Installing SQL Storage Compress
Before we learn more about how to use SQL Storage Compress, we need to take a quick look at how you install it.
Fortunately, it is a quick and easy procedure.

SQL Storage Compress comes in two different files: the “Hyperbac Installer” and the “SQL Storage Compress” setup
program. The “Hyperbac Installer” is executed first, and then the “SQL Storage Compress” setup program is run.
Installing both only takes a minute or two and does not require a reboot. Once they are installed, and assuming you
have purchased a license, all you need to do is to enter the activation code, and you are on your way.

SQL Storage Compress works with the Developer, Standard, and Enterprise editions of SQL Server 2000 (SP 3 or later),
SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2. Operating systems supported include XP Professional (SP1 &
SP2), Vista, Windows 7, Windows 2000 (SP 4), Windows Server 2003 (SP 1 & SP2), Windows Server 2008, and Windows
Server 2008 R2.

Compressing your database

Once SQL Storage Compress has been installed, you have two options for compressing a database’s MDF and NDF files.
The option you choose depends upon whether you are creating a new database from scratch, or you want to convert an
existing database to a SQL Storage Compress compressed database. Let’s look at each option in turn.

Creating a new database
Creating a new SQL Storage Compress compressed database uses exactly the same CREATE DATABASE syntax as when
creating any new database in SQL Server. The only difference is the file extension you give to the MDF or NDF files.

For example, let’s say | want to create a 1 GB database with a 100 MB log file: | execute the following Transact-SQL code:

USE master ;
GO
CREATE DATABASE SQL_ Storage Compress Demo ON
(NAME = ssc_demo_dat,
FILENAME = 'E:\ssc_demo.mdfx',
SIZE = 1000MB) LOG ON
(NAME = ssc_demo_log,
FILENAME = 'E:\ssc_demo.ldf',
SIZE = 100MB) ;
GO

As soon as the database is created, | can run the standard Disk Usage report from SQL Server Management Studio
(SSMS), and see that my database was created as | expected.

Disk Usage Micosoht®

[SQL_Storage_Compress_Demo] &, SQL ServerZOOS R2

on KONA at 7/21/2011 1:22:39 PM

This report provides overview of the utilization of disk space within the Database.

Total Space Usage: 1,100.00 MB
DataFiles Space Usage: 1,000.00 MB
Transaction Log Space Usage: 100.00 MB
DataFiles Space Usage (%) Transaction Log S pace Usage (%)

! Index
 Unallocated 71 Used
mm Data M Unused
W Unused
No entry found for autogrow/autoshrink event for SOL_Storage_Compress_Demo database in the trace log.
B Disk Space Used by Data Fles
Filegroup Name Logical File Name Physical File Name Space Reserved Space Used

PRIMARY ssc_demo_dat E:\ssc_demo.mdfx 1000.00 MB 1.31 MB

Figure 3: The Disk Usage report tells us that SQL Server thinks it has created a 1 GB database with a 100 MB log file

So where’s the compression? Wasn’t SQL Storage Compress supposed to compress the MDF file? Yes, and the MDF file
was, indeed, compressed. To prove it, let’s look at the MDF and LDF files from Windows Explorer.

| & ssc_demo.Idf 7/21j2011 1:20 PM SQL Server Database Transaction Log File 102,400 KB
Ei ssc_demo.mdfx 7/21j2011 1:20 PM HyperBac Archive 2,176 KB

Figure 4: Showing that the new MDF file we created was compressed

So, if SQL Storage Compress compressed the MDF file, why doesn’t this show up in the Disk Usage Report? Remember,
SQL Server doesn’t know about the compression. Since the details of compression are hidden from SQL Server, the Disk
Usage Reports show us what SQL Server thinks it sees. Of course, we know better, because we can see the size of the
actual MDF file. In fact, if you do the math, the compression of the MDF file before adding any data is about 99.8%.
Naturally, when data is added to the database, the compression ratio will go down, but all the data added to the new
database will be automatically compressed. The amount of compression will depend on the amount of free space in the
MDF and NDF files, and the compressibility of the data.

I still have a little more explaining to do, and that involves discussing the significance of the .mdfx and .ndfx extensions.
SQL Storage Compress has been configured so that when it sees a file using these extensions, it knows that the data
stored in these SQL Server databases are to be compressed. That’s all, nothing fancy. And as you probably know, SQL
Server doesn’t care what the file extensions of database files are, so any file extension can be used. With SQL Storage
Compress we simply add the letter “x” after MDF and NDF.

Within SSMS, whenever you work with system views or DMVs on a database compressed by SQL Storage Compress,
don’t forget that SQL Server always displays the disk sizes it thinks it sees, not the actual size of the data files. Use
Windows Explorer to view the actual sizes of the compressed MDF and NDF files, or the new graphical user interface
(GUI) included with SQL Storage Compress 6.0.

Compressing an existing database

In many cases, you will want to compress an existing database using SQL Storage Compress. This is a simple, one-time
step; essentially, all you have to do is to back up your original database and then restore it. Once this step has been
completed, the original database can be deleted, as it is no longer needed.

For example, let’s say that you want to use SQL Storage Compress to compress the AdventureWorks database. The first
step is to back up the database. You can back it up using the native SQL Server BACKUP command; or, if you are running
SQL Server 2008 Enterprise Edition, or if you have the Standard or Enterprise Edition SQL Server 2008 R2, you can use
the native backup compression. You can also back up the database using SQL HyperBac, SQL Backup Pro, or even some

other third-party backup tools.

Once you have a backup, you restore the database using the native Transact-SQL RESTORE command (or the normal
syntax used for restoring using third-party backup tools, such as stored procedure calls). The syntax of the command
must include the MOVE clause and the file extensions must be changed from MDF and NDF to MDFX and NDFX,
respectively. For example, the following Transact-SQL code creates a SQL Storage Compress version of the
AdventureWorks database that was created using the native SQL Server BACKUP command:

RESTORE DATABASE [AdventureWorks Compressed] FROM DISK =
'D:\AdventureWorks.bak' WITH MOVE 'AdventureWorks Data' TO
'C:\AdventureWorks Data.mdfx', MOVE 'AdventureWorks Log' TO
'C:\AdventureWorks Log.ldf'

Notice that the RESTORE syntax is standard Transact-SQL. The only difference between this code and any RESTORE code
you normally might write is the name of the MDF file extension. You can restore the database to any SQL Server instance
you want that has SQL Storage Compress installed on it.

As the database is restored, it is automatically compressed by SQL Storage Compress. When the RESTORE is complete,
the MDF and NDF files will have been compressed and the database will work just like it did before, except that it will
now take up much less storage space.

