(£ |

language constructs to compare strings in either scalar or array context.
(Available online at Simple-Talk.com at http://bit.ly/I7g6Fj.)

This reference brings together relevant operators plus key

PowerShell String Comparison and List Filtering

Ceategery (T)

LEGEND

| 'Equality
|| Wilcard
|| Regex

Each operator has three variations:

> default (e.g. —eq),

> case-sensitive (e.g. —ceq), and

> case-insensitive e.g. —ieq).

Note that the default in each case is
case—insensitive so —eq is exactly
equivalent to —ieq; the latter is
provided if you have a preference for
being explicit.

See about Comparison Operators.

Wildcards include:

> asterisk (*) for any number of
chars;

> question mark (?) for any single
char;

> brackets ([]) for single, enumerated
char or char range.

Must match input in its entirety.

See about Wildcards.

Regular expressions provide a
powerful but complex matching
construct; the PowerShell reference
(about Regular Expressions)
documents only a portion of it;
PowerShell actually supports the full
.NET implementation—see Regular
Expression Language Elements .

Populates $Matches where:
> $Matches[0] contains entire match
> $Matches [n] contains nth match

—contains technically only operates
on a list; with a scalar it is equivalent
to —eq.

The switch statement implicitly uses
—eq in selecting a match; specifying
—CaseSensitive modifies this to —ceq.
The -Wildcard and —Regex
parameters may be used to effect
—like or -match, respectively.
Similarly adding —CaseSensitive
modifies these to —clike or —cmatch.
Switch syntax even allows specifying
your own arbitrary operator or more
complex Boolean expression: instead
of specifying a choice as a simple
value (string, number, or variable)
use a code block to specify an
expression, where the standard $_
automatic variable references the
input value.

See about_Switch.

This deliberate error shows that
switch evaluates every expression
unless you use break statements!

Select-String examples use a custom
ss alias for brevity.

This might look like a wildcard, but it
is a regex! As a wildcard, it would
have returned ("ab3","abcd") only.

Other References:

about_Operators

Conditional Operators

Operator enumeration
Mastering PowerShell, chapter 7

Operator 1 String Array
Equality <value> <op> <value> Boolean <array> <op> <value> Sub-list
—eq "ab” —eq "def" Falee "dog" "dogwood" "cat" "Dog" —eq "dog" ("dog","Dog")
—ceq "abc" —eq "Abc" True "dog","dogwood","cat","Dog" —ceq "Cat" ()
—ieq "abc" —ceq "Abc" False @() —eq "dog" ()
"Abc" —ceq "Abc" True
Equality/negated <value> <op> <value> Boolean <array> <op> <value> Sub-list
-ne "abe" —ne "def" TG "dog" "cat" "Dog" —ne "dog" (“cat")
—che "abc" —ne "Abc" False "dog" "cat","Dog" —cne "dog" ("cat","Dog")
—ine "abc" —cne "Abc" True @() —ne "dog" ()
"Abc" —cne "Abc" False
Wildcard (glob)l <target> <op> <glob> Boolean <array> <op> <glob> Sub-list
—I|Ife "dog" —like "dog*" True "f42e","12a8","a000","948f" —like "[a-f]*" ("f42e","a000")
—clike "kookaburra" —like "k??k*burra" True "f42e","12a8","a000","948f" — like "[a-f]" ()
—ilike "kookaburra" —like "k?k*burra" False "dove","wren","Warbler" —like "w*" ("wren","Warbler")
"kookaburra" —clike "K*" False "dove","wren","Warbler" —clike "w*" ("wren")
"kookaburra" —clike "[kK]*" True
Wildcard/negatedl <target> <op> <glob> Boolean <array> <op> <glob> Sub-list
- Otmfe "coelacanth" —notlike "cat" True "dove","wren","Warbler" —notlike "w*" ("dove")
_FnOt!'ke "dog" —notlike "D?g" False "dove","wren","Warbler" —cnotlike "w*" ("dove","Warbler")
—inotlike "dog" —cnotlike "D?g" True "dove","wren","Warbler" —notlike "*" ()
Regular expression <target> <op> <regex> Boolean [l <array> <op> <regex> Sub-list
—match "archaeopteryx" —match "arch.*" True "nutria","beaver","muskrat" —match "[mn]u.*" ("nutria","muskrat")
—cmatch "archaeopteryx" —match ".*(ae|ea).*" True "a4.001","b3.902","c3.4he" —match "\.[0-9]{2,}" |("a4.001","b3.902")
—imatch "archaeopteryx" —match "ae|ea" True "notebook","book","bookend" —match "bookS" ("notebook","book")
"notebook","book","bookend" —match "~bookS" | ("book")
Regex/negated <target> <op> <regex> Boolean l <array> <op> <regex> Sub-list
:2:;:::;‘;; "bird" -notmatch "Bird.*" False "dove","wren","Warbler" -notmatch "w.*" ("dove")
—inotmatch "bird" -cnotmatch "Bird.*" True "dove","wren","Warbler" -cnotmatch "w.*" ("dove","Warbler")
Membership <target>.contains (<value>) Boolean Not Available
contains() "archaeopteryx".contains("aeo" True
"archaeopteryx".contains("aeiou" False
Membership <target> <op> <value> Boolean [l <array> <op> <value> Boolean
_Contalr,]s "dog" —contains "Dog" True "dog","dogwood" —contains "Dog" True
—ccontains [Ty e g Wy wn f PR
. . dog" —ccontains "Dog False dog","dogwood" —ccontains "Dog False
—icontains e R 0 Ty @ =" —
dog" —contains "d False dog","dogwood","catfish" —ccontains "cat False
Membership/negated| <target> <op> <value> Boolean [<array> <op> <value> Boolean
—nhotcontains "dog" —notcontains "Dog" Fal "dog" "d 4" _notcontains "Dog" Fal
—cnotcontains og" —notcontains "Dog alse og","dogwood" —notcon alr?s og alse
—inotcontains "dog" —cnotcontains "Dog" True "dog","dogwood" —cnotcontains "Dog" True
Switch commandl ?Wltch (<value>) Arbitrary TW%tggeéaiggrixioagh e e Arbitrary (or
This syntax applies <choice> {<statements>} (or no <choice> {<statements>} no return
. <choice> {<statements>} return <choice> {<statements>} value)
to all variants below. 5o o value) 5o a
} }
Branch/equality Switch ("maybe") { Null Switch ("dog","bird","lizard") { dog : housepet
Switch [—Exact | "yes" {10} {"dog","cat" —contains $_}{"5_: housepet" } pjrd : not sure
[—-CaseSensitive] e {20} } Default {"5_: not sure" } lizard : not sure
Branch/wildcard I Switch —wildcard ("a13") { 10 Switch —wildcard —case ("dog","bird","Dog") { dog : not sure
Switch —Wildcard "a??" {10} "D*" {"$_:housepet"} bird : housepet
CaseSensiti "b??" {20} "b??d" {"S_:housepet" } Doz : h B ¢
[—CaseSensitive | default {Snull} Default {"$_: not sure" } OELINOUSEDE
Branch/regex I Switch —regex ("sR9X2T") {# 20 switch —regex ("dog", "cat", "catfish", "catbird") { dog : Null
Switch —Regex "Ala-1]" {10} "cat(?!fish)" {"S_:land" } cat : land
g . "Alm-y]" {20} "seal|whale|dolphin| catfish" {"$_:sea" } tish :
[—CaseSensitive] "Alz" {99} "owl|eagle|osprey|catbird" {"S_:air" } ca ',s isea
default {$null} default { ("S_: "+ Snull) } catbird : land
} } catbird :airl
Select—String <target> <op> <value> string <target> <op> <value> Sub-list
This syntax applies
to all variants below.
Select—String/equality| "dog" | ss —simple "dog" "dog" "dog","Dog" | ss—simple "dog" ("dog","Dog")
ssI—SimpIeMatch "dog" | ss —simple "do" "dog" "dog","Dog","dogbone" | ss —case —simple "dog" ("dog","dogbone")
[—CaseSensitive]
Select=String/wildcard | Not Available Not Available
Select-String/regex "coelacanth" | ss "c..l.*th" "coelacanth" | "al","a2","ab3","AB3" | ss "ab.*" ("ab3","AB3")
SSI [—CaseSensitive]| "coelacanth" | ss "c.*" "coelacanth" "al","a2","ab3","AB3" | ss —case "ab.*" ("ab3")
"ab3" "abcd","ado" | ss "ab*" l ("ab3","abcd","ado")
Select-String/negated | "dog" | ss—simple -NotMatch "dog" Null "dog","Cat","catfish" | ss —not "Cat.*h" ("dog","Cat")
ssI—NotMatch "dog" | ss—simple -NotMatch "cat" "dog" "dog","Cat","catfish" | ss —simple -not -case "Cat" ("dog","catfish")
[-SimpleMatch | | "dog" | ss—not "" <illegal> "dog","dogbone" | ss —not "dog" Null

[—CaseSensitive]

Copyright © 2011 Michael Sorens
2011.06.08 e Version 1.0.1

Download the latest version from
Simple-Talk http://bit.ly/I7g6Fj

http://technet.microsoft.com/en-us/library/dd315321.aspx
http://technet.microsoft.com/en-us/library/dd315323.aspx
http://technet.microsoft.com/en-us/library/dd315294.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://technet.microsoft.com/en-us/library/dd347715.aspx
http://technet.microsoft.com/en-us/library/dd347588.aspx
http://www.computerperformance.co.uk/powershell/powershell_conditional_operators.htm
http://www.eggheadcafe.com/software/aspnet/33515781/powershell-operators.aspx
http://powershell.com/cs/blogs/ebook/archive/2009/03/08/chapter-7-conditions.aspx
http://www.simple-talk.com/author/michael-sorens/

