

For a binary (or compiled) cmdlet, compile the cmdlets in

your module into a DLL. Using the DLL, Get-Help can provide

only a skeleton of a typical help entry, including the syntax,

the pipeline-able inputs and outputs, and the standard

properties of your parameters.

To get complete, standard help output for binary cmdlets

you must instrument your C# source with doc-comments,

then compile the code, and finally post-process with

XmlDoc2CmdletDoc as described in Documenting Your

PowerShell Binary Cmdlets.

module and namespace overview files as described above. You then

have a hyperlinked interconnected web reference allowing you to drill

down from namespace to module to function, as well as a full index

giving you direct access to all your functions, modules, and namespaces.

DocTreeGenerator

takes the full

output available

from Get-Help for

both binary and

scripted cmdlets

and converts to

rich, stylized

output. It needs

only a modicum of

additional work in

the form of

For a scripted cmdlet, no post-

processing is necessary to get standard

PowerShell help.

Get-Help directly processes the cmdlet

doc-comments instrumenting your

code; see

about_Comment_Based_Help.

 Documenting PowerShell Cmdlets End-to-End
PowerShell’s Get-Help presents documentation for a single command at a time, though you need to supply its source material in the form of documentation comments (“doc-comments”)
instrumenting your code. Scripted cmdlets have long been easy to instrument, but not until the recent XmlDoc2CmdletDoc could you easily provide such doc-comments for your binary cmdlets,

too. And like Javadoc for Java or Sandcastle for C#, DocTreeGenerator provides easy support for generating a hyperlinked, web-based documentation tree.

Copyright © 2016 Michael Sorens

 2016.03.20  Version 1.0.0

Published on Simple-Talk.com at

http://bit.ly/1WlvyOp

For generating a web documentation set, you will need just a few other files: one

module_overview.html per module, and one namespace_overview.html per namespace,

You should always use a module

manifest for any PowerShell module

(binary, scripted, or combination). See

How to Write a PowerShell Module

Manifest

where a namespace

may contain one or

more modules).

These may be as

brief as one

sentence or as

lengthy as you want

to sufficiently

describe your

cmdlets.

Start with instrumenting your source code—be it a set of cmdlets written in PowerShell or C#. Document the PS cmdlets per How To Document Your

PowerShell Library and document the C# cmdlets per Documenting Your PowerShell Binary Cmdlets, both here on Simple-Talk.com.

Github:

DocTreeGenerator

Github:

XmlDoc2CmdletDoc

https://www.simple-talk.com/dotnet/software-tools/documenting-your-powershell-binary-cmdlets/
https://www.simple-talk.com/dotnet/software-tools/documenting-your-powershell-binary-cmdlets/
https://technet.microsoft.com/library/hh847834.aspx
http://www.simple-talk.com/author/michael-sorens/
http://bit.ly/1WlvyOp
https://technet.microsoft.com/en-us/library/dd878337%28v=VS.85%29.aspx
https://technet.microsoft.com/en-us/library/dd878337%28v=VS.85%29.aspx
https://www.simple-talk.com/sysadmin/powershell/how-to-document-your-powershell-library/
https://www.simple-talk.com/sysadmin/powershell/how-to-document-your-powershell-library/
https://www.simple-talk.com/dotnet/software-tools/documenting-your-powershell-binary-cmdlets/
https://github.com/msorens/DocTreeGenerator
https://github.com/red-gate/XmlDoc2CmdletDoc

