
When to Use Quotes

Guideline Example

The first non-whitespace character of a statement determines

parsing mode—command or expression—and dictates whether

quotes for that first word are needed. Any of these [A..Z _ & . \]

indicate command parsing mode; everything else is expression

parsing mode. Thus, for the first word to be a string literal, you

must use quotes. Otherwise, unquoted text at the beginning of a

line is interpreted as a command.

Attempts to execute the named item instead of just

echoing it (letter => command parsing)
PS> hello

This just echoes the string (quote => expression parsing)
PS> "hello"

A statement is not synonymous with a line: you can have multiple

statements on one line.

Any of these [({ = ; |] begins a new statement and restarts parsing

determination. Thus, you can have mixed parsing modes on one

line.

The opening quote sets expression mode parsing. The

opening parenthesis signals a new statement so it

restarts parsing determination and thus ls sets

command mode parsing
PS> 'abc' + (ls | select –first 1).name

A single statement may also spread over multiple lines. The current

parsing mode continues until a new statement begins; line breaks

in the middle do not alter the parsing mode. If in expression mode

parsing, each term must be an expression, and an unquoted string

is not an expression, so a parsing error ensues.

The line break after the plus sign does not alter the

expression mode parsing. To recognize it as a string it

must be quoted; to recognize it as an executable, it must

be in parentheses to restart parsing determination.
PS> 'abc' +
hello

If a command has embedded spaces, you must enclose it in quotes

and precede it with the call operator (&), or just escape the spaces

(i.e. precede each with a backtick). Letter and ampersand mark

command parsing mode. Without the call operator, a string is just

a string literal because a quote marks expression parsing mode.

Both of these execute stuff.exe:
PS> & "C:\Program Files\stuff.exe"
PS> C:\Program` Files\stuff.exe
This just echoes the string (that happens to look like a

program):
PS> "C:\Program Files\stuff.exe"

Arguments to a command (cmdlet, program, etc.) do not require

quotes because an argument that is not already an expression is

treated as though it were double-quoted.

PS> ls a.txt, b.txt

If quotes are not needed, it does no harm to include them. Both named files are properly listed:
PS> ls a.txt, "b.txt"

If an argument has embedded spaces, you must enclose it in

quotes or escape each space with a backtick.

This lists the two files, each with a space in it:
PS> ls "a file.txt", b` file.txt

The right-hand side of an operator requires quotes because you’re
already in expression mode parsing and that parsing mode

continues throughout the expression

“foo” is a string literal in both of these:
PS> 'aaa' + 'foo'
PS> 'aaa' -eq 'foo'

While in expression mode parsing, each term must be an

expression, and an unquoted string is not an expression, so a

parsing error ensues. Use quotes to make it a string literal, or

parentheses to make it an executable.

A parsing error ensues for both of these, because foo is

not a valid expression.
PS> 'aaa' + foo
PS> 'aaa' -eq foo

The target of an assignment statement requires quotes because an

equals sign triggers a new statement, and thus reassesses parsing

mode, so quotes are required to recognize a string literal.

This assigns “hello” to the variable:
PS> $item = 'hello'
This attempts to execute “hello” and assign it:
PS> $item = hello

Within a hash table you have what look like a series of simple

assignment statements, except the left operand is a name or

expression rather than a variable name. Quotes are not needed.

On the right, it is a standard target of an assignment; see above.

Except that quotes are needed if there is an embedded

space:
@{ foo="bar"; "other key"="value" }

Which Quotes to Use
 Use single quotes for pure, literal strings; use double quotes for interpolated (interpreted) strings. The table

shows double quote interpolation. With single quotes, the output matches the input, character for character.

 Backticks are highlighted just because they are harder to see.

 For these examples assume you have $x = 5 and $obj = [PsCustomObject] @{ name = 'abc'; type = 25 }.

Notes

[1] The backtick is evaluated—rather

than displayed—within double-quotes.

Its job is to force the next character to

remain a literal, suppressing the normal

evaluation of a dollar sign.

[2] Within double quotes a variable, be it

simple or complex, is interpolated to its

string value, i.e. whatever its ToString

method returns. In the case of a

PSCustomObject, it is the entire contents

of the object as shown. For a .NET type,

ToString often defaults to just the name

of the type rather than any contents of

the instance, but that varies by type.

[3] Within double quotes the string representation of the whole object ($obj) is displayed (again being what its ToString method returns).

It is not just the specified property because interpolation stops at the first character that cannot be part of a simple variable name, in this

case the period.

Using Quotes within Quotes
Notes

[1] Doubling the quote mark results in one double quote

mark in the output.

[2] An alternate way to embed a double quote is to escape

it with a backtick. The backtick forces the next character to

be a literal, even for quotes.

[3] Doubling the quote mark results in one single quote

mark in the output. (This is the rare case of a single quoted

string not matching its input exactly!)

[4]Note that those are two juxtaposed single quotes on

either side of “two” in the first line here, even though they
look just like double-quotes.

[5] The alternate approach of escaping a quote with a backtick does not work for single-quoted strings, because a backtick—like everything

else within a single-quoted string—is not evaluated.

[6] Within a here string you can freely embed quotes just like any other character—no doubling or escaping necessary.

References
PowerShell Language Specification Version 3.0, Understanding PowerShell Parsing Modes, about_Quoting_Rules,

about_Special_Characters, Here Strings,

Item Input Output

Simple variable "$x is $x" 5 is 5

Simple var, backtick[1] "`$x is $x" $x is 5

Simple expression "Sum of 2 + 3 is $(2+3)" Sum of 2 + 3 is 5

Simple expr, backtick "Sum of 2 + 3 is `$(2+3)" Sum of 2 + 3 is $(2+3)

Complex variable [2] "Obj is $obj" Obj is @{name=abc; type=25}

Object property without

proper decoration[3]

"Obj name is $obj.name" Obj name is @{name=abc;

type=25}.name

Object property as an

expression

"Obj name is $($obj.name)" Obj name is abc

Object property in a

here string

@"

Obj name is $($obj.name)

"@

Obj name is abc

Special characters "Item1`tItem2`tItem3" Item1<tab>Item2<tab>Item3

Item Input Output

Single in double "one 'two' three" one 'two' three

Double in single 'one "two" three' one "two" three

Double in double [1,2] "one ""two"" three" one "two" three

Double/double, backtick "one `"two`" three" one "two" three

Single in single [3,4] 'one ''two'' three' one 'two' three

Single/single, backtick[5] 'one `'two`' three' error

Double in double,

here string[6]

@"

one "two" three

"@

one "two" three

Single in single,

here string[6]

@'

one 'two' three

'@

one 'two' three

Copyright © 2015 Michael Sorens  2015.08.10  Version 1.0.1  Published on Simple-Talk.com

 The Complete Guide to Quoting in PowerShell
Download the latest version of this PowerShell™ wallchart and read the accompanying in-depth article from Simple-Talk at https://www.simple-talk.com/sysadmin/powershell/when-to-quote-in-powershell/.

https://www.microsoft.com/en-us/download/details.aspx?id=36389
https://rkeithhill.wordpress.com/2007/11/24/effective-powershell-item-10-understanding-powershell-parsing-modes/
https://technet.microsoft.com/en-us/library/hh847740.aspx
https://technet.microsoft.com/en-us/library/hh847835.aspx
https://en.wikipedia.org/wiki/Here_document
http://www.simple-talk.com/author/michael-sorens/
https://www.simple-talk.com/sysadmin/powershell/when-to-quote-in-powershell/

