Monitoring and notifications

147

By the time we enter the unresponsive phase, it may be too late to glean what
nefarious query it was that caused the problem in the first place. What is needed,
in order to ensure a DBA's restful sleep, is an application that can monitor the
server, using a time-based algorithm, and fire a notification when a specific
threshold is crossed. For example, we may request a notification if CPU utilization
exceed 85% for a set number of minutes.

There are many such third-party applications that will handle this very well, Idera
Diagnostic Manager, Argent Guardian and Microsoft Operations Manager
(MOM) are a few that come to mind. I will show how to use one such application,
Red Gate's SQL Response, to trigger these performance alerts.

Further, once notified of the performance issue at hand, I will demonstrate how to
use two indispensable tools, Performance Monitor and SQL Profiler, to quickly
and easily analyze and resolve the problem.

Service availability

It should go without saying that a SQL service, such as SQL Server service (the
database engine) or SQL Server Agent service, stopping is an event to which the
sleepy DBA should be notified (I make it sound like these alerts always happen at
night; they don't. It's just the ones that do tend to stay with you).

So, how does SQL Server notify you that it is down? It doesn't. It is down, and so
cannot send a notification. This, again, would be the work of a third party
monitoring application. Such monitoring solutions should also have the ability to
take corrective action when encountering a stopped service, such as trying to
restart the service.

I'll show how to use a third party tool, such as SQL Response, to monitor these
services, and also how to configure the SQL services to have some resilience when
they stop unexpectedly.

Disk space shortage

Chapter 4 discussed how to manage data growth, and the space issues that can be
caused by bulk loads, errant indexing, abuse of TempDB, and so on. I can state
unequivocally that disk space alerts are the most common type of alert that the
DBA will face.

Disk space is not cheap, despite what you might be told by some IT managers.
SCSI and fiber channel drives, which are the core storage devices for most
SANs, are still quite expensive on a "per Meg" basis, compared to the slower
SATA or ATA drives that are commonly used in development, staging or QA
SQL Server installations.

6 – Monitoring and notifications

148

For production servers that require many hundreds of Gigs of storage, it is
essential that you analyze growth trends to make sure you will not be caught naked
in the front yard when the application crashes because there is no more space
(naked in the front yard? Forget that analogy). The bottom (ugg) line is that you
need to be alerted not when you are completely out of disk space but when you
have a specified percentage of remaining space, so that there is still time to act. In
this chapter I will cover how to be alerted to uncontrolled data growth.

Enabling notifications

Enabling notifications in SQL Server is a straightforward process that simply
entails setting up a mechanism by which to send the notification emails, and then
defining who it is who should receive them.

Setting up database mail

Database mail is an essential first component in enabling the delivery of
notifications in SQL Server, and its set up is included in the Automated
Configuration Script in Chapter 1.

While there are other options for being notified of events, such as by Pager or Net
Send, they are not really viable in today's world of mobile devices. Thankfully,
SQL Server 2005 and beyond offers an SMTP mail client for both SQL Server
(database engine) and the SQL Agent (job scheduler).

If you have to set up mail for SQL 2000, which a lot of people still do due to the
cost of upgrading and/or lack vendor support (yes, this still happens, even in 2009
as I write this very sentence) then my heart goes out to you. Having to install
and test a MAPI client like Outlook just to send mail from SQL 2000 is
beyond frustrating.

NOTE
A website still exists to assist you in your SQL Server 2000 mail woes and that
is http://www.sqldev.net/xp/xpsmtp.htm. It offers an SMTP mail client for
SQL Server 2000. It does not, sadly, address the SQL Agent mail, but it is
worth a look.

Setting up Database Mail in SQL Server 2005 or 2008 is very straightforward. You
just need to configure:

• The default profile that will be used to send mail

• An SMTP server address

• An account from which the mail will be sent

http://www.sqldev.net/xp/xpsmtp.htm�

6 – Monitoring and notifications

149

Figure 6.1 shows the profile information from the Database Mail Configuration
Wizard, launched by double-clicking Database Mail under the Management tab
in SQL Server Management Studio.

Figure 6.1: Profile for Database Mail in SQL Server 2005.

Notice that the Profile name is "Notifications" and it is associated with the
Account called "Standard SQL Mail Account". It is this profile and account
association that allows Database Mail to send true SMTP mail, using a standard
email stored procedure, sp_send_dbmail.

The account information, which stores the SMTP server address, is set up
separately from the profile. The account properties, which are directly associated
with a profile, can be seen in Figure 6.2.

6 – Monitoring and notifications

150

Figure 6.2: Database Mail account settings associated with the
Notifications profile.

Having configured Database Mail with a default profile and account, both tasks
thankfully having guided wizards, you can send a test mail using the stored
procedure, sp_send_dbmail. The options for this stored procedure are many but
a simple test can be performed with the code shown in Listing 6.1.

msdb..sp_send_dbmail
 @recipients = N'rlandrum13@cox.net',
 @subject = N'Mail must work or else...',
 @body = N'This is a level 1 alert....please wake up to
failure.'

Listing 6.1: Sending a test mail using sp_send_dbmail.

NOTE
You may notice that sp_send_dbmail is now located in the MSDB database,
whereas xp_sendmail, in versions prior to SQL Server 2005, was located in the
Master database.

6 – Monitoring and notifications

151

If all went well with the test, you should receive a test message similar to that
shown in Figure 6.3 (and yes, that is Outlook Express. I will not apologize).

Figure 6.3: Mail received from sp_send_dbmail.

While Database Mail is certainly important for sending mail from code, such as
maintenance stored procedures, it is only one part of the notification system that
the DBA will use, if he or she is diligent. You will also want to configure SQL
Agent to use Database Mail, for scheduled jobs that execute the code. In this way,
you will have built in redundancy of notifications, one message coming from
the code and one message coming from the SQL Agent service that executed the
job code.

To configure SQL Agent notifications, right-click SQL Server Agent in
SSMS, select "Properties" and then choose the Alert System page, as shown in
Figure 6.4.

6 – Monitoring and notifications

152

Figure 6.4: Configuration for SQL Server Agent mail.

Here, I have chosen to enable the mail profile and selected "Database Mail" as the
mail system, along with the "Notifications" profile created previously.

Setting up an operator

Having configured Database Mail and SQL Server Agent, the final step is to setup
an operator i.e. the person (or people) who will receive the messages from any
failures, either internally in the code or from the SQL Agent job. This can be a
single email address but it is far better to use a distribution list, such as
DBATeam@companyname.com, so that every member of the team receives the
notification messages.

NOTE
Of course, you should use a single account to validate everything works, prior
to setting this server to production, so that other team members do not get
inundated with false alarms during testing.

6 – Monitoring and notifications

153

It's important that the whole team is aware of any errors or failures that occur,
even if they are not on-call. Generally, the on call DBA will have his or her mobile
device configured in such a way that a "fail" or "error" will cause a raucous and
marriage-damaging alert to scream forth when the fated message hits it, while
other DBAs can continue to sleep soundly, having set their devices to a phone-
only profile. However, it does also mean that if the on-call DBA does not
respond, for whatever reason, someone else can.

Setting up an operator is as easy as right-clicking Operators in SSMS and selecting
"New Operator". This opens the dialogue shown in Figure 6.5. Here is where you
will set the e-mail address for the operator.

Figure 6.5: Setting up an operator group mail account.

With SQL Agent configured for mail, and Database Mail successfully tested with
the operator, all I need to do is configure each job about which the team needs to
be notified. This can be done from the "Notifications" section of the Properties
page of each job. Having done this, I can rest assured that any jobs that fails will
notify me at 2:34 AM so that I can be jolted from dreaming about work into
actually doing some work.

6 – Monitoring and notifications

154

NOTE
It is important to remember to restart the SQL Agent Service after you enable
mail. Otherwise you may receive an error that states that attempt to send mail
failed because no email session has been established.

Backup failure notification

As much as we might not like it, or are astonished to see it, failures do happen and
happen regularly. The goal of attaining the 4 9s availability looks good on paper
but to pull it off costs exorbitantly. Database backups are certainly not immune
from failure. There are many problems that cause backup failures, such as network
outages (don't tell the network admin this as he or she will say everyone always
tries to blame the network), SAN issues or other general failures, such as backup
shares disappearing or filling up.

Database backups are probably, no, certainly the most important aspect of the
DBA's job. Without good backups, you cannot recover business-critical data in
the event of a disaster. Whether you're performing a full, differential or log
backup, success has to be guaranteed. If a failure occurs during a backup, the
DBA has to respond quickly, especially on production servers. If an error occurs
at 1 AM, waiting until the next day is not generally deemed acceptable, as it would
probably violate the Service Level Agreement (SLA) that IT has agreed with the
organization in regard to the maximum acceptable number of hours of data loss.

If it is agreed upon that 6 hours is the maximum acceptable amount of data loss,
then the backup schedule can be setup to accommodate this. The shorter the
period the more diligence and expense it entails. If, for example, the SLA dictates
a maximum of 15 minutes data loss then this will require log backups to be taken
every 15 minutes, increasing the risk of failure due to outages or some other
unforeseen circumstance.

As noted earlier, I perform the bulk of my backups using Red Gate's SQL Backup
tool. Besides the benefits of compression, speed and security via encryption, it has
the added bonus of a built-in SMTP mail client. Back in the days of SQL 2000,
where no such SMTP client existed natively, Red Gate's SMTP mail client proved
to be invaluable for notifications.

I have a backup script that rolls through a set-based list of databases to be backed
up, taking account of the fact that databases like TempDB should be omitted. The
script runs as a scheduled SQL Agent job, and sequentially backs up every
database on the list, one at a time, using SQL Backup.

With this set up, I am interested in two different types of notification, in the event
of a backup job failing. I want to see "redundant" notifications of the failure both
from the SQL Agent backup job itself and the code that performs the backup.

6 – Monitoring and notifications

155

In order to demonstrate notifications for backup failures, I will need to set up a
backup job and intentionally make it fail, which is something that makes me
squeamish even when it's just for demonstration purposes. To keep things, simple,
for this demonstration, I'm going to use a script that backs up just a single
database, using the Red Gate extended stored procedure sql_backup. The script
is shown in Listing 6.2.

DECLARE @exitcode INT
DECLARE @sqlErrorCode INT
EXECUTE master..sqlbackup N'-SQL "BACKUP DATABASE [DBA_Rep] TO
DISK = ''D:\Backups\<AUTO>.sqb'' WITH COMPRESSION = 1,
MAILTO_ONERROR = ''rlandrum13@cox.net''"', @exitcode OUTPUT

IF(@exitCode > 0 OR @sqlErrorCode > 0)
BEGIN
 -- Raise Error
 RAISERROR ('SQL Backup failed', 16, 1)
END

Listing 6.2: Red Gate SQL Backup statement.

An important point to note about the backup code is use of the Mailto_Onerror
parameter. This tells the Red Gate extended stored procedure to use its own
native SMTP client to send an email notification, if there are any errors with the
backup. This is first line of defense for the DBA. If I were to run this code and
produce an error, I should immediately receive a detailed notification telling me
not only what database failed to backup (in this case, DBA_Rep) but also what the
cause of the failure was. That information is critical to resolving the issue going
forward so that is does not happen again.

If instead of using a third party tool I were to use native T-SQL code, for example
BACKUP DATABASE, I would capture any errors in a variable string and then email
the failures when the backup job completed using sp_send_dbmail, which I have
mentioned previously. This type of backup code requires some additional
scripting, of course. If you are familiar with SSIS, it is also possible, via a Database
Maintenance Plan, to add a step in to send mail upon failure. There are really
many options available to the DBA to get notifications from failed jobs.

OK, now to produce the backup failure. This is not actually quite as easy as it
might sound as it's generally a pretty robust process, and I would venture that
98% of backups succeed. To produce the required failure, I simply started a
backup of the DBA_Rep database to my 350G USB external hard drive and then
pulled out the connecting USB cable (subtle, I know).

In my dream world, the resulting error would say "Rodney Pulled the Plug on the
USB Hard Drive". It doesn't, of course, but the error message still provides some

6 – Monitoring and notifications

156

useful information, as you can see from Figure 6.6, which states that a "non-
recoverable I/O error occurred".

Figure 6.6: Error mail message from Red Gate SQL Backup.

At this point, I know that it was an I/O error that caused the failure, and I can
respond by attempting to backup the database again, and then looking deeper into
the issue.

If this error were caused by lack of disk space , as it often is, I would need to free
up enough disk space on the destination to accommodate the backup file, and
then re-run the backup. The failure message also contains key words like "error"
that I can use to trigger a higher level alert on my mobile device, associated with a
really obnoxious ring tone of the sort you will want to avoid in theatres or quiet
dinners with your loved one.

However, what if this message did not get delivered for whatever reason … who
knows, we might have changed mail servers and forgotten to update the Red Gate
mail client properties. I still need to get a notification if the backup fails. You will
have seen in Listing 6.2 that I intentionally wrapped error checking around the
backup statement. If the backup script fails, it should report this fact to the calling
process, which is generally a SQL Agent job, which can then send a notification,
via Database Mail.

In order to enable this notification mechanism, we first need to create a SQL
Agent Job that will run our custom backup script. To do this, simply right-click on
"SQL Server Agent" in SSMS and select New | Job. In the "General" section,
remember to name the job, in my case "Backup Database Test Failure" and then
give the job a valid category, in this case "Database Maintenance". Use of
meaningful job categories is valuable for reporting. In the DBA Repository, for
example, I run job reports based on each category of job.

Next, in the "Steps" section, select "New" and paste in the backup code from
Listing 6.2, so that your step looks as shown in Figure 6.7.

6 – Monitoring and notifications

157

Figure 6.7: Creating Job Step for backup code.

Click OK and then select the "Notifications" section. Click the box to enable the
E-mail action, and then from the drop down select the "DBA Team" operator
that we created earlier. The default action, which we'll accept, is to notify "When
the Job Fails," as shown in Figure 6.8.

Other options are available, such as mailing when the job succeeds or completes.
Perhaps you want to receive a notification when the backup job completes,
regardless of whether it fails. Click OK to create the job, and we are done.

For the sake of this demo, rather than schedule the job, I'm simply going to right-
click on it and select "Start Job at Step". Once the job starts, I yank out the USB
cable one more time. As expected, I have forced another backup failure, as you
can see in Figure 6.9.

6 – Monitoring and notifications

158

Figure 6.8: Selecting to be notified when the backup job fails.

Figure 6.9: Forcing the backup job to fail.

6 – Monitoring and notifications

159

Now, let me check my mail. Yep, everything worked as expected, and I receive,
almost instantaneously, two separate email notifications; one from the SQL Agent
job telling me the job itself failed and the other more detailed mail comes from the
code inside the job, as shown side-by-side in Figure 6.10.

Figure 6.10: Two separate mail notifications from two separate sources.

Performance issues

If, over a sandwich, you were to ask a DBA to describe the performance issues
that he or she has faced during the preceding year, you will, as the lunch drifts into
the late afternoon, probably start to regret not being more focused in your line of
questioning. All DBAs are faced with all manner of performance issues. If you
were to ask, "What is the worst performance issue you had in the past year," you
will get a contemplative stare to the ceiling, hand on chin, eyes scanning and
finally, "Oh yeah, there was that one time when … I found code from a website
application that was flagrantly misusing MARS (Multiple Active Result Sets)
connections and instead of having an expected 300 logical connections, there were
over 8500, each simultaneously eating into available RAM until the server slowed
to a crawl."

In other words, the question is not if DBAs are going to face performance issues
in their environment, but what types of problems they are going to encounter, and
how they can deal with them.

6 – Monitoring and notifications

160

In Chapter 5, DBA as Detective, I demonstrated how poorly-designed code can
bring your server to a crawl, and offered some remedial measures. In this chapter,
I want to shift the focus onto code that has been tested and approved and moved
to production but, once there, causes resource issues with regard to CPU, RAM or
Disk I/O.

It may not be that the code itself causes SQL Server to use too many resources; it
may be due more to some "confluence of circumstances," for example the code
running at the same time as a maintenance process, such as an index rebuild, or
code that results in an excessively high number of connections, at the time the OS
is also performing a memory-intensive process.

I am going to show how DBAs can be notified when such performance issues
arise, and then how to proactively respond to them before the Help Desk is called
or, worse, the user sends mail to you, your boss, your boss's boss and your mother
and father, all of whom will shake their heads disapprovingly. OK, maybe that is
just me, but you get the point.

If you are in an enterprise environment, chances are you already have a
monitoring solution in place for server administrators and you can piggy back off
that alerting system and, with luck, it will include SQL-specific alerts that allow
you to, for example, report blocked processes.

If you don't have this luxury, then you have two choices: build your own
monitoring solution, or buy in a third-party solution. While you can certainly build
your own, the cost in terms of time and resources is going to be high. You can, for
example, set up performance alerts using the native Windows Perfmon utility, or
by setting native SQL alerts, which are part of SQL Agent. However, scripting all
of these alerts requires some level of skill and patience.

Although I do not demonstrate setting native SQL Alerts in this chapter because,
to be quite honest, they are not part of my overall monitoring and notification
strategy, Figure 6.11 does show where you would go to do this, along with a few
samples of the type of events that you can monitor.

Native SQL Alerts also allow you to capture performance metrics, but only for
SQL performance counters, so disk space usage and CPU utilizations, for
example, would require additional consideration. This may require use of gain
Perfmon, or esoteric Windows Management Instrumentation (WMI) queries.

6 – Monitoring and notifications

161

Figure 6.11: Native SQL Alerts samples.

Alternatively, you can acquire a third-party monitoring solution that is not only
SQL-centric, but can be centrally managed. Once such product is Red Gate's SQL
Response. Price is definitely a consideration when choosing a monitoring solution
and, in my opinion, SQL Response works out to be much more affordable than
rolling your own. This is not a sales pitch; it is just a demonstration of a product
that is available to DBAs and one that happens to have become part of my tackle
box for performance monitoring and diagnostics.

The main performance metrics that you will want to monitor are CPU, Memory
and I/O. As an example of a typical performance alert, I am going to configure an
alert in SQL Response to monitor CPU utilization and then run a query that
should push the CPU utilization above a set threshold. Figure 6.12 shows the SQL
Response alert configuration window.

For this demonstration, I have customized the standard "CPU utilization unusual"
alert so that should fire if CPU utilization exceeds 70% for at least 5 seconds. The
default is 90% for 10 seconds, which is more in line with what you would
normally use to trigger this alert.

6 – Monitoring and notifications

162

Figure 6.12: Configuring CPU utilization alert in SQL Response.

Notice also that there is a "send email to:" box where you can enter a single or
group email address. Email notifications can be setup for all alerts or individually.
To set up the email server, simply click on "Configure Email", in the same alerts
window, and enter your SMTP email information, such as server name and reply
to account.

Now all I need to do is kick off a query that will raise the CPU above 70%
for more than 5 seconds. The code from the previous chapter, with a slight
modification to remove the "bad" code will work just fine, see Listing 6.3.
After all, some otherwise "acceptable" code will still require a lot of resources
to process.

DECLARE @SQL_Alphabet varchar(26)
SET @SQL_Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DECLARE @rnd_seed int
SET @rnd_seed = 26
DECLARE @DT datetime
SET @DT = '05/21/1969'
DECLARE @counter int
SET @counter = 1
DECLARE @tempVal NCHAR(40)

6 – Monitoring and notifications

163

WHILE @counter < 10000000000
 BEGIN
 SET @tempVal = SUBSTRING(@SQl_alphabet,
 Cast(RAND() * @rnd_seed as int) + 1,
 CAST(RAND() * @rnd_seed as int) + 1)
 SET @counter = @counter + 1
 END

Listing 6.3: Modified code to raise CPU levels for testing.

Of course, you won't generally know what code is causing the issue beforehand,
so we'll also need a way to find out what code is causing the spike in resource
utilization, so that it can be fine tuned to use fewer resources and so speed
performance for other contending processes.

I execute the query and wait. As the query is executing, I can monitor CPU
utilization using the System Information application, which can be launched from
Sysinternals Process Explorer (http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx), as shown in Figure 6.13.

Figure 6.13: Watching CPU utilization with System Information.

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx�
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx�

6 – Monitoring and notifications

164

You can certainly use Task Manager instead but I just happen to like the added eye
candy of System Information and Process Explorer. Once the CPU utilization has
hit 70% for 5 seconds, the alert is generated and emailed to me, as shown in
Figure 6.14.

Figure 6.14: Email notification from SQL Response of "unusual" CPU
utilization.

The alert contains limited information, but it would be easy to include in the mail
message a key word, such as "unusual", to trigger a Level 1 alert (a high level alert
for Blackberry users), since it is "unusual" to receive mail with the word "unusual"
in it. However, perhaps you might want to be more specific and use something
like "CPU activity unusual" to set the alert. At any rate, the alert did fire and so I
was made aware of a potential issue before users complained or processes failed.

With SQL Response, you can find out what caused the CPU spike simply by
turning on the tracing option that instructs SQL Response to capture the code
that was executing at the time that alert was generated. In order to enable this
feature, simply click on "Server Properties" and select "Enable collection of trace

6 – Monitoring and notifications

165

data" for the monitored server, as shown in Figure 6.15 (most other monitoring
solutions offer similar query gathering features).

Figure 6.15: Enabling the capture of trace data.

The trace data allows you to see what code is associated with the alert, or at least
to correlate the notification to the query that was running at the time the alert was
fired. Figure 6.16 shows the query that SQL Response collected with the alert,
which is indeed the query that I ran to trigger the high CPU utilization alert in the
first place.

Figure 6.16: Capturing the query that triggered high CPU.

With the query in hand you can begin the arduous task of tracking down the user
or process that has caused the issue. And once you find them you will have the
further unenviable task of informing them that their query has caused you much
pain and suffering. However, I have found that, as a team, everyone is open to
suggestions and few I have met in my travels through the data world really take

6 – Monitoring and notifications

166

offence at your scrutiny of their code. They have a job to do and they want to
excel just like you. If you tell them there is a problem they will genuinely listen and
try to fix it. As a DBA you have the ability to help and this team work is truly what
is required. You may not like being awoken at 2:00AM by an alert for high CPU
utilization, but it is important to not let that resentment spill over to other team
members. Use the knowledge to fix the issue so that it will not happen again.

Stopped services and disk space shortage

Low disk space and failing SQL Services are probably the two most prevalent
issues that a DBA will encounter. Stopped services are generally an issue when
there is a maintenance window that requires a restart of a server and the SQL
Agent service, for example, was not set to auto start. While this may happen once,
it generally does not happen again, because it usually means that other jobs have
not run, and if one of those jobs is a backup job things get ugly very quickly.

Fortunately, SQL Response can monitor and alert for both of these special
conditions. Figure 6.17 shows the SQL Response alerts for Disk Space and
stopped services, either the SQL Agent service or SQL Server service, or both.

Figure 6.17: Low disk space and SQL Server Agent not running.

6 – Monitoring and notifications

167

One of the things that I really like about SQL Response is that it alerts on the jobs
scheduled by the SQL Agent, even if the SQL Agent is not running. What this
means to me is that if I know I have a backup job set to run at 10:00 PM and the
SQL Agent, which has a job to execute that backup, is not running, then SQL
Response will not only notify me that the SQL Agent is not running but that that
job did not run as scheduled.

Disk space, as we have learned in previous chapters, can be compromised for a
number of reasons, including uncontrolled log growth, TempDB filling up, and so
on. As noted earlier, the DBA needs to be warned of the imminent danger while
there is still time to act, not when all space is gone. Figure 6.18 shows the
threshold setting for disk space in SQL Response.

Figure 6.18: Disk space notification for 85%.

Notice the alert is set to trigger when the disk has filled to 80% (and not 100%)
full, which gives you no time to plan a strategy, such as investigating log or
TempDB growth, or perhaps any large data file that is set to auto-grow by a very
high percentage.

6 – Monitoring and notifications

168

Summary

In most of the IT world, being a DBA is not a 9 to 5 job. Many organizations
have tens or hundreds of servers that must work around the clock and so,
sometimes, must DBAs. Notifications are necessary evils of the DBA world and
you will be asked to carry mobile devices that will go off at all times of the day,
and predictably at night, minutes after you have dozed off.

Servers do not sleep and nor do their scheduled jobs. Backup failures, though
not common, do happen and if you miss a backup because you were not notified
of the failure, then you run the risk of data loss. To the DBA and those
who manage DBAs and up the chain, data loss is unacceptable. You do not want
to be the one to tell your boss that a failed backup occurred and no one
responded and someone is desperately waiting for you to restore from the
previous night's backup.

Performance notifications are nearly as important. Time lost waiting for queries to
complete, especially those queries that block other queries, is not acceptable to
business. They do not want to know about the details of the code, they only want
it to work and work correctly. Finding the issue, as I have said, is the first step to
resolving it. With the tools and techniques outlined in this chapter, you should
be able to quickly find issues and resolve 95% of them before others are even
aware of them, which is what you ultimately desire. If you must bring up the
problem, you can safely do it after the fact, when it has been eradicated. Telling
your boss there was a problem and you were able to respond to it and resolve it is
much better than him or her asking you about a problem that you were totally
unaware of.

169

CHAPTER 7: SECURING ACCESS

TO SQL SERVER

Thus far in the book we have covered a lot of ground in terms of automating
processes, battling data growth, troubleshooting code and getting notification of
impending danger. Now, I want to turn to a subject that is also sure to be near and
dear to every DBA's heart, and that is security.

Securing SQL Server is a broad topic, worthy of an entire book in its own right.
However, when securing access to a SQL Server instance, most DBAs think first
of logins, users, or credentials; in other words, the mechanisms by which they
control access to their databases. Such mechanisms are certainly the first line of
defense when it comes to restricting access to the sensitive data that your
databases store and it is these "outer defenses" that are the focus of this chapter.

Of course, this aspect of security alone is a huge topic, and there is much work to
be done by the DBA, or security administrator, in creating and managing users,
logins and roles, assigning permissions, choosing authentication schemes,
implementing password policies, and so on. Here, however, I am going to assume
that this security infrastructure is in place, and instead focus on the techniques and
scripts that DBAs can use on a day-to-day basis to monitor and maintain the users
that have access to their databases, and their activity. Specifically, I'll show you
how to:

• Find out who has access to data.

• Find out when and how they accessed the data.

• Use a DDL trigger (created in Listing 1.2, in Chapter 1) to capture
activity on database objects, such as deleting a table.

• Implement a server-side trace to capture exactly what the users have been
doing on a SQL instance.

These scripts, collectively, can be rolled into our SQL Server tacklebox (otherwise
known as the DBA Repository) so that you will know at a glance what accounts or
groups have been granted access to the data on each of the servers you manage.

Overview of security challenges

As DBAs, believe it or not, we may not even be fully aware of exactly what data is
being housed within the walls or, more accurately, pages of the databases we
manage. We may know, for example, that the databases contain confidential

7 – Securing access to SQL Server

170

financial or healthcare data. However, without some investigation, we may not be
able to give you a granular description of the data or tell you exactly where it is
stored ("social security numbers are stored in the SSN field on table X"). More
often than not, the DBA, unless specifically requested, did not design the
underlying database.

What we do know is that there are many avenues leading to that data, and that we
have to defend every one of them; it is a heavy burden to bear. This data nestles
snuggly in the lower depths of indexes and tables, all potentially brought to light
by stored procedures written by developers and report writers that we have to
trust to write code that will prevent SQL Injection attacks, for example, or to store
passwords in encrypted form within the database.

DBAs not only have to be concerned about who has access to what resources, and
how, the primary topic of what I will cover in this chapter, but also about the
security of that data at rest and in transit. As we know and have covered
previously, data is migratory, so the data that resides on a server you manage will
not stay there for long. It will wind up in text files, possibly on the laptop of a
developer or log shipped to another location that you are also responsible for
where security is just as important. As data guardian (commonly now referred to
as Data Steward), you have to be familiar with all aspects of keeping that data safe
from unapproved viewers. Knowing all of the residences, even temporary, of the
data is vital; it could be on a network, on a tape, on a physical disk, in a report or
accessible to users who are writing ad hoc queries.

The introduction of Transparent Data Encryption (TDE) in SQL Server 2008 is a
welcome feature for many DBAs who heretofore had relied on non-SQL native
features to encrypt data and log files.

Encrypting network packets is another concern for companies with sensitive data
to protect. DBAs need to understand how to configure SQL Server to use secure
channel communications, via Secure Sockets Layer (SSL), in much the same way
you would configure a certificate for use on a Web application.

SQL Injection attacks are also a common concern for DBAs. If a breach of
security does occur, then the DBA needs to know about it immediately, and have
a means to close the security hole, and then track the path of the intrusion and
assess the damage caused. What's needed, assuming you don't run full C2-level
auditing on all of your servers, is a Server-side tracing solution, with filtering on a
range of criteria, and the ability to consolidate that collected data into a central
location for analysis, as I will demonstrate later in the chapter.

Though I cannot cover encryption techniques, or preventing SQL Injection
attacks or server side tracing, in this chapter I would like to provide several links
that I have found useful on these topics.

7 – Securing access to SQL Server

171

• Encryption using TDE
http://msdn.microsoft.com/en-us/library/bb934049.aspx

• Encrypting Network Connections to SQL Server
http://msdn.microsoft.com/en-us/library/ms189067.aspx

• Preventing SQL Injection Attacks
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx

Finding SQL logins, Windows users and groups

In this section I will share many queries from the tacklebox that I have used over
the years for discovering what accounts have been granted access to the SQL
Server instances I manage.

One of the earliest "security" scripts that I wrote was essentially just a simple
query that provided me with enough information that I could, at a glance, see
what Windows users and Windows groups, as well as SQL logins, had access to a
given server, and at what level of privilege. It is the privilege that is important to
me. You may think that, as a DBA, I would be intimately familiar with which users
had access to which servers, and with which permissions. This is certainly true if I
am managing 10 or even 20 servers. It only becomes a concern when I am asked
to manage 50 or more servers, many of which may have been in existence long
before my arrival on the scene.

The script is shown in Listing 7.1. It was originally written for SQL Server 2000
and 2005, but still works well for SQL Server 2008. I should note that, in SQL
Server 2005 and 2008, there are a few Security Catalog Views that can assist with
interrogating login information, like sys.sql_logins and sys.sql_principals.
However, I have found that, for my needs the query in Listing 7.1, against the old
syslogins system table, provides everything I need in one go.

SELECT CONVERT(char(100), SERVERPROPERTY('ServerName')) AS
Servername,
 sid,
 status,
 createdate,
 updatedate,
 accdate,
 totcpu,
 totio,
 spacelimit,
 timelimit,
 resultlimit,
 name,
 dbname,
 password,

http://msdn.microsoft.com/en-us/library/bb934049.aspx�
http://msdn.microsoft.com/en-us/library/ms189067.aspx�
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx�

7 – Securing access to SQL Server

172

 language,
 denylogin,
 hasaccess,
 isntname,
 isntgroup,
 isntuser,
 sysadmin,
 securityadmin,
 serveradmin,
 setupadmin,
 processadmin,
 diskadmin,
 dbcreator,
 bulkadmin,
 loginname
FROM master..syslogins

Listing 7.1: Querying Master..syslogins.

Having taken a look at the big picture, I then use a pared-down version of the
same query, shown in Listing 7.2, which returns fewer columns and only those
rows where the logins have sysadmin privileges.

SELECT loginname,
 sysadmin,
 isntuser,
 isntgroup,
 createdate
FROM master..syslogins
WHERE sysadmin = 1

Listing 7.2: The scaled down Syslogins query.

This query returns the name of each login that has sysadmin privileges, indicates
whether the login is a Windows user (isntuser), or a Windows Group
(isntgroup), and shows the date the login was created. Table 7.1 shows some
sample results.

loginname sysadmin isntuser isntgroup createdate

BUILTIN\Administrators 1 0 1 8/24/07

Server1\SQLServer2005
MSSQLUser
$Server1$MSSQLSERVER

1 0 1 8/24/07

Server1\SQLServer2005
SQLAgentUser
$Server1$MSSQLSERVER

1 0 1 8/24/07

7 – Securing access to SQL Server

173

loginname sysadmin isntuser isntgroup createdate

NT AUTHORITY\SYSTEM 1 1 0 8/24/07

Apps1_Conn 1 0 0 9/9/08

sa 1 0 0 4/8/03

RodDom\rodney 1 1 0 1/21/09

RodDom\All_DBA 1 0 1 5/26/09

Table 7.1: Results of query for syslogins.

The results reveal that we have two SQL logins, two Windows users and four
windows groups who have sysadmin privileges. Let's take a look at each group
in turn.

Windows users

The two Windows users are RodDom\rodney and NT Authority\System. The
former is my own Windows account, and the latter is a "built-in" local system
account, which is automatically a member of the SQL Server sysadmin fixed
server role. Generally, neither of these are a primary concern. If you find you have
a high number of accounts that have sysadmin privileges, especially in production
systems, it is worth investigating further to understand why. It is much more
secure to provide the users with only the privileges they need, which for anyone
other than the administrators of the instance, should be read only.

SQL logins

For SQL Logins, there are two: sa and Apps1_Conn. The presence of the latter
brings up an aspect of security that is tiresome for many DBAs, namely the
presence of the ubiquitous "application account".

Many applications use their own mechanism for securing data or, more accurately,
the functioning of the application. For example, it is common practice to have an
application that makes all of its connections through a single login, usually of
escalated privileges, and then controls individual access via logins that it stores in
various "application tables" within the database.

As a DBA, when I discover these escalated privileges on a SQL Server instance, I
start to ask questions. When it is determined that the application account does not
need the escalated admin privileges and so they can be reduced, I feel I have made

7 – Securing access to SQL Server

174

headway and can rest assured that one more potentially compromising hole has
been plugged.

Sometimes, however, this level of access is "business justified" and there is little
the DBA can do but fume silently. The problem for the DBA is that there are no
individual SQL logins to audit and, unless there is an internal auditing mechanism,
there is often no auditing, full stop. What is worse is that many developers know
the credentials of these application accounts so can use them to login to
production systems, as they see fit. The DBA is often defenseless in this scenario.

Nevertheless, the DBA should still audit connections via this account, and be on
the lookout for any instances where this account information is used to initiate a
connection from a source other than the application itself. I am not trying to
throw a damp towel on developers, or produce a tell-all book about their
nefarious deeds. However, in my time I have witnessed some "interesting"
authentication techniques, and I would be remiss if I did not point out the pitfalls
of some of these methods, in as much as they are not fully auditable and are prone
to abuse.

Let's assume for now, though, that the application we are concerned with uses
valid SQL or Windows AD accounts to connect to the database, and move on.

NOTE
If you are interested in discovering more about how to capture and analyze
connections over time, please read my article on gathering connection
information at:
http://www.simple-talk.com/sql/database-administration/using-ssis-to-
monitor-sql-server-databases-/

Windows groups

If a Windows user is granted access to database objects, say for running ad hoc
queries, then I highly recommend granting that access though a Windows group.
It makes life much easier for the DBA who is responsible for granting, revoking,
and otherwise reporting on, levels of access. Instead of having to administer 20 or
more individual users, all needing the same level of access, only one group is
needed. Furthermore, due to segregation of duties, it is often the Windows Server
Administrator who will ultimately be responsible for adding and/or removing the
user to the group via Windows administrative tools such as Active Directory Users
and Computers.

One of the caveats when using Windows groups, however, is that a default
schema cannot be defined for a Windows group, meaning that developers or
architects in a group will have to remember to qualify all objects to the schema
level. So, for example, they would need to use Create dbo.tablename, instead of

http://www.simple-talk.com/sql/database-administration/using-ssis-to-monitor-sql-server-databases-/�
http://www.simple-talk.com/sql/database-administration/using-ssis-to-monitor-sql-server-databases-/�

7 – Securing access to SQL Server

175

just CREATE tablename. I believe, though, that this caveat, which really is just
best practice anyway, is not enough to stop you from pushing for access via
Windows groups, where you can.

Returning to Table 7.1, we see that there are five rows that correspond to
Windows Groups. Two of these are created during the installation of SQL Server,
one for the SQL Agent user:

And one for SQL Server:

Server1\SQLServer2005MSSQLUser$Server1$MSSQLSERVER

I am not worried so much about these accounts because a general search of these
local groups, via "Manage Computer | Local Users and Groups", reveals that
there are no members other than NT Authority\System, which I already know has
sysadmin privileges.

For the other two groups, RodDom\All_DBA and Builtin\Administrators,
however, I would like to know the members. The latter is another built-in local
account that I find surprising has not been removed from SQL Server instances. It
is certainly best practice and, in SQL Server 2008, Microsoft finally has taken this
view and does not include this group with the base install of the database engine.

I could open Active Directory Users and Computers, or even Computer Manager,
two common tools for managing Windows accounts at the domain and local
computer level, to see who has local administrative rights on the SQL Server I am
managing. However, there surely has to be a better way, within SQL Server, to
look up the members of the groups, right? Yes there is and that is what I am going
to cover in the next section.

Find Windows Active Directory group membership

At this point, I have identified several logins that have sysadmin privileges on my
SQL Server, including two Windows groups, one of which is created default in
SQL Server 2000 and 2005 (Builtin\Administrators), and one of which was
added manually at some point (RodDom\All_DBA). What I need to know now is:
who are the members of these groups?

SQL Server has an extended stored procedure called xp_logininfo that will
provide me with this information. However, it would be quite an arduous task to
work through, server by server, group by group, executing xp_logininfo to
retrieve the members of each these groups. Instead, I wrote a script, saved in the
DBA Repository, which automatically runs through each group in turn and
returns this information, to be stored in the same central location for analysis.

7 – Securing access to SQL Server

176

Before unveiling this query, it should be noted that there are certain caveats. In my
experience, xp_logininfo does not work well if there are cross domain issues,
whereby the local Active Directory cannot deliver the account information when
users from external, trusted domains have been added. If you receive errors such
as the one shown in Listing 7.3, then you know that there is some issue, external
to SQL Server, that is preventing you from interrogating that particular group.

Msg 15404, Level 16, State 3, Procedure xp_logininfo, Line 42
Could not obtain information about Windows NT group/user

Listing 7.3: Cross domain issues when using xp_logininfo.

If you narrow the scope of your query to just Builtin\Administrators, it
always works, in my experience.

The second "caveat" is that the query uses a … cursor … but it is limited in scope
so I take this one liberty. I normally eschew cursors, but my mentor, many years
ago, used cursors and never apologized, so this is an homage to her as she is no
longer with us … thank you Kelly. The query, warts, cursors and all, is shown in
Listing 7.4.

SET NoCount ON
SET quoted_identifier OFF

DECLARE @groupname VARCHAR(100)

IF EXISTS (SELECT *
 FROM tempdb.dbo.sysobjects
 WHERE id =
OBJECT_ID(N'[tempdb].[dbo].[RESULT_STRING]'))
 DROP TABLE [tempdb].[dbo].[RESULT_STRING];

CREATE TABLE [tempdb].[dbo].[RESULT_STRING]
(Account_Name VARCHAR(2500),
type varchar(10),
Privilege varchar(10),
Mapped_Login_Name varchar(60),
Group_Name varchar(100))

DECLARE Get_Groups CURSOR
 FOR Select
name from master..syslogins
where
isntgroup = 1 and status >= 9 or Name= 'BUILTIN\ADMINISTRATORS'

-- Open cursor and loop through group names
OPEN Get_Groups
FETCH NEXT FROM Get_Groups INTO @groupname

7 – Securing access to SQL Server

177

WHILE (@@fetch_status <> -1)
 BEGIN
 IF (@@fetch_status = -2)
 BEGIN
 FETCH NEXT FROM Get_Groups INTO @groupname
 CONTINUE
 END

--Insert SQL Commands Here:
Insert into [tempdb].[dbo].[RESULT_STRING]
Exec master..xp_logininfo @Groupname, 'members'

 FETCH NEXT FROM Get_groups INTO @groupname
 END

DEALLOCATE Get_Groups

Alter TABLE [tempdb].[dbo].[RESULT_STRING] Add Server
varchar(100) NULL;

GO

Update [tempdb].[dbo].[RESULT_STRING] Set Server =
CONVERT(varchar(100), SERVERPROPERTY('Servername'))

-- Now Query the temp table for users.

SET NoCount OFF
SELECT [Account_Name]
 ,[type]
 ,[Privilege]
 ,[Mapped_Login_Name]
 ,[Group_Name]
 ,[Server]
 FROM [tempdb].[dbo].[RESULT_STRING]

Listing 7.4: Get list of groups to interrogate for members.

The results of the query can be seen in Table 7.2. Notice the Account_Name field
corresponds with the Group_Name field. For example, I can see that there are
several users, including one called Server1\rodlan, who are members of the
Builtin\Administrators group. These users would have been invisible to me
without this query. The RodDom\All_DBA group has a single user,
Rodlan\rlandrum. I know from the syslogins query that RodDom\All_DBA is a
sysadmin.

7 – Securing access to SQL Server

178

Account_
Name

type Privilege
Mapped_Login_
Name

Group_Name Server

Server1\
Administrator

user admin
Server1\
Administrator

BUILTIN\
Administrators

Server1

Server1\
ASPNET

user admin
Server1\
ASPNET

BUILTIN\
Administrators

Server1

Server1\
rodlan

user admin
Server1\
rodlan

BUILTIN\
Administrators

Server1

Server1\
rodlanew

user admin
Server1\
rodlanew

BUILTIN\
Administrators

Server1

RodDom\
Domain
Admins

group admin
RodDom\
Domain Admins

BUILTIN\
Administrators

Server1

RodDom\
Server_Support

group admin
RodDom\
System_Support

BUILTIN\
Administrators

Server1

RodDom\
rlandrum

user admin
RodDom\
rlandrum

BUILTIN\
Administrators

Server1

RodDom\
rlandrum

user admin
RodDom\

rlandrum

RodDom\
All_DBA

Server1

Table 7.2: Finding Windows group members with SQL.

Now I can place the emphasis not on the group but on the members of this
group, and begin questioning why a particular user is a member of a group that
has sysadmin privileges.

However, it's not only the sysadmin privilege that can be dangerous in the wrong
hands. Any user that has more than the minimum privileges required to do their
job is potentially a threat. Remember, I use words like "threat" and "danger"
because, as DBA, I feel I am responsible for all activity on the SQL Servers that I
manage. If a user gets into one of my databases as a result of obtaining some
elevated privilege, and accidentally drops or truncates a table, I am ultimately
responsible for getting the data back. It does happen.

Knowing that a user dropped or truncated a table does not undo the damage. The
user should not have had access to begin with. However, if you do not even know
what happened, you will be even worse off in the long run. Techniques such as
DLL triggers and Server Side Traces will provide you with knowledge of

7 – Securing access to SQL Server

179

modifications made to database objects, such as which user account performed
the action and when.

I will describe both DDL triggers and Server Side traces at the end of the chapter.
Now, I move on from the Server level to the database level, and to SQL users and
database roles.

Find SQL users at the database level

This next query from the security tacklebox dives into each database, looking for
accounts and their access to said database. This query interrogates user
information that is stored in the sysusers system tables, in each individual
database, and so an iterative method is needed to plod through every database that
we wish to investigate. The sys.users table is superseded by
sys.database_prinicapls in SQL Server but still works in all current versions.

My solution, shown in Listing 7.5, uses my favorite Microsoft-provided stored
procedure, sp_MSForEachDB, to do most of the work for me. This stored
procedure takes a query as input, with "?" as a variable mapping for the database
name. So, for example,[?]..sysusers equates to "each sysusers table in each
database on the server".

IF EXISTS (SELECT *
 FROM tempdb.dbo.sysobjects
 WHERE id =
OBJECT_ID(N'[tempdb].[dbo].[SQL_DB_REP]'))
 DROP TABLE [tempdb].[dbo].[SQL_DB_REP] ;
GO

CREATE TABLE [tempdb].[dbo].[SQL_DB_REP]
 (
 [Server] [varchar](100) NOT NULL,
 [DB_Name] [varchar](70) NOT NULL,
 [User_Name] [nvarchar](90) NULL,
 [Group_Name] [varchar](100) NULL,
 [Account_Type] [varchar](22) NULL,
 [Login_Name] [varchar](80) NULL,
 [Def_DB] [varchar](100) NULL
)
ON [PRIMARY]

INSERT INTO [tempdb].[dbo].[SQL_DB_REP]
 Exec sp_MSForEachDB 'SELECT CONVERT(varchar(100),
SERVERPROPERTY(''Servername'')) AS Server,
''?'' as DB_Name,
usu.name u_name
,CASE

7 – Securing access to SQL Server

180

 WHEN (usg.uid is null) then ''public''
 ELSE usg.name
 END as Group_Name
,CASE
 WHEN usu.isntuser=1 then ''Windows Domain Account''
 WHEN usu.isntgroup = 1 then ''Windows Group''
 WHEN usu.issqluser = 1 then ''SQL Account''
 WHEN usu.issqlrole = 1 then ''SQL Role''
 END as Account_Type
 ,lo.loginname
 ,lo.dbname as Def_DB

FROM
 [?]..sysusers usu LEFT OUTER JOIN
 ([?]..sysmembers mem INNER JOIN [?]..sysusers usg ON
mem.groupuid = usg.uid) ON usu.uid = mem.memberuid
 LEFT OUTER JOIN master.dbo.syslogins lo on usu.sid =
lo.sid

WHERE
 (usu.islogin = 1 and usu.isaliased = 0 and usu.hasdbaccess =
1) and
 (usg.issqlrole = 1 or usg.uid is null)'

SELECT [Server],
 [DB_Name],
 [User_Name],
 [Group_Name],
 [Account_Type],
 [Login_Name],
 [Def_DB]
FROM [tempdb].[dbo].[SQL_DB_REP]

Listing 7.5: Finding SQL users and roles.

This particular query does not deal so much with sysadmin privileges but more
with high database level privileges. For example, it investigates membership of the
db_owner database role, which can perform all configuration and maintenance
activities on a database. The DBA can also use it to investigate membership of
other database roles that may have been created to serve a purpose, such as the
execution of stored procedures.

The results of this query will instantly let the DBA know if any users have
escalated privileges of which he or she was previously unaware. Table 7.3 shows
some sample results from executing this query (due to space restrictions I omitted
the Server column; the value was Server1 in each case).

7 – Securing access to SQL Server

181

DB_Name User_Name
Group_
Name

Account
_Type

Login_
Name

Def
_DB

DBA_Rep dbo db_owner
Windows
Domain
Account

RodDom\
rodney

master

ReportServer dbo db_owner
Windows
Domain
Account

RodDom\
rodney

master

ReportServer
NT
AUTHORITY\
SYSTEM

RSExecRole
Windows
Domain
Account

NT
AUTHORITY\
SYSTEM

master

Custom_HW dbo db_owner
SQL
Account

sa master

Custom_HW
HWC
Development

db_owner
Windows
Group

NULL NULL

Custom_HW JimV db_owner
Windows
Domain
Account

NULL NULL

Custom_HW jyoungblood public
Windows
Domain
Account

NULL NULL

Custom_HW RN public
Windows
Group

NULL NULL

Table 7.3: Escalated database privileges.

In addition to illuminating membership of the db_owner role, notice that there are
also some potentially orphaned HWC Development users in the Custom_HW
database, as indicated by the NULL value in the Login_Name field. This generally
happens when you restore a database from one server to another server where the
logins do not exist, and would warrant further investigation.

If it were determined that these are indeed orphaned users, or groups, then I
would add the accounts to the target system and execute
sp_change_users_login for SQL logins, or add the Windows user or group
account for non-SQL login accounts.

7 – Securing access to SQL Server

182

Loading up the DBA repository with security data

As described in Chapter 2, I use the DBA repository as a central documentation
tool, where I store all relevant information regarding my servers. I use an SSIS
package to execute my maintenance scripts against all of the servers in my care,
and store the results in the central repository, for analysis. Security information is a
vital part of this. Figure 7.1 shows the objects in the DBA Repository SSIS
package that execute the previously-described three security queries against all of
the servers I specify, so that I can interrogate all potential security issues from one
source.

Figure 7.1: Security queries in DBA Repository SSIS package for multiple
servers.

NOTE
Chapter 2 provides further details of the DBA repository, and how to use the
associated SSIS package.

In addition to analysis, being able to find individual users by name makes finding
and removing these users very easy. This is especially important when a user leaves
the organization, for example. Yes, if the access to database objects was made via
a Windows user or group then disabling the account in Windows Active Directory
will alleviate the security risk. However, if the account was an SQL account that
the user had access to, there is still a potential risk. Having the combined data of
all three types of logins insures that a successful removal of the account occurs.

Finding service accounts with WMIC

The next query has been quite useful to me over the years. It uses WMIC
(Windows Management Instrumentation Console), along with xp_cmdshell, and

7 – Securing access to SQL Server

183

allows me to find out what service accounts are set up to run SQL Server, and
other services such as Analysis Services and SQL Agent. Service credentials
control access to various resources, like network shares. It is important that you
know whether you are running SQL Server as "local system", which will not have
access to external resources, for example, or a valid Windows service account,
which will have access to said resources.

There are manual ways to obtain this information, but who wants manual when
you can get the information quickly with a few simple lines of T-SQL code?
Granted, this trick requires xp_cmdshell, the use of which is a habit I roundly
condemn in others but tolerate in myself. Such is the nature of the DBA (well, this
DBA anyway).

Listing 7.6 shows the fairly simple query that uses xp_cmdshell, Windows WMIC
and a few other functions from the text parsers grab bag, like LEN() and
CHARINDEX():

IF @@microsoftversion / power(2, 24) >= 9
BEGIN
 EXEC sp_configure 'show advanced options', 1
 RECONFIGURE WITH OVERRIDE

 EXEC sp_configure 'xp_cmdshell', 1

 RECONFIGURE WITH OVERRIDE

END

IF EXISTS (SELECT Name
 FROM tempdb..sysobjects
 WHERE name LIKE '#MyTempTable%')
 DROP TABLE #MyTempTable

Create Table #MyTempTable
 (
 Big_String nvarchar(500)
)
Insert Into #MyTempTable
 EXEC master..xp_cmdshell 'WMIC SERVICE GET
Name,StartName | findstr /I SQL'

-- show service accounts

Select @@ServerName as ServerName,
 Rtrim(Left(Big_String, charindex(' ', Big_String)))
as Service_Name,
 RTrim(LTrim(Rtrim(Substring(Big_String, charindex('
', Big_String),
 len(Big_String))))) as
Service_Account

7 – Securing access to SQL Server

184

from #MyTempTable

IF @@microsoftversion / power(2, 24) >= 9

 EXEC sp_configure 'xp_cmdshell', 0

 RECONFIGURE WITH OVERRIDE

 EXEC sp_configure 'show advanced options', 0
 RECONFIGURE WITH OVERRIDE

Listing 7.6: Query to show service credentials.

The first thing the script does is to check whether I am executing this query
against a version of Microsoft SQL Server 2005 or higher:

IF @@microsoftversion / power(2, 24) >= 9

The reason for this is that xp_xmdshell has to explicitly be enabled in 2005 and
beyond, whereas in SQL Server 2000 it is enabled by default, but one has to have
the required privileges to execute it.

If the version is SQL Server 2005 or higher, the script uses sp_configure to
enable advanced options followed by xp_cmdshell. I then create a temp table,
selfishly called #MyTempTable, and fill it with the output from the Windows
Management Instrumentation Command line utility (WMIC).

I pipe (what is this, UNIX?) the output to grep, sorry I mean the findstr
command, searching for the value "SQL" in the result set. Next, I parse the long
text string that is returned, called Big_String, into the temporary table.

The end result, shown in Table 7.4, is a useful list of all SQL services and the
accounts that have been configured as login accounts for each service.

ServerName Service_Name Service_Account

Server1 msftesql$SRVSAT LocalSystem

Server1 MSSQL$SRVSAT RodDom\rodney

Server1 MSSQLSERVER RodDom\rodney

Server1 MSSQLServerADHelper
NT AUTHORITY\
NetworkService

Server1 MSSQLServerADHelper100
NT AUTHORITY\
NETWORK SERVICE

7 – Securing access to SQL Server

185

ServerName Service_Name Service_Account

Server1 MSSQLServerOLAPService LocalSystem

Server1 SQLAgent$SRVSAT LocalSystem

Server1 SQLBackupAgent LocalSystem

Server1 SQLBackupAgent_SRVSAT LocalSystem

Server1 SQLBrowser LocalSystem

Server1 SQLSERVERAGENT LocalSystem

Server1 NULL NULL

Table 7.4: Service credentials query results.

While I do not use this query often, it always saves me many frustrating minutes
of trying to manually find the same information, via tools such as Computer
Management and Services.

Surveillance

To this point, I have focused on finding logins, users, groups and service
accounts. The queries presented so far have all been useful for managing many
hundreds if not thousands of accounts, all with some level of privilege to my SQL
Server instances.

However, knowing who has access to the data, and what level of access they have,
is only one aspect of security I want to touch on in this chapter. It is also crucial
for the DBA to track such actions as failed login attempts and to audit, as far as
possible, the actions of users once they are in amongst the data.

In this section, I will introduce three surveillance techniques to help with these
issues: Error Log interrogation with T-SQL, DDL Triggers and Server-side
Tracing.

Error log interrogation

Unlike a lot of DBAs that I know, I do not scour the SQL Error logs daily. I tend
to review them when looking for a specific error, or when conducting a periodic
security review. It is not that I think it is a waste of time to do it, I just think that I

7 – Securing access to SQL Server

186

would much prefer to read the logs with T-SQL. Fortunately, SQL Server offers
two stored procedures to make this possible, namely sp_enumerrorlogs and
sp_readerrolog.

As Figure 7.2 shows, sp_enumerrorlogs simply lists the available SQL Server
error logs.

Figure 7.2: Querying the SQL Server error logs with sp_enumerrorlogs.

The procedure sp_readerrorlog accepts the Archive #, from
sp_enumerrorlogs, as input and displays the error log in table form, as shown in
Figure 7.3, where you can see that the first archived log file (1) is passed in as a
parameter. Archive number 0 refers to the current error log.

It is possible to load and query every error log file by combining the two stored
procedures with a bit of iterative code. Listing 7.7 shows the custom code used to
loop through each log file, store the data in a temp table, and subsequently query
that data to find more than five consecutive failed login attempts, as well as the
last good login attempt.

In order for this to work, you will need to enable security logging for both
successful and failed logins, as most production servers should do. This can be
configured via the Security tab of the Server Properties. Finally, note that this
query will only work for SQL Server 2005 and 2008.

7 – Securing access to SQL Server

187

Figure 7.3: Using sp_readerrorlog.

DECLARE @TSQL NVARCHAR(2000)
DECLARE @lC INT

CREATE TABLE #TempLog (
 LogDate DATETIME,
 ProcessInfo NVARCHAR(50),
 [Text] NVARCHAR(MAX))

CREATE TABLE #logF (
 ArchiveNumber INT,
 LogDate DATETIME,
 LogSize INT
)

INSERT INTO #logF
EXEC sp_enumerrorlogs
SELECT @lC = MIN(ArchiveNumber) FROM #logF

WHILE @lC IS NOT NULL
BEGIN
 INSERT INTO #TempLog
 EXEC sp_readerrorlog @lC
 SELECT @lC = MIN(ArchiveNumber) FROM #logF
 WHERE ArchiveNumber > @lC
END

7 – Securing access to SQL Server

188

--Failed login counts. Useful for security audits.
SELECT Text,COUNT(Text) Number_Of_Attempts
FROM #TempLog where
 Text like '%failed%' and ProcessInfo = 'LOGON'
 Group by Text

--Find Last Successful login. Useful to know before deleting
"obsolete" accounts.
SELECT Distinct MAX(logdate) last_login,Text
FROM #TempLog
where ProcessInfo = 'LOGON'and Text like '%SUCCEEDED%'
and Text not like '%NT AUTHORITY%'
Group by Text

DROP TABLE #TempLog
DROP TABLE #logF

Listing 7.7: Searching for failed login attempts.

The results of this query are shown in Figure 7.4.

Figure 7.4: Querying for successful and unsuccessful login attempts.

We can see that there is a "BadPerson" out there who has tried 15 times to access
this server. The second result set shows the st successful login for a certain
account, retrieved using the MAX() function for the last_login field.

While this particular example probes login attempts for security auditing purposes,
the same solution can be easily tweaked to accommodate all manner of error log
analysis, from database errors to backup failures.

7 – Securing access to SQL Server

189

DDL triggers

In Chapter 1, I included in the Configuration script (Listing 1.2) code to create a
DDL trigger that would alert the DBA to any database creation or deletion (drop).
I'm now going to demonstrate how to use this to track DDL actions, and what
you can expect to see with this DDL trigger enabled on your SQL Servers.

DDL (Data Definition Language) triggers are very similar to the DML (Data
Manipulation Language) triggers, with which you are undoubtedly familiar. DDL
triggers can be scoped at either the database or server level, meaning they can be
set to fire when a particular statement, such as ALTER TABLE, is issued against a
specific database, or when a DDL statement is issued at the server level, such as
CREATE LOGIN.

Listing 7.7 shows the code to create the DDL trigger, AuditDatabaseDDL, which
you may have missed amongst everything else going on in Listing 1.2.

Notice that the scope of the trigger, in this case, is ALL SERVER. The Eventdata()
function is employed to set the values of the variables that will ultimately be
mailed to the DBAs when the DDL event occurs, in this case when a database is
created or dropped from the server where the trigger is created.

--Setup DDL Triggers
--Setup Create Database or Drop Database DDL Trigger

/****** Object: DdlTrigger [AuditDatabaseDDL]
 Script Date: 02/05/2009 19:56:33 ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TRIGGER [AuditDatabaseDDL]
ON ALL SERVER
FOR CREATE_DATABASE, DROP_DATABASE
AS

DECLARE @data XML,
 @tsqlCommand NVARCHAR(MAX),
 @eventType NVARCHAR(100),
 @serverName NVARCHAR(100),
 @loginName NVARCHAR(100),
 @username NVARCHAR(100),
 @databaseName NVARCHAR(100),
 @objectName NVARCHAR(100),
 @objectType NVARCHAR(100),
 @emailBody NVARCHAR(MAX)

7 – Securing access to SQL Server

190

SET @data = EVENTDATA()
SET @tsqlCommand =
EVENTDATA().value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]
','nvarchar(max)')
SET @eventType =
EVENTDATA().value('(/EVENT_INSTANCE/EventType)[1]','nvarchar(ma
x)')
SET @serverName =
EVENTDATA().value('(/EVENT_INSTANCE/ServerName)[1]','nvarchar(m
ax)')
SET @loginName =
EVENTDATA().value('(/EVENT_INSTANCE/LoginName)[1]','nvarchar(ma
x)')
SET @userName =
EVENTDATA().value('(/EVENT_INSTANCE/UserName)[1]','nvarchar(max
)')
SET @databaseName =
EVENTDATA().value('(/EVENT_INSTANCE/DatabaseName)[1]','nvarchar
(max)')
SET @objectName =
EVENTDATA().value('(/EVENT_INSTANCE/ObjectName)[1]','nvarchar(m
ax)')
SET @objectType =
EVENTDATA().value('(/EVENT_INSTANCE/ObjectType)[1]','nvarchar(m
ax)')

SET @emailBody = + '--------------------------------' +
CHAR(13)
 + '- DDL Trigger Activation Report -' +
CHAR(13)
 + '--------------------------------------' +
CHAR(13)
 + 'Sql Command: '
 + ISNULL(@tsqlCommand, 'No Command Given') +
CHAR(13)
 + 'Event Type: '
 + ISNULL(@eventType, 'No Event Type Given') +
CHAR(13)
 + 'Server Name:
 ' + ISNULL(@serverName, 'No Server Given') +
CHAR(13)
 + 'Login Name: '
 + ISNULL(@loginName, 'No LOGIN Given') +
CHAR(13)
 + 'User Name: '
 + ISNULL(@username, 'No User Name Given') +
CHAR(13)
 + 'DB Name: '
 + ISNULL(@databaseName, 'No Database Given') +
CHAR(13)

7 – Securing access to SQL Server

191

 + 'Object Name: '
 + ISNULL(@objectName, 'No Object Given') +
CHAR(13)
 + 'Object Type: '
 + ISNULL(@objectType, 'No Type Given') +
CHAR(13)
 + '---';

EXEC msdb..sp_send_dbmail @profile_name='Admin Profile',
@recipients='yourmail@yourmail.com', @subject='DDL Alteration
Trigger', @body=@emailBody

GO

SET ANSI_NULLS OFF
GO

SET QUOTED_IDENTIFIER OFF
GO

ENABLE TRIGGER [AuditDatabaseDDL] ON ALL SERVER
GO

Listing 7.8: DDL trigger for database creates and drops.

With the trigger enabled, it is easy enough to test, simply by creating a database on
the server (CREATE DATABASE TEST_TRIGGER). As expected, and as shown in
Figure 7.5, the mail comes in and I can see the captured events, including the
username that created the database, as well as the time.

Figure 7.5: Mail from DDL trigger for database creation.

7 – Securing access to SQL Server

192

With only a slight modification to the DDL trigger, I can also be notified of any
login creations on the server, with a simple addition of CREATE LOGIN to the FOR
statement of the CREATE TRIGGER statement:

CREATE TRIGGER [AuditDatabaseDDL]
ON ALL SERVER
FOR CREATE_DATABASE, DROP_DATABASE, CREATE LOGIN

Listing 7.9: Tracking login creation.

With the new trigger in place I can attempt to also create a login, as shown in
Listing 7.10.

CREATE LOGIN RogerKennsingtonJones WITH PASSWORD =
'MyPassword12'

Listing 7.10: RogerKensingtonJones, we know you exist. Don't try anything
funny.

Again, as expected I receive the mail notification that the account has been
created. At that point, the reaction would be one of concern, but at least I know
that I have several scripts available that will allow me to get to the bottom of who
created this account, why, and what privileges it has.

Server-side tracing

Most DBAs will have experienced the scenario whereby a red-faced
program/development manager storms up to them and demands to know why his
ultra-critical tables keep getting truncated, and who is doing it.

The problem is that in order to get a complete picture of your server at a
transactional level, you need either full time Profiler tracing, or to enable C2 level
auditing; both of which come at a high cost. These auditing tools will not only
slow down your servers considerably, but the drive space required in order to keep
a record of each transaction on your server is daunting, at best.

The solution I offer here presents a "lightweight" alternative. It is rooted in the
idea that issues in a system will inevitably show up more than once. If you are
having consistent issues with data loss, or unwanted record modification, then this
collection of stored procedures may help you out. With this set of scripts, you can:

• Capture trace information about a server, on a set schedule.

• Filter the captured data to suit your needs.

• Archive the data for future auditing.

7 – Securing access to SQL Server

193

This solution also allows the trace data to be stored in our central DBA repository
so you don't have scattered auditing information cluttering up your individual
instances.

Tracing stored procedures

The two stored procedures I present here offer a quick way to automatically
enable customizable profiler traces on your SQL servers, as well as to centrally
store trace information from any number of machines.

The code for handling the trace data is slightly different between SQL 2000 and
SQL 2005, but the overall functional logic is essentially the same in each case. I
provide both versions of the script in the code download for this book at

http://www.simple‐talk.com/RedGateBooks/
RodneyLandrum/SQL_Server_Tacklebox_Code.zip.

The first script, usp_startTrace, is shown in Listing 7.11 and is used to initiate
the customizable trace. This stored procedure handles all the tasks of setting up
the tracing events, creating the trace file, setting up filters and starting the actual
trace. The script is set up to look at five different trace events, and these happen
to be the same default events that Profiler monitors, which are:

• Login Events

• Logout Events

• RPC Completion Events

• SQL Batch Completion Events

• SQL Batch Start Events

The script first looks to see if a trace with the name defined is already running.
This is done by querying the central data storage server. This central storage is a
linked server that has a database with the tables required to store and query this
information. Again, the script files to create this database on your linked server are
included in the code download to this book.

Once the trace name has been checked, the script sets up a trace that matches the
parameters you have supplied. This includes the ability to filter any of the trace
event data columns with a keyword. The most common filter use will be on the
text data column, which holds the T-SQL code run by a user.

Finally, the script stores the trace information in the central auditing database for
future use.

http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�
http://www.simple-talk.com/RedGateBooks/RodneyLandrum/SQL_Server_Tacklebox_Code.zip�

7 – Securing access to SQL Server

194

USE [msdb]
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

/*
 Procedure Name : usp_startTrace

 Parameter 1 : traceName - Unique identifier of trace [Req]
 Parameter 2 : traceFile - Physical file to hold trace data
while running [Req]
 Parameter 3 : maxFileSize - Maximum size that traceFile can
grow to [Default: 5MB]
 Parameter 4 : filterColumn - Trace event data column to
filter results on [Default: 0]
 Parameter 5 : filterKeyword - Keyword used when filterColumn
is defined [Default: NULL]
*/
CREATE PROCEDURE [dbo].[usp_startTrace]
 @traceName NVARCHAR(50),
 @traceFile NVARCHAR(50),
 @maxFileSize BIGINT = 5,
 @filterColumn INT = 0,
 @filterKeyword NVARCHAR(50) = NULL
AS

 SET NOCOUNT ON

 -- Test for trace existence in the Trace_IDs table, alert
user if trace is invalid
 -- Change linked server name here
 IF EXISTS (
 SELECT * FROM MYSERVER123.DBA_Info.dbo.Trace_IDs
 WHERE (TraceName = @traceName OR TraceFile = @traceFile)
 AND TraceServer = SERVERPROPERTY('ServerName')
)
 BEGIN
 PRINT('Trace ' + @traceName + ' already exsists or the
file is in use, please choose another name/file')
 RETURN
 END

 /*
 Variable Declaration

 traceError - Will hold return code from sp_trace_create
to validate trace creation
 TraceID - Will hold the system ID of the newly created
trace

7 – Securing access to SQL Server

195

 on - Used byb sp_trace_setevent to turn on data columns
for particular events
 */
 DECLARE @traceError INT,
 @TraceID INT,
 @on BIT
 SET @on = 1

 -- Create the trace and store the output in traceError, then
test traceError for failure
 -- and alert the user if the trace cannot be started
 EXEC @traceError = sp_trace_create @TraceID output, 0,
@traceFile, @maxFileSize, NULL

 IF @traceError <> 0
 BEGIN
 PRINT('Trace could not be started: ' + @traceError)
 RETURN
 END

 -- Add events that we want to collect data on for the trace
 -- Audit Login events (14)
 exec sp_trace_setevent @TraceID, 14, 1, @on
 exec sp_trace_setevent @TraceID, 14, 9, @on
 exec sp_trace_setevent @TraceID, 14, 6, @on
 exec sp_trace_setevent @TraceID, 14, 10, @on
 exec sp_trace_setevent @TraceID, 14, 14, @on
 exec sp_trace_setevent @TraceID, 14, 11, @on
 exec sp_trace_setevent @TraceID, 14, 12, @on
 -- Audit Logout events (15)
 exec sp_trace_setevent @TraceID, 15, 15, @on
 exec sp_trace_setevent @TraceID, 15, 16, @on
 exec sp_trace_setevent @TraceID, 15, 9, @on
 exec sp_trace_setevent @TraceID, 15, 13, @on
 exec sp_trace_setevent @TraceID, 15, 17, @on
 exec sp_trace_setevent @TraceID, 15, 6, @on
 exec sp_trace_setevent @TraceID, 15, 10, @on
 exec sp_trace_setevent @TraceID, 15, 14, @on
 exec sp_trace_setevent @TraceID, 15, 18, @on
 exec sp_trace_setevent @TraceID, 15, 11, @on
 exec sp_trace_setevent @TraceID, 15, 12, @on
 -- ExistingConnection events (17)
 exec sp_trace_setevent @TraceID, 17, 12, @on
 exec sp_trace_setevent @TraceID, 17, 1, @on
 exec sp_trace_setevent @TraceID, 17, 9, @on
 exec sp_trace_setevent @TraceID, 17, 6, @on
 exec sp_trace_setevent @TraceID, 17, 10, @on
 exec sp_trace_setevent @TraceID, 17, 14, @on
 exec sp_trace_setevent @TraceID, 17, 11, @on
 -- RPC:Completed events (10)
 exec sp_trace_setevent @TraceID, 10, 15, @on
 exec sp_trace_setevent @TraceID, 10, 16, @on

7 – Securing access to SQL Server

196

 exec sp_trace_setevent @TraceID, 10, 1, @on
 exec sp_trace_setevent @TraceID, 10, 9, @on
 exec sp_trace_setevent @TraceID, 10, 17, @on
 exec sp_trace_setevent @TraceID, 10, 10, @on
 exec sp_trace_setevent @TraceID, 10, 18, @on
 exec sp_trace_setevent @TraceID, 10, 11, @on
 exec sp_trace_setevent @TraceID, 10, 12, @on
 exec sp_trace_setevent @TraceID, 10, 13, @on
 exec sp_trace_setevent @TraceID, 10, 6, @on
 exec sp_trace_setevent @TraceID, 10, 14, @on
 -- SQL:BatchCompleted events (12)
 exec sp_trace_setevent @TraceID, 12, 15, @on
 exec sp_trace_setevent @TraceID, 12, 16, @on
 exec sp_trace_setevent @TraceID, 12, 1, @on
 exec sp_trace_setevent @TraceID, 12, 9, @on
 exec sp_trace_setevent @TraceID, 12, 17, @on
 exec sp_trace_setevent @TraceID, 12, 6, @on
 exec sp_trace_setevent @TraceID, 12, 10, @on
 exec sp_trace_setevent @TraceID, 12, 14, @on
 exec sp_trace_setevent @TraceID, 12, 18, @on
 exec sp_trace_setevent @TraceID, 12, 11, @on
 exec sp_trace_setevent @TraceID, 12, 12, @on
 exec sp_trace_setevent @TraceID, 12, 13, @on
 -- SQL:BatchStarting events (13)
 exec sp_trace_setevent @TraceID, 13, 12, @on
 exec sp_trace_setevent @TraceID, 13, 1, @on
 exec sp_trace_setevent @TraceID, 13, 9, @on
 exec sp_trace_setevent @TraceID, 13, 6, @on
 exec sp_trace_setevent @TraceID, 13, 10, @on
 exec sp_trace_setevent @TraceID, 13, 14, @on

 -- If a filter has been used, setup the filter column
 -- and the keyword using sp_trace_setfilter
 IF @filterColumn > 0
 BEGIN
 EXEC sp_trace_setfilter @traceID, @filterColumn, 0, 6,
@filterKeyword
 END

 -- Set the trace to status 1, running
 EXEC sp_trace_setstatus @TraceID, 1

 -- Log all needed trace information in the Trace_IDs table
using the linked repository server
 -- Change linked server name here
 INSERT INTO MYSERVER123.DBA_Info.dbo.Trace_IDs
 (TraceName, TraceID, TraceFile, TraceServer)
 VALUES
 (@traceName, @TraceID, @traceFile,
CONVERT(nvarchar(128), SERVERPROPERTY('ServerName')))

7 – Securing access to SQL Server

197

 -- Notify user of trace creation
 PRINT('Trace Started')
 SET NOCOUNT OFF

GO

Listing 7.11: usp_startTrace.

Remember that the structure of the trace_data table in version-dependent, and
the one shown in Listing 7.11 is specific to SQL Server 2005 (the SQL 2000
equivalent is in the download). The central storage database can house both 2000
and 2005 data, but will use different tables depending on the version. The stored
procedures are also version dependant and are respectively named. The reason for
the slight difference is that the two versions handle trace data differently and have
slightly differing schema.

The second script, usp_stopTrace, is shown in Listing 7.12 and uses the data
stored about the trace to archive the data and to close the trace after completion.

USE [msdb]
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

/*
 Procedure Name : usp_stopTrace

 Parameter 1 : traceName - Unique identifier of trace to be
stopped [Req]
*/
CREATE PROCEDURE [dbo].[usp_stopTrace]
 @traceName NVARCHAR(50)
AS

 SET NOCOUNT ON

 /*
 Variable Declaration

 traceID - Will hold the ID of the trace that will be
stopped and archived
 traceFile - The physical file to export data from
 command - Variable to hold the command to clean the
traceFile from the server
 */
 DECLARE @traceID INT,
 @traceFile NVARCHAR(100),

7 – Securing access to SQL Server

198

 @command NVARCHAR(150)

 -- Test for the trace via name in the repository, if it
exsists proccess it, if not alert the user
 -- Change linked server name here
 IF EXISTS (
 SELECT * FROM MYSERVER123.DBA_Info.dbo.Trace_IDs
 WHERE TraceName = @traceName
 AND TraceServer = SERVERPROPERTY('ServerName')
)
 BEGIN
 -- Gather the traceID and traceFile from the respository
 -- Change linked server name here
 SET @traceID = (SELECT TraceID FROM
MYSERVER123.DBA_Info.dbo.Trace_IDs WHERE TraceName = @traceName
AND TraceServer = SERVERPROPERTY('ServerName'))
 -- Change linked server name here
 SET @traceFile = (SELECT TraceFile FROM
MYSERVER123.DBA_Info.dbo.Trace_IDs WHERE TraceName = @traceName
AND TraceServer = SERVERPROPERTY('ServerName'))

 -- Set the status of the trace to inactive, then remove
the trace from the server
 EXEC sp_trace_setstatus @traceID, 0
 EXEC sp_trace_setstatus @traceID, 2

 -- Archive the older trace data and remove all records to
make room for the new trace data
 -- Change linked server name here
 INSERT INTO MYSERVER123.DBA_Info.dbo.trace_archive SELECT
* FROM MYSERVER123.DBA_Info.dbo.trace_table

 -- Change linked server name here
 DELETE FROM MYSERVER123.DBA_Info.dbo.trace_table

 -- Change linked server name here
 INSERT INTO MYSERVER123.DBA_Info.dbo.trace_table SELECT *
FROM ::fn_trace_gettable(@traceFile + '.trc', default)

 -- Remove the existing trace file for future use
 SET @command = 'DEL ' + @traceFile + '.trc'
 EXEC xp_cmdshell @command

 -- Delete the trace information from the repository
 -- Change linked server name here
 DELETE FROM MYSERVER123.DBA_Info.dbo.Trace_IDs WHERE
TraceName = @traceName AND TraceServer =
SERVERPROPERTY('ServerName')

 -- Alert the user that the trace has been stopped and
archived
 PRINT('Trace ' + @traceName + ' Stopped and Archived')

7 – Securing access to SQL Server

199

 RETURN
 END

 -- Alert the user that the trace was not found in the
repository
 PRINT('Trace ' + @traceName + ' Not Found')

 SET NOCOUNT OFF

GO

Listing 7.12: usp_stopTrace.

The procedure takes only one parameter, traceName, which it uses to query the
central server to retrieve all of the data that was stored by the usp_startTrace
script. This information includes the name, trace id and trace file. Once the data
has been received, the trace is stopped and the records from the trace_data
table are archived into the trace_archive table. The new trace file is then
pushed into the trace_data table. So, you can always find the newest trace data
in the trace_data table and any older trace information in the trace_archive
table.

The trace file is then deleted from the server, via xp_cmdshell, and the trace
identity is removed from the central repository to free up the trace name and id
for future use.

Implementation

There are just a few steps that you will need to take in order to get these trace
procedures working correctly in your environment.

• Choose a main repository for your trace data, and modify the procedures
to point to the machine on which you want to store the trace data. For
example, I have my database, DBA_Info, residing on a test machine. Any
version of SQL Server will work for the storage of data; the differences
in the scripts are only due to changes in definitions of data collected in
the traces.

• Create a new database for the trace data, using the create database/table
scripts included in the source code zip file, to hold all of this data. You
only need to run the create scripts for the version of the script you will
be using, or both if you will be using the procedures on multiple
machines, utilizing both SQL 2000 and SQL 2005. The results from
either version are stored in separate tables so your repository database
can contain both 2000 and 2005 archive trace data.

7 – Securing access to SQL Server

200

• Set up a user with read/write permissions on the central storage database,
to be used for the linked server credentials.

• Use the new user credentials you have just made to setup a linked server
on the SQL Server that you want to run an automated trace on.

• In the usp_startTrace and usp_stopTrace scripts, locate the calls (all
noted in the comments) that point to a generic linked server
(MYSERVER123) and modify them to reflect the name of your central
trace data repository server.

• Run the create scripts on each of the servers that will be performing the
traces.

Once these stored procedures are installed, you can begin starting and stopping
traces via a query window/query analyzer or through SQL Agent jobs.

Testing

Here is a quick example that demonstrates how to find the cause of all this grief
for our beloved program manager. Create a new SQL Agent job to kick off at 5:30
PM (after business hours) involving only one step, as shown in Figure 7.6. In this
step, execute the start trace procedure, with the parameters needed to gather only
the data relevant to the issue at hand.

Figure 7.6: Create a SQL Agent job to run usp_startTrace.

7 – Securing access to SQL Server

201

This will produce a trace named TruncateTrace. The trace file will be stored in
the root of the C drive. The maximum space the trace file should take is 10 MB
and we will place a filter on the first column (text data) looking for any instances
of the word "truncate".

The last three parameters are optional and will be defaulted to 5 (trace file size in
MB), 0 (no trace column) and NULL (no filter keyword) respectively. If you do
not specify these parameters then a bare bones trace will be created with a
maximum file size of 5 MB, and it will perform no filtering, so you will get all
available data from the trace events.

Alternatively, create another job to run at 6:00 AM, calling the usp_stopTrace
giving the same trace name, as shown in Figure 7.7.

Figure 7.7: Create a SQL Agent job to run usp_stopTrace.

7 – Securing access to SQL Server

202

This will stop any trace named TruncateTrace on this particular server and
export all of the collected data into the repository table (trace_table or
trace2k_table) on the linked data collection server.

Any older information will have been archived to the trace_archive (or
trace2k_archive) table. All data is marked with the server name so we can still
filter the archive table to look at older data from any server. The trace file is also
cleaned up from the traced server so the filename will be available for future use.
This will require that xp_cmdshell is available for use by the SQL Agent service
account. From this point, all we have to do is look through our newly acquired
trace_table data for the suspect.

I hope that these scripts can make life a little easier for those of you out there who
do not run full auditing on all of your SQL servers. The trace scripts can easily be
modified to include other columns and other trace events. I am presenting this as
a spring board for any DBA out there that needs an automated solution for
profiler tracing. If you do want to add any event or trace columns, I would look to
http://msdn2.microsoft.com/en-us/library/ms186265.aspx for a complete list of
all trace events and available data columns.

In an event, the next time you encounter a red-face program manager, demanding
to know who truncated his tables, much job satisfaction can be gained from being
able to respond something along the lines of:

"So <Manager Name>, we have been tracing that server all week and it seems that one of the
DTS packages you wrote, and have running each night, is the problem. It is truncating the table
in question each morning at 4:00 AM. Don't be too hard on yourself though. We all make
mistakes."

Summary

All SQL Server DBAs are tasked with securing the SQL Servers they manage.
While it is not the most glamorous of tasks, it is one of, if not the most, important
aspects of being a DBA. This is especially true in a world where compromised
data results in large fines, humiliation and potential loss of the coveted job that
you were hired to do.

Knowing who has access to the data you oversee if the first step. Working to
alleviate potential threats, either harmfully innocent or innocently harmful, is
essential. The scripts provided here will assist you in isolating and resolving these
threats. There is so much more to securing SQL Server and I have only touched
on the obvious first line, user accounts and logins, error logs, DDL triggers, and
server-side tracing.

7 – Securing access to SQL Server

203

Next and last up is the topic of data corruption, which ranks right up there with
security in terms of threats to the integrity of the DBA's precious data. I'll show
you how to detect it and how to protect yourself and your databases and most
importantly what to do when you realize you have a problem … which statistically
speaking, you will eventually. Be afraid; I saved the monster at the end of the book
until the end of the book. Don't turn the data page.

204

CHAPTER 8: FINDING DATA

CORRUPTION

I have mentioned a couple for times previously the monster at the end of this
book. This being the final chapter, it is time for the monster to be revealed. The
monster can be a silent and deceptive job killer. It can strike at once or lay in wait
for weeks before launching an attack. No, I am not talking about developers; I am
talking about database corruption.

If you have been a DBA for long enough, you will have encountered the data
corruption monster in at least one of its many forms. Often corruption occurs
when there is a power failure and the server, rather than shutting down gracefully,
simply dies in the middle of processing data. As a result of this, or some other
hardware malfunction, data or indexes become corrupt on disk and can no longer
be used by SQL Server, until repaired.

Fortunately, there are several steps you can take to protect your data, and equally
important your job, in the event of data corruption. First and foremost, it should
go without saying that not having a good backup strategy is equivalent to playing
Solitary Russian Roulette. However, I'll also demonstrate a few other techniques,
based around the various DBBC commands, and a script that will make sure
corruption issues are discovered and reported as soon as they occur, before they
propagate through your data infrastructure. Hopefully, suitably armed, the DBA
can limit the damage caused by this much-less-friendly version of the monster at
the end of the book.

P.S. If you are unfortunate enough never to have read The Monster at the End of This
Book (by Jon Stone, illustrated by Michael Smollin. Golden Books), starring the
lovable Grover Monster from Sesame Street, you have firstly my sympathy and
secondly my apologies, because the previous references will have meant little to
you. I can only suggest you buy it immediately, along with The Zombie Survival Guide
(by Max Brooks, Three Rivers Press), and add them both to your required reading
list for all new DBAs.

Causes of corruption

There are many ways that a database can become "corrupt". Predominantly it
happens when a hardware malfunction occurs, typically in the disk subsystem that
is responsible for ensuring that the data written to disk is the exact same data that
SQL Server expected to be written to disk when it passed along this responsibility

8 – Finding data corruption

205

to the operating system, and subsequently the disk controller driver and disk itself.
For example, I have seen this sort of data corruption caused by a power outage in
the middle of a transaction.

However, it is not just disk subsystem failures that cause data corruption. If you
upgrade a database from SQL Server 2000 to SQL Server 2005 or 2008, and then
interrogate it using the corruption-seeking script provided in this chapter, you may
be surprised to find that you will receive what can be construed as errors in the
database files. However, fortunately these are just warnings regarding space usage
between versions, and there are recommended steps to address the issue, such as
running DBCC UPDATEUSAGE.

Whatever the cause, the DBA does not want to live in ignorant bliss of possible
corruption for any length of time. Unfortunately, the corruption monster is often
adept at hiding, and will not rear its head until you interact with the corrupt data.
By this time, the corruption may have worked its way into your backup files and,
when falling through to your last resort of restoring the database, you may simply
restore the same corruption. The importance of a solid, regular backup strategy
cannot be overstated (so I will state it quite often). On top of that, you need a
script or tool that will regularly check, and report on any corruption issues, before
it's too late. I'll provide just such a script in this chapter.

Consequences of corruption

As noted in the previous section, most of the time corruption occurs due to failure
in an external hardware source, like a hard disk controller or power supply. SQL
Server 2005, and later, uses a feature called Page Checksum to detect potential
problems that might arise from this. This feature creates a checksum value during
writes of pages to, and subsequent reads from, disk. Essentially, if the checksum
value read for a page does not match what was originally written, then SQL Server
knows that the data was modified outside of the database engine. Prior to SQL
Server 2005, but still included as an option, is Torn Page Detection, which
performs similar checks.

If SQL Server detects a corruption issue, it's response to the situation will vary
depending on the scale of the damage. If the damage is such that the database is
unreadable by SQL Server then it would be unable to initialize and load that
database. This would require a complete restore of the database in almost all cases.

If the damage is more contained, perhaps with only one or two data pages being
affected, then SQL Server should still be able to read and open the database, and
at that stage we can use tools such as DBCC to assess and hopefully repair the
damage. Bear in mind, too, that as part of your overall backup and restore
procedure, you have the ability to perform a page level restore, if perhaps you only

8 – Finding data corruption

206

need to restore 1 or more data pages. For additional information on restoring
pages from database backups, please see: http://msdn.microsoft.com/en-
us/library/ms175168.aspx

Before moving on, I should note that, while I typically leave these options enabled
for all instances, both Torn Page Detection and Page Checksum incur overhead
and it is possible to disable them. The idea is that if you trust your disk subsystem
and power environment then you may not need to have these options turned on,
if performance is the highest concern. Most disk subsystems today have battery
backup to ensure write activity completes successfully.

You can use sp_dboption for SQL 2000 to enable or disable Torn Page
Detection. For SQL Server 2005, and above, you can use the ALTER DATABASE
command to enable either torn page detection or checksum (you are not
permitted to have both on at the same time), or you can use none to disable them
both.

Fighting corruption

Aside from having frequent and tested backups, so that you can at least return to a
version of the data from the recent past, if the absolute worst happens, the well-
prepared DBA will have some tools in his tacklebox that he can use to pinpoint
the location of, and hopefully repair, any corrupt data.

However, before I dive in with the equivalent of a machete in a bayou, I should let
you know that I am by no means an expert in database corruption. Like you, I am
a just a day-to-day DBA hoping with all hope that I do not encounter corrupt
databases, but wanting to be as well-prepared as I can be in case it happens.

As such, I'm going to maintain my focus on the practicalities of the tools and
scripts that a DBA can use to fight corruption, mainly revolving around the use of
the DBCC family of commands.

I will not dive too deeply into the bowels of the SQL Server storage engine, where
one is likely to encounter all manner of esoteric terms that refer to how SQL
Server allocates or maps data in the physical file, such as GAM pages (Global
Allocation Map), SGAM, pages (Shared GAM), PFS pages (Page Free Space),
IAM chains (Index Allocation Map), and more. For this level of detail I can do no
better than to point you towards the work of Paul Randal:

http://www.sqlskills.com/BLOGS/PAUL/category/Corruption.aspx.

He has done a lot of work on the DBCC tool, is a true expert on the topic of data
corruption, and is certainly the man with the most oxygen in the tank for the
required dive.

http://msdn.microsoft.com/en-us/library/ms175168.aspx�
http://msdn.microsoft.com/en-us/library/ms175168.aspx�
http://www.sqlskills.com/BLOGS/PAUL/category/Corruption.aspx�

8 – Finding data corruption

207

DBCC CHECKDB

DBCC CHECKDB is the main command the DBA will use to test and fix consistency
errors in SQL Server databases. DBCC has been around for many years, through
most versions of SQL Server. Depending on who you ask, it stands for either
Database Consistency Checks or Database Console Commands, the latter of
which is more accurate since DBCC includes commands that fall outside the
scope of just checking the consistency of a database.

For our purpose, though, we are concerned only with consistency and integrity of
our databases. DBCC CHECKDB is actually an amalgamation of other DBCC
commands, DBCC CHECKCATALOG, DBCC CHECKALLOC and DBCC CHECKTABLE.
Running DBCC CHECKDB includes these other commands so negates the need to
run them separately.

In order to demonstrate how to use this, and other tools, to seek out and repair
data corruption, I'm first going to need to create a database, and then perform the
evil deed of despoiling the data within it. If we start from scratch, it will make it
easier to find and subsequently corrupt data and/or index pages, so let's create a
brand new, unsullied database, aptly named "Neo". As you can see in Figure 8.1,
there are no objects created in this new database. It is pristine.

Figure 8.1: New database NEO with no objects.

Just to prove that NEO is not yet corrupt, we can run the DBCC CHECKDB command,
the output of which is shown in Figure 8.2.

8 – Finding data corruption

208

Figure 8.2: No reported errors with database NEO.

As expected, there are no reported consistency or allocation errors, but that will all
change very shortly. I had mentioned that there is a monster at the end of this
book and it is not lovable old Grover from Sesame Street.

Please do not go on to the next page!

8 – Finding data corruption

209

DBCC PAGE

Aha, you are still reading I see. Well, before we unleash the monster, I want to
show you one more very important DBCC command, of which you may not be
aware, namely DBCC PAGE. It's "officially" undocumented, in that Microsoft does
not support it, but in reality I have found piles of information on this command
from well known and respected sources, like Paul Randal, so I no longer consider
it undocumented.

The syntax is simple:

dbcc page ({'dbname' | dbid}, filenum, pagenum [,
printopt={0|1|2|3}])

However, the output of the command can be quite daunting to the uninitiated
DBA. So before we introduce the monster that corrupts databases, I want to run
DBCC PAGE against the NEO database. The command is as follows:

DBCC PAGE (NEO,1,1,3)

The first "1" is the file number of the data file, the second "1" is the page number,
and the final "3" is the print option which, depending on value chosen (0-3)
returns differing levels of information. A value of "3" indicates that we want to see
both page header information, as well as details. The not-very-exciting results are
shown in Figure 8.3.

Figure 8.3: DBCC PAGE default results.

The reason that they are not very exciting is that we forgot to turn on an
important trace flag (3604). If you are a SQL Server and not familiar with trace
flags then please give me a call and we can talk over a beer or two. Really, I do not
mind and I would welcome the camaraderie and chance to be pedantic.

For now, though, I'll simply note that in order to see output of the DBCC PAGE
command, we need to run another DBCC command called DBCC TRACEON.
Specifically:

DBCC TRACEON (3604)

8 – Finding data corruption

210

Figure 8.4 shows the output from rerunning DBCC PAGE, with this trace flag
turned on.

Figure 8.4: DBCC PAGE with trace flag 3604 turned on.

At the bottom of the output I can see that pages 1:172 – 1:383 are not allocated,
and all pages are 0% full. Recall, this is a database with no tables or any other
objects created and with no data inserted.

So, let's now create a simple table and insert some data into it. The script to do
this in is shown in Listing 8.1. It creates a table in the NEO database, called ONE,
and inserts into it 1000 records (well, 999 really). Simple stuff, but the important
point in the context of this example is that this data load will cause additional
pages to be allocated to the database and be filled with data, and I'll be able to
home in on these new pages.

8 – Finding data corruption

211

USE [NEO]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[ONE]') AND type in (N'U'))
DROP TABLE [dbo].[ONE]
GO

CREATE TABLE [dbo].[ONE](
 [NEOID] [int] NULL,
 [NEOTEXT] [nchar](50) NULL
) ON [PRIMARY]

GO

BEGIN Tran T_Time

DECLARE @SQL_Alphabet varchar(26)
SET @SQL_Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DECLARE @rnd_seed int
SET @rnd_seed = 26
DECLARE @counter int = 1
WHILE @counter < 1000
 BEGIN
 Insert Into ONE
 Values (
 @counter,
 (select SUBSTRING (@SQl_alphabet,
 Cast(RAND() * @rnd_seed as int) + 1,
 CAST(RAND() * @rnd_seed as int) + 1)
)
)
 SET @counter = @counter + 1

 END
Commit Tran T_Time

Listing 8.1. Creating and populating the ONE table.

Figure 8.5 shows the sample data that was inserted.

8 – Finding data corruption

212

Figure 8.5: Sample data in the ONE table.

From Figure 8.4, I already know that, for our empty database, pages 1:172 – 1:383
were unallocated. Re-running DBCC PAGE should reveal that more pages have been
allocated to accommodate this data, and that those pages have different
percentages of fullness. Figure 8.6 shows the new results.

8 – Finding data corruption

213

Figure 8.6: New Pages added to NEO database after loading data.

I can see that pages 1:184 – 1:189, for example, are now allocated and are 100
percent full. Having identified one of the new pages (1:184) that contains the data
that I just loaded, I can run DBCC PAGE again for that specific page and return a
basket full of information, as shown in Figure 8.7.

8 – Finding data corruption

214

Figure 8.7 Individual records from page 1:184.

I can see, for example, that it returns the actual value for both NEOID and
NEOTEXT, 553 and UVWXYZ respectively. It also returns a hex dump (10006c00
29020000…) that specifies the specific location in the data file where the record
with NEOID 533 is stored.

If you are not an expert in reading hexadecimal then fear not; neither am I at this
point. I do know, however, that using this information I will be able to find this
exact same record and modify it outside of SQL Server, which will really wreak
some havoc. For that however, I will need my trusty hexadecimal editor, which I
will discuss shortly.

8 – Finding data corruption

215

Corruption on data pages

We know that our ONE table, in the NEO database, is a heap, so any corruption
we induce is going to be directly on the data pages, rather than on any non-
clustered index.

The latter case is actually more favorable as the data in the index is a "duplicate"
and so it is relatively easy to repair the damage. We'll cover this latter case after
we've looked at inducing, and hopefully recovering from, corruption of the data in
our heap table.

Putting a Hex on the data

There are many hexadecimal editors out there in the world, many of them free or
at least free to try out. For this chapter, I downloaded a trial version of one called,
ironically, Hex Editor Neo, by HHD Software.

What a Hexadecimal editor allows the DBA to do is simply open and view the
contents of a file, in this case the data file. While it is an interesting exercise, I
would only recommend it for testing or training purposes as it is a very dangerous
tool in inexperienced hands.

What I want to do here is use this hexadecimal editor to "zero out" data in a single
database file, in fact in a single data page. This will cause the required corruption,
mimicking a hardware problem that has caused inconsistent information to be
written to disk, without making the database unreadable by SQL Server.

And though I have not stated it heretofore …

Do not go any further without first backing up the database!

The data that I am fixing (that is a Southern expression) to zero out resides on the
data page revealed in Figure 8.7, namely 1:184. In order to corrupt the data on this
page, I first need to shutdown SQL Server, so that the parent data file,
C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\NEO.mdf,
is not in use.

Next, I simply open Hex Editor Neo and find the location of the one record
with NEOID= 553 and NEOTEXT ="UVWXYZ", that we identified using the DBCC
PAGE previously.

Most hexadecimal editors, Hex Editor Neo included, have the ability to search for
values within the data file. Here, referring back to the DBBC PAGE information for
page 1:184, I simply search for the value 10006c00 29020000 to find record 553.
As you can see in Figure 8.8, the record in the Hex editor looks almost identical to
the output of the previous DBCC PAGE command.

8 – Finding data corruption

216

Figure 8.8: Opening the database file in Hex Editor Neo.

Next, I am simply going to make just one small change to the data, zeroing out
"U" in the record, by changing 55 to 00. That is it. Figure 8.9 shows the change.

Figure 8.9: Zeroing out a valid data value.

8 – Finding data corruption

217

Next I save the file, and close the Hex editor, which you have to do otherwise the
date file will be in use and you will be unable to initialize the database, and start
SQL Server. Now, at last, we are about to unleash the monster …

Confronting the Corruption Monster

At first glance all appears fine. The NEO database is up and available, and no errors
were reported in the Event Log. In Management studio, I can drill into the objects
of the database, including the ONE table, without issue. However, if I try to query
the table with SELECT * FROM ONE, something frightening happens, as shown in
Listing 8.2.

Msg 824, Level 24, State 2, Line 1

SQL Server detected a logical consistency-based I/O error:

incorrect checksum (expected: 0x9a3e399c; actual: 0x9a14b99c).

It occurred during a read of page (1:184) in database ID 23 at

offset 0x00000000170000 in file

'C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\DATA\NEO.mdf'. Additional messages in the

SQL Server error log or system event log may provide more detail.

This is a severe error condition that threatens database

integrity and must be corrected immediately.

Complete a full database consistency check (DBCC CHECKDB). This

error can be caused by many factors; for more information, see

SQL Server Books Online.

Listing 8.2: Corruption strikes the ONE table.

This is indeed the horror show that DBAs do not want to see. It is obviously a
very severe error and major corruption. This error will be thrown each time record
553 is included in the query results, and so any table scan will reveal the problem.

This has to be fixed quickly. Fortunately, we took a backup of the database prior
to corrupting the data file so if all else fails I can resort to that backup file to
restore the data. It is critical, when dealing with corruption issues, that you have
known good backups. Unfortunately, in the real world, it's possible this corruption
could have gone undetected for many days, which will mean that your backups
will also carry the corruption.

If this is the case then, at some point you may be faced with accepting the very
worst possible scenario, namely data loss. Before accepting that fate, however, I
am going to ace down the monster, and see if I can fix the problem using
DBCC CHECKDB.

8 – Finding data corruption

218

There are many options for DBCC CHECKDB and I'll touch on only a few of them
here. DBCC CHECKDB has been enhanced many times in its life and received major
re-writes for SQL Server 2005 and above. One of the best enhancements for the
lone DBA, working to resolve corruption issues, is the generous proliferation of
more helpful error messages.

So, let's jump in and see how bad the situation is and what, if anything, can be
done about it. To begin, I will perform a limited check of the physical consistency
of the database, with the following command:

DBCC CHECKDB('neo') WITH PHYSICAL_ONLY;
GO

Figure 8.10 shows the results which are, as expected, not great.

Figure 8.10: The DBCC report on the corruption.

The worst outcome is the penultimate line, which tells me that
REPAIR_ALLOW_DATA_LOSS is the minimal repair level for the errors that were
encountered. This means that we can repair the damage by running DBCC CHECKDB
with the REPAIR_ALLOW_DATA_LOSS option but, as the name suggests, it will
result in data loss.

There are two other repair levels that we would have preferred to see:
REPAIR_FAST or REPAIR_REBUILD. The former is included for backward
compatibility and does not perform repairs of 2005 database. If the minimal repair
option had been REPAIR_REBUILD, it would have indicated that the damage was
limited to, for example, a non-clustered index. Such damage can be repaired by
rebuilding the index, with no chance of data loss.

In general, it is recommended that you use the repair options of DBCC CHECKDB
that may cause data loss only as a last resort, a restore from backup being the
obvious preferable choice, so that the data will remain intact. This, of course,
requires that the backup itself be uncorrupt.

For this exercise, however, I am going to act on the information provided by DBCC
CHECKDB and run the minimal repair option, REPAIR_ALLOW_DATA_LOSS. The

8 – Finding data corruption

219

database will need to be in single user mode to perform the repair, so the syntax
will be:

ALTER DATABASE NEO SET SINGLE_USER WITH ROLLBACK IMMEDIATE
GO
DBCC CHECKDB('neo', REPAIR_ALLOW_DATA_LOSS)
GO

The results of running the DBCC CHECKDB command are as shown in Listing 8.3.

DBCC results for 'ONE'.

Repair: The page (1:184) has been deallocated from object ID

2121058592, index ID 0, partition ID 72057594039042048, alloc

unit ID 72057594043301888 (type In-row data).

Msg 8928, Level 16, State 1, Line 1

Object ID 2121058592, index ID 0, partition ID 72057594039042048,

alloc unit ID 72057594043301888 (type In-row data): Page (1:184)

could not be processed. See other errors for details.

 The error has been repaired.

Msg 8939, Level 16, State 98, Line 1

Table error: Object ID 2121058592, index ID 0, partition ID

72057594039042048, alloc unit ID 72057594043301888 (type In-row

data), page (1:184). Test (IS_OFF (BUF_IOERR, pBUF->bstat))

failed. Values are 29362185 and -4.

 The error has been repaired.

There are 930 rows in 14 pages for object "ONE".

Listing 8.3: The error is repaired, but data is lost.

The good news is that the errors have now been repaired. The bad news is that it
took the data with it, deallocating the entire data page from the file. Notice, in
passing, that the output shows an object ID for the table on which the corruption
occurred, and also an index ID, which in this case is 0 as there are no indexes on
the table.

So, at this point, I know that I've lost data, and it was for a data page, but only one
page; but how much data exactly? A simple SELECT statement reveals that not
only have I lost the row I tampered with (NEOID 553), but also another 68 rows,
up to row 621. Figure 8.11 rubs it in my face.

8 – Finding data corruption

220

Figure 8.11: Missing data after DBCC CHECKDB Repair_Allow_Data_Loss.

These rows should be easily recovered if you have a good backup. You have a
good backup, right? Right? Assuming you do, then you are faced with the task of
restoring from backup to another database, like NEO2, and syncing the two tables
for the missing rows. Syncing the two tables can be accomplished with a simple
INSERT INTO statement, like that shown in Listing 8.4.

8 – Finding data corruption

221

INSERT INTO NEO..ONE (NEOID, NEOTEXT)
 SELECT NEOID,
 NEOTEXT
 FROM NEO2..ONE
 WHERE NEOID NOT IN (SELECT NEOID
 FROM NEO..ONE)

Listing 8.4: Syncing two tables to recover lost data rows.

In this "controlled example", the fix is fairly simple. Other scenarios, with much
higher levels of corruption, may require you to turn to other measures to get the
data back, after repairing with data loss. These means will almost always involve a
restore of the database from backup, which is why I impress again the importance
of a solid, verified and well documented database backup policy.

Corruption on non-clustered indexes

I noted earlier that corruption of a non-clustered index is much easier to deal with
than corruption of an actual data page, as these indexes are just "redundancies" of
the actual data and can be easily rebuilt. However, it would be interesting to prove
this point. I'll use the same Hexadecimal editor technique to corrupt the non-
clustered index, and not the data, and see what the outcome would be.

One indicator of whether the corruption is on an index or a table is the IndexID
provided with the DBCC output. For our ONE heap table, I noted (in Listing 8.3)
that the IndexID was 0 as there were no indexes defined for the table. An
IndexID of 1 means a clustered index and a value of 2-250 indicates a non-
clustered index.

For the sake of brevity, let's assume that I have performed the necessary repair on
the NEOID column and created a non-clustered index on the ONE table, for the
NEOID column.

First, I need to find out the page value of the index I defined for the ONE table. I
will then plug this page of the non-clustered index into DBCC PAGE so that I know,
again, exactly what data to modify to simulate index corruption, instead of data
page corruption of the heap.

To retrieve the page value of the index, I can use another DBCC command, call it
undocumented again, DBCC INDID. The syntax for this command is:

DBCC INDID (DBID, TABLEID,-1)

So, to execute this for my newly-indexed ONE table, the command will be:

DBCC ind(23, 2121058592, -1)

8 – Finding data corruption

222

The results reveal several IndexIDs, mostly zero, along with several IndexID
values of 2, indicating a non-clustered index. Notice in Figure 8.11 the IndexID of
2 and the associated page of that index, 180.

Figure 8.12: Finding the page of the new non-clustered index.

I can now run DBCC PAGE again, plugging in this page information:

DBCC TRACEON (3604);
GO
DBCC PAGE (NEO,1,180,3)
GO

The results look a lot different than when looking at a data page. I see returned
the Hexadecimal value (HEAP RID) that represents each row in the index for the
page interrogated, as shown in Figure 8.12.

8 – Finding data corruption

223

Figure 8.13: Looking at the non-clustered index for the ONE table with
DBCC PAGE.

I used the Hex editor again to modify, or zero out, the HEAP RID, and once again
this does indeed corrupt the database in much the same way as changing an actual
data page. However, there is one major difference: this time, when I run DBCC
CHECKDB('neo') WITH PHYSICAL_ONLY, the IndexID of the corrupt object is
reported as "2" i.e. a non-clustered index.

8 – Finding data corruption

224

Armed with this knowledge, I have open to me options for repairing the damage,
other than restoring from backup, or running DBCC CHECKDB with
REPAIR_ALLOW_DATA_LOSS, with the potential loss of data that this entails.

I can simply drop and recreate the non-clustered index using the code in Listing
8.5.

USE [NEO]
GO

IF EXISTS (SELECT * FROM sys.indexes WHERE object_id =
OBJECT_ID(N'[dbo].[ONE]')
 AND name = N'NEO_ID_NC')
DROP INDEX [NEO_ID_NC] ON [dbo].[ONE] WITH (ONLINE = OFF)
GO

USE [NEO]
GO

CREATE NONCLUSTERED INDEX [NEO_ID_NC] ON [dbo].[ONE]
(
 [NEOID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF,
 IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

Listing 8.5: Drop and recreate corrupt non-clustered index.

Now that I have delved somewhat into corrupting, finding and fixing some
problems, let's turn now to the discovery process.

Seeking out corruption

What is the best way for you to find out that you have corruption on your
databases, before it propagates through numerous backups and causes bigger
issues than it need do?

One option is to set up regular integrity checks using Maintenance Plans, which
are useful, and certainly better than not having any integrity checks at all.
However, I enjoy the level of control and flexibility I have when building custom
scripts to perform the same functions as the maintenance plans. As such, rather
than delve into maintenance plans, I will instead share with you a script that I use
to iterate through each database, including system databases, and report on any
errors returned by DBCC CHECKDB.

8 – Finding data corruption

225

With this code, and an easy way to read the error logs where the DBCC CHECKDB
results will be written (which I covered in Chapter 7), you will be comforted by
the knowledge that you will not let corruption seep into your data infrastructure
and go unnoticed. And that you can act thoughtfully to resolve the issue, once
discovered.

The custom query, in Listing 8.6, will iterate through all databases on a SQL
Server instance, capture errors and mail the top error to you so that you can look
further into the matter.

CREATE TABLE #CheckDBTemp (
 Error INT
 , [Level] INT
 , [State] INT
 , MessageText NVARCHAR(1000)
 , RepairLevel NVARCHAR(1000)
 , [Status] INT
 , [DBID] INT
 , ObjectID INT
 , IndexID INT
 , PartitionID BIGINT
 , AllocUnitID BIGINT
 , [File] INT
 , Page INT
 , Slot INT
 , RefFile INT
 , RefPage INT
 , RefSlot INT
 , Allocation INT
)
-- Needed variables
DECLARE @TSQL NVARCHAR(1000)
DECLARE @dbName NVARCHAR(100)
DECLARE @dbErrorList NVARCHAR(1000)
DECLARE @dbID INT
DECLARE @ErrorCount INT
DECLARE @EmailSubject NVARCHAR(255)
DECLARE @ProfileName VARCHAR(100)
DECLARE @EmailRecipient VARCHAR(255)

-- Init variables
SET @dbID = 0
SET @dbErrorList = ''
SET @EmailSubject = 'Integrity Check Failure on ' +
CAST(COALESCE(@@SERVERNAME, 'Server Name Not Available') AS
NVARCHAR)
SET @ProfileName = 'Notifications'
SET @EmailRecipient = 'rlandrum13@cox.net'
-- CYCLE THROUGH DATABASES
WHILE(@@ROWCOUNT > 0)
BEGIN

8 – Finding data corruption

226

 IF(@dbID > 0)
 BEGIN
 SET @TSQL = 'DBCC CHECKDB(''' + @dbName + ''') WITH
TABLERESULTS, PHYSICAL_ONLY, NO_INFOMSGS'

 INSERT INTO #CheckDBTemp
 EXEC(@TSQL)

 SELECT @ErrorCount = COUNT(*) FROM #CheckDBTemp

 IF(@ErrorCount > 0)
 BEGIN
 SET @dbErrorList = @dbErrorList + CHAR(10) + CHAR(13)
+ 'Issue found on database : ' + @dbName
 SET @dbErrorList = @dbErrorList + CHAR(10) + CHAR(13)
+ (Select Top 1 MessageText from #CheckDBTemp)
 END

 TRUNCATE TABLE #CheckDBTemp
 END

 IF SUBSTRING(CONVERT(varchar(50),
SERVERPROPERTY('ProductVersion')),1,1) = '8'
 BEGIN
 SELECT TOP 1 @dbName = name, @dbID = dbid
 FROM sysdatabases WHERE dbid > @dbID
 AND name NOT IN ('tempdb')
 AND DATABASEPROPERTYEX(name, 'Status') = 'Online'
 ORDER by dbid
 END
 ELSE
 BEGIN
 SELECT TOP 1 @dbName = name, @dbID = database_ID
 FROM sys.databases WHERE database_ID > @dbID
 AND name NOT IN ('tempdb')
 AND DATABASEPROPERTYEX(name, 'Status') = 'Online'
 ORDER by database_ID
 END
END
-- If errors were found
IF(@dbErrorList <> '')
BEGIN
 IF SUBSTRING(CONVERT(varchar(50),
SERVERPROPERTY('ProductVersion')),1,1) = '8'
 BEGIN
 EXEC master..xp_sendmail @recipients = @EmailRecipient,
@subject = @EmailSubject, @message = @dbErrorList
 END
 ELSE
 BEGIN

8 – Finding data corruption

227

 EXEC msdb..sp_send_dbmail @profile_name = @ProfileName,
@recipients = @EmailRecipient, @subject = @EmailSubject, @body
= @dbErrorList, @importance = 'High'
 END
END

DROP TABLE #CheckDBTemp

Listing 8.6: A script for seeking out and reporting database corruption.

You will notice that the code uses a DBCC CHECKDB option that I've not
previously covered, and that is WITH TABLERESULTS. As the name suggests, it
causes the results to be returned in table format. This option is not covered in
Books Online, but is highly useful for automating error checking via SQL Agent
Jobs or custom code.

This code can easily be modified to return an email reporting that all databases
except NEO are in good shape. It might soften the blow somewhat to know that of
20 databases only one is corrupt. I know it would help me somewhat. In any
event, when corruption occurs you are going to receive the mail, seen in Figure
8.14, which is truly the monster that wakes you up in the middle of the night in a
cold sweat.

Figure 8.14: The monster in email form.

8 – Finding data corruption

228

In this mail, I can see the ObjectID, the IndexID and the corrupted page, as well
as the database name. This should be enough to go on for further investigation
with the newfound tools, DBCC PAGE, DBCC INDID and DBCC CHECKDB, with
repair options. Or, it should be a wakeup call to the fact that you might have to
restore from a good backup.

Summary

In this final chapter, I have discussed how to corrupt a database and delved into
several undocumented DBCC options that will assist you when corruption
happens to your data. Notice I said "when". I have only touched the surface of the
topic here by showing, at a very high level, how to translate pages to hexadecimal
values and understand how to correlate the results of various DBCC commands,
while troubleshooting corruption issues.

I cannot stress enough that having a good backup plan is the most important task
for the DBA. While I did not cover backups and restores in great depth in this
chapter (an entire book can be written on this topic alone), I have at least shown
the best reason to have such a good backup as part of your overall high availability
and disaster recovery plan. A corrupt database will indeed be a disaster and could
incur much downtime. You do not want to have to go to your boss, or your
bosses' boss, and tell them that you have lost data irrevocably. If you do, you
might as well pull your resume out from whatever disk drive it may be on
(assuming that's not corrupt as well) and update it.

There is often panic when discovering any level of corruption in your databases.
Without verified backups and some basic troubleshooting tips, there is no safe
place to hide when the monster rears up. All you can do is perform a repair,
potentially allowing data loss for hundreds of data pages, and then duck away into
the nearest cubicle, which if it was yours will soon be empty.

If you do have good backups and can repair the damage without data loss, then
that cubicle may one day turn into an executive office where the wall-to-wall tinted
windows reveal the flowing brook outside, where no monsters live.

The End

SQL Tools
from Red Gate Software

SQL Backup
Compress, encrypt and monitor SQL Server backups

SQL Response
Monitors SQL Servers, with alerts and diagnostic data

from $295

from $495

 Compress database backups by up to 95% for faster backups and restores

 Protect your data with up to 256-bit AES encryption (SQL Backup Pro only)

 Monitor your data with an interactive timeline, so you can check and edit the status

 of past, present and future backup activities

 Optimize backup performance with multiple threads in SQL Backup’s engine

 Investigate long-running queries, SQL deadlocks, blocked processes and more

 to resolve problems sooner

 Intelligent email alerts notify you as problems arise, without overloading you

 with information

 Concise, relevant data provided for each alert raised

 Low-impact monitoring and no installation of components on your SQL Servers

"The software has by far the most

user-friendly, intuitive interface in its

class; the backup routines are well-

compressed, encrypted for peace

of mind and are transported to our

server rapidly. I couldn't be happier."

Kieron Williams IT Manager, Brunning & Price

“SQL Response enables you to monitor,

get alerted and respond to SQL

problems before they start, in an easy-

to-navigate, user-friendly and visually

precise way, with drill-down detail where

you need it most.”

H John B Manderson President and Principle
Consultant, Wireless Ventures Ltd

SQL Compare
Compare and synchronize SQL Server database schemas

SQL Data Compare
Compare and synchronize SQL Server database schemas

from $395

from $395

 Automate database comparisons, and synchronize your databases

 Simple, easy to use, 100% accurate

 Save hours of tedious work, and eliminate manual scripting errors

 Work with live databases, snapshots, script files or backups

 Compare your database contents

 Automatically synchronize your data

 Simplify data migrations

 Row-level restore

 Compare to backups

“SQL Compare and SQL Data Compare

are the best purchases we’ve made in the

.NET/SQL environment. They’ve saved us

hours of development time and the fast,

easy-to-use database comparison gives

us maximum confi dence that our migration

scripts are correct. We rely on these

products for every deployment.”

Paul Tebbutt Technical Lead, Universal Music Group

SQL Prompt
Intelligent code completion and layout for SQL Server

from $195

 Write SQL fast and accurately with code completion

 Understand code more easily with script layout

 Continue to use your current editor – SQL Prompt works within SSMS,

 Query Analyzer, and Visual Studio

 Keyword formatting, join completion, code snippets, and many more

 powerful features

“It’s amazing how such a simple concept

quickly becomes a way of life. With SQL

Prompt there’s no longer any need to

hunt out the design documentation, or to

memorize every fi eld length in the entire

database. It’s about freeing the mind from

being a database repository - and instead

concentrate on problem solving and

solution providing!” Dr Michael Dye Dyetech

SQL Data Generator
Test data generator for SQL Server databases

$295

 Data generation in one click

 Realistic data based on column and table name

 Data can be customized if desired

 Eliminates hours of tedious work

“Red Gate’s SQL Data Generator has

overnight become the principal tool

we use for loading test data to run our

performance and load tests”

Grant Fritchey Principal DBA, FM Global

SQL Toolbelt™

The twelve essential SQL Server tools for database professionals

$1,795

You can buy our acclaimed SQL Server tools individually or bundled.

Our most popular deal is the SQL Toolbelt: all twelve SQL Server tools in a single

installer, with a combined value of $5,240 but an actual price of $1,795, a saving

of more than 65%.

Fully compatible with SQL Server 2000, 2005 and 2008!

SQL Doc
Intelligent code completion and layout for
SQL Server

SQL Dependency Tracker
The graphical tool for tracking database
and cross-server dependencies

SQL Packager
Compress and package your databases
for easy installations and upgrades

SQL Multi Script
Single-click script execution on multiple
SQL Servers

$295 $195

from $295 $195

 Produce simple, legible and fast HTML

 reports for multiple databases

 Documentation is stored as part of

 the database

 Output completed documentation to

 a range of different formats.

 Visually track database object dependencies

 Discover all cross-database and cross-

 server object relationships

 Analyze potential impact of database

 schema changes

 Rapidly document database

 dependencies for reports, version

 control, and database change planning

 Script your entire database accurately

 and quickly

 Move your database from A to B

 Compress your database as an exe file,

 or launch as a Visual Studio project

 Simplify database deployments and

 installations

 Cut out repetitive administration by

 deploying multiple scripts on multiple servers

 with just one click

 Return easy-to-read, aggregated results from

 your queries to export either as a csv or

 .txt file

 Edit queries fast with an intuitive interface,

 including colored syntax highlighting, Find

 and Replace, and split-screen editing

SQL Comparison SDK
Automate database comparisons
and synchronizations

$595

 Full API access to Red Gate

 comparison tools

 Incorporate comparison and

 synchronization functionality into

 your applications

 Schedule any of the tasks you require

 from the SQL Comparison Bundle

SQL Refactor
Refactor and format your SQL code

$295

Twelve tools to help update and maintain

databases quickly and reliably, including:

 Rename object and update all references

 Expand column wildcards, qualify object

 names, and uppercase keywords

 Summarize script

 Encapsulate code as stored procedure

How to Become an
Exceptional DBA
Brad McGehee

A career guide that will show you, step-

by-step, exactly what you can do to

differentiate yourself from the crowd so

that you can be an Exceptional DBA.

While Brad focuses on how to become an

Exceptional SQL Server DBA, the advice

in this book applies to any DBA, no matter

what database software they use. If you

are considering becoming a DBA, or are a

DBA and want to be more than an average

DBA, this is the book to get you started.

ISBN: 978-1-906434-05-2
Published: July 2008

SQL Server Execution Plans
Grant Fritchey

Execution plans show you what’s

going on behind the scenes in SQL

Server and provide you with a wealth

of information on how your queries are

being executed. Grant provides a clear

route through the subject, from the

basics of capturing plans, through their

interpretation, and then right on to how to

use them to understand how you might

optimize your SQL queries, improve your

indexing strategy, and so on. All this rich

information makes the execution plan

a fairly important tool in the tool belt of

pretty much anyone who writes TSQL

to access data in a SQL Server database.

ISBN: 978-1-906434-02-1
Published: June 2008

Two Minute
SQL Server Stumpers

Challenge yourself in a variety of ways

about the different aspects of SQL Server.

Some of the questions are arcane, some

very common, but you’ll learn something

and the wide range of questions will help

you get your mind agile and ready for

some quick thinking. This version is a

compilation of SQL Server 2005 and SQL

Server 2008 questions, to bring you up to

date on the latest version of SQL Server.

So read on, in order, randomly, just start

going through them, but do yourself a

favor and think about each before turning

the page. Challenge yourself and see how

well you do.

ISBN: 978-1-906434-21-2
Published: August 2009

Mastering SQL Server Profi ler
Brad McGehee

For such a potentially powerful tool,

Profiler is surprisingly underused; unless

you have a lot of experience as a DBA, it is

often hard to analyze the data you capture.

As such, many DBAs tend to ignore it and

this is distressing, because Profiler has so

much potential to make a DBA’s life more

productive. SQL Server Profiler records

data about various SQL Server events,

and this data can be used to troubleshoot

a wide range of SQL Server issues, such

as poorly-performing queries, locking and

blocking, excessive table/index scanning,

and a lot more.

ISBN: 978-1-906434-15-1
Published: January 2009

	About the author
	About the technical reviewer
	Acknowledgements
	Introduction
	Code Download

	Chapter 1: Eating SQL Server installations for breakfast
	Specification, installation, configuration
	Specifying the physical server
	Ready to install – almost
	Installation done, now to configure
	Bon Appétit

	Chapter 2: The SQL Server landscape
	What information is required?
	Automating information retrieval
	Summary

	Chapter 3: The migratory data
	Mapping out the data migration solution
	The data source
	Bulk data transfer tools
	SSIS
	Data comparison tools
	"High Availability" tools
	Summary

	Chapter 4: Managing data growth
	Common causes of space issues
	Being a model DBA
	Indexes and large row counts
	TempDB
	A query to determine current space utilization
	Summary

	Chapter 5: DBA as detective
	System tables versus DMVs
	Tracking down database performance issues
	Automating discovery of problems
	Summary

	Chapter 6: Monitoring and notifications
	Types of monitoring and notifications
	Enabling notifications
	Backup failure notification
	Performance issues
	Stopped services and disk space shortage
	Summary

	Chapter 7: Securing access to SQL Server
	Overview of security challenges
	Finding SQL logins, Windows users and groups
	Find Windows Active Directory group membership
	Find SQL users at the database level
	Loading up the DBA repository with security data
	Finding service accounts with WMIC
	Surveillance
	Summary

	Chapter 8: Finding data corruption
	Causes of corruption
	Consequences of corruption
	Fighting corruption
	Seeking out corruption
	Summary

