High Performance SQL Server

The Art of XSD

SQL Server XML Schema Collections

Jacob Sebastian

ISBN: 978-1-906434-13-7

The Art of XSD

SQL Server XML Schema
Collections

By Jacob Sebastian

First published by Simple Talk Publishing 2009

Copyright Jacob Sebastian 2009
ISBN 978-1-906434-13-7

The right of Jacob Sebastian to be identified as the author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988

All rights reserved. No part of this publication may be reproduced, stored or
introduced into a retrieval system, or transmitted, in any form, or by any means
(electronic, mechanical, photocopying, recording or otherwise) without the prior
written consent of the publisher. Any person who does any unauthorized act in
relation to this publication may be liable to criminal prosecution and civil claims for
damages.

This book is sold subject to the condition that it shall not, by way of trade or
otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's
prior consent in any form other than which it is published and without a similar
condition including this condition being imposed on the subsequent publisher.
Technical Review by David McKinney

Cover by Matthew Tye

Edited by Steve Jones and Tony Davis

Typeset by Gower Associates.

Table of Contents

About the author............coeeeiiiiiie e —— iX
About the Technical Reviewer ... ix
Acknowledgements............coouiiiiimiiminienenennnss X
INtrodUCTiON.......cee e ————— xii
Chapter 1. 13
Introduction to XML Schema.........oooriiiiiiiiinn e 13
What is an XML SChema?ooiiiiiiii e 13
Relevance Of XSD ... 14
Schema Languages...........ooooviiiiiiiiiee e 15
XML Support in SQL Server 2000ccuvviiiieeeeeeiiiiieieee e 17
XML Support in SQL Server 2005 ... 18
XML Support Enhancements in SQL Server 2008ccccooiiiiiiienenenn. 19
TYPED and UNTYPED XMLuoiiiiiiiiiiieeiee e 21
How This Book Is Organizedcccoooeeiiiiiiiiii e, 23
Chapter 2.t 25
Start Writing the First Schema ... 25
Writing the First XML Schema ... 26
XML NAMESPACES ...uuniiieeiiiieiiiiie e e e e ee ettt e s e e e e e e e et e e e e e e e e eeeraaeeeeaeeennnes 26
Default NameSPacCesccoooeeieeeieee e 29
DS I N F= Ty 41T o= T = 30
Adding an element............uuuuiiiiii e ————————————— 31
SQL Server Schema Collectionsccveviiiiiiiiiiiii e 32
Creating a Schema ColleCtioncoovviiiiiiiiii e 32
Performing validations using Schema Collections.............ccccccceiiiiiiinnen. 33

Validating an XML variable..........ccoooviiiiiiiiiiei e 33

Validating an XML COIUMNiiii i e e 34
Modifying @ Schema ColleCtion ... 36
SQL Server Management Studio — Schema Editor.............ccccovvveeeeennn. 38
Chapter SUMMANY ... 44
Chapter 3..... .o e e e 46
LAB: Order Processing Application for North Pole
Corporation.........e e —————— 46
North Pole Corporation ... 46
The WED ServiCe......oooi i 47
The XML Datacooiiiiiiiiie e 48
ENEEr XSD .o 48
Identifying the Data Elements ..., 49
Defining the XML Structurec.ooviiiiiiiieeee e 51
Defining the Validation RUlescooiiiiiiiiiee e 53
Getting Ready to Write the Schema..................ccc 59
[0 - T o L= o RS 60
Understanding Schema Components.............ccceiiieeeencciciieernenes 60
Building BIOCks Of XSDuuuuiiiiceccccccces e 60
Chapter SUMMary ... 85
Chapter 5....... e ————— 87
Understanding Element Declarations............ccccviiiiiiiiiiiiiiiiinn, 87
Element Declaration ... 87
Global And Local Element Declaration.............ccceeevvieiiiiiiiiiiieeees 89
Element Declaration Parametersccoooooiiiiiiniicieee 92
Chapter SUMMaAry ... 132

[0 0 =101 =Y < Ot 134

Understanding Attribute Declarationsccccccceeccciiiiiiiinneecennee. 134
Elements vs. AttribUtesoooiiiiiii 134
A Basic Attribute Declarationcccooiiiiiiiiii 136
Global and Local attribute declarationsccceeeeiiiiiiiiiiis 137
Attributes of Attribute Declarationccceeeeeiiiiiiii, 141
AHRFDULE GrOUPS ... 152
LAB1: Write schema for the Order Processing Application —................. 155
The ROOt €leMENt.......ccoiie e 155
Chapter SUMMANYooiiiiieee e 169

L0 T- T o = 171

XSD Primitive Data Typescccceviiimmmimimmmssssssnseeee e ssssseneeens 171
Importance Of Data TYPES. e 171
Characteristics of XSD Data TYPesccuvuiiiiiiiiiiiiiiiieee e 173
Primitive Data TYPeS......ccooeiiiee e 174
LAB2: Write Schema for the Order Processing Application —................. 197
The Order EIEMENt ... 197
Chapter SUMMANYooiie e 210

Chapter 8. 212

5714 o] L= T 1/ o 1= 212
Simple Types and ComplexX TYPEeS ...ccoeeeeeeiiiiiieeeeeeeee 212
Enhancements to List and Union Types added in SQL Server 2008......225
Inheritance and restrictions ... 233
Locking facets with "fixed" attribute ... 234
Restricting derivation with "final" ... 236
Preventing derivation by restrictioncccceeviiiiiiiieece e, 237

Preventing derivation by list ... 237

Preventing derivation by Union...........cccccceiii i, 238
Preventing derivation by extensioncccciii 239
Preventing more than one type of derivationcccccoe oo, 239
Preventing derivation completelycccooiiiiiiiie 240
LAB3: Write schema for the Order Processing Application —................. 241
The Customer element.c..ooiiiiiiiiiii e 241
Chapter SUMMANY ... 256
Chapters 9. 257
XSD Built-in Derived Data Types..........cccoirinnnnnnnnnnnnnnnsnsnsssnnsnnns 257
XSD Built-in Data Types: Primitive and Derived Data Types.................. 257
Facets of Data TYPESeeiiiiiiiiiie e 259
Facets of Primitive Data Types........ccooeeiieiiiiii 279
XSD Built-in Derived Data TYPESuvvviiiiiiiiiiiiiiiiiiiiiiiiiriiniiereeeneenneannns 280
Facets of XSD Built-in Derived Data Types........cccccceevviiiiiiiiieiieeeeeee 311
Chapter SUMMANY ... 311
[0 0 =01 =Y e [N 313
L2 T 1 0] o1 L=) Q1Y 1= 313
Complex Types vs. SIMple TYPEScoovvvvveiiiiiieeieeeeeeeeeeeeeeeee e 313
LAB4: Write schema for the Order Processing Application — Billing
and Shipping addreSscooivviiiiiiieieeeeeeeee e 333
Chapter SUMMaArY ... 342
L0 T- T o L= e o RSSO 344
Complex Type Derivation.........ccoeeecciiiiiiiiieecccce e 344
Deriving Complex Types from Simple Types.........ccccceeeeiiiiiinn. 344
Restricting Extension of Simple Types.........cccciieiiiiiiiiiiiiieeee 346

Vi

Deriving from Complex TYPESccooveieeiiiiiieiee e 347

Deriving from Simple Content.........ccoooiiiiiiiiiiii e, 347
Deriving from Mixed Content Complex Typesccccoovimiiiiiiiciiiiniinnee. 361
Deriving from Empty Contentoooiiiiiiiii s 369
Deriving from Empty Content by Extension..........cccccoviiiieiiniinee. 371
Complex Type Derivation Summaryccccooeeiii 375
Controlling Complex Type Derivationcccocc 375
Chapter SUMMANYooiiiieieeee e 378
Chapter 12..... s 380
XSD Regular Expression Language.........cccccevvrrrrmminmnnnneneeneeenenns 380
What are Regular EXPressionS?........oooeiiiiiiiiiiiiiiiiieeeee e 380
Understanding Regular Expression Patternsccccccoeeeei. 381
Meta CharacCtersooiiiiiiiiie e 385
Shorthand Character Classescoocuiiieiiiiiiieiie e 393
Negative EXPreSSIONS.......ccuiiiiiiiiiiieieee e 394
Character Class Subtraction.............cccuueeeeiiiiiiiiii e 394
LABS5: Write schema for the Order Processing Application —
Writing the final sSchemaoooiiiiii 396
Chapter SUMMANYooiiie e 415
Chapter 13......e e res e r e e e e e e e e e mna s 416
Advanced Schema Concepts.......cccccorrrremiiirieencirerren e 416
Attributes of a schema declarationccccceiii 416
Wildcard components and content validation............cccccoooovirieen 422
Chapter SUMMANYooiiiieeeeee e 447
Chapter 14........ s 449
SQL Server Schema Collections and Metadata 449

vii

Why schema 'Collection'?oovvvviiiiiiiiiiiiiieeeeee s 449

A Schema Collection EXamPIeeuvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeiennennenanns 450
Altering a schema COIlECHIONcooiiiiiiiiiiiii e 453
Retrieving Schema Definition ... 458
Multiple Target NamesSpacCescccooeiiieeieie e 460
Adding constraints using facets...............euveviiiiiiiiiiiiiiii 464
XML Schema Collection Metadata.............ccoeeiiiiiiiiiiiieccien 467
SQL Server XSD Implementation — Limitations.............ccccccoveviienn. 473
Chapter SUMMANY ... 489

viii

ABOUT THE AUTHOR

Jacob Sebastian is a SQL Server Consultant based in Ahmedabad, India.
He's a Microsoft SQL Server MVP, a Moderator at the MSDN and Technet
Forums, and volunteers with the Professional Association for SQL Server
as Regional Chapter Coordinator for Asia.

As if that wasn't enough, he also runs a SQL Server User Group in his
home town, is a frequent columnist at SQLServerCentral.com and blogs
regularly at http://blog.beyondrelational.com/.

Jacob started his database career in the early nineties with Dbase and then
moved to Clipper, Foxpro and finally settled on SQL Server. He's now been
working with SQL Server for over 11 years and is a regular speaker at local
User Groups and SQL Server events. He is also a well-known SQL Server
trainer, and teaches at various SQL Server classes across the country.

When not working, Jacob likes to watch movies and spend time with family
and friends. Somehow, he manages to squeeze it all in together with
offering advice in forums, learning more about SQL Server, writing
presentations, articles, blogs ... or even a book.

ABOUT THE TECHNICAL REVIEWER

David McKinney is a Senior Developer in the Asset Management industry,
and has been working on applications using SQL Server since 2000. In
recent years, he has focused increasingly on making best use of XML,
XSD and XSL with SQL Server, and is the author of several articles on the
subject.

Born in Ireland, he speaks 5 languages and has lived and worked in
London, Paris and Luxembourg. He lives currently in North East France
with his wife Henriette, and children Evan and Owen.

ACKNOWLEDGEMENTS

This is my first book, and all the credit should really go to Steve Jones at
SQLServerCentral. Steve helped me grow into being a SQL Server Writer,
when previously | was just a Developer. He had been my inspiration and
guide throughout the journey, from writing articles for SQLServerCentral for
the last two years, to writing the last chapter of this book.

| would like to thank Tony Davis at Red Gate, who helped me to get this
project started and was another essential guide throughout this long
journey.

This book would not have been in this shape without the valuable
comments and reviews by David Mckinney, who did the technical reviews
for each chapter. The credit for everything that you ‘like’ in this book goes
to him. | should mention that, after his first technical review, | wrote all the
chapters again from scratch.

I would like to acknowledge the great effort of Susan Page, who did the
copy editing of this book. | can only imagine how much effort she must
have put into correcting my sentences and making them meaningful. In
spite of that, she has been kind, patient and so supportive. Thank you,
Susan.

It took me 18 months to complete this book, as | was not writing full time.
The journey was quite long and a number of times | needed to recharge
myself. | would not have been able to complete this book without the
continuous encouragement and support of my friends: Anil, Krupali, Khyati,
Shweta, Pinal and Parth. They deserve every credit of making my dream of
writing this book happen.

| had been going through a very hectic schedule for the last couple of
years, and being so engaged in writing this book took me completely away
from my family. | dedicate this book to Jincy, my wife who supported me at
every step and took care of many of my responsibilities in the family, while |
spent most of my time writing the chapters or sleeping at my writing desk.

Finally, | would like to introduce the co-author of this book, Julie, my 5 year
old daughter. She is a wonderful kid and always supported me when |
wasn’'t able to take her to the school or help her to do the home work. |
miss her while | am writing this acknowledgement note from the other side
of the globe (I am in NY and she is in India). | sorely miss her question:
“Daddy, which book do you like to read: XML or SQL?”, and she always
brought me a book when she saw me sitting idle. While she is still learning

X

three-letter words in the school, she reads ‘XML’ and ‘SQL’ along with ‘cat’,
‘rat’, and ‘bat’. Julie, | am so proud of you, and | love you.

I would like to thank all the readers of my articles and blogs for their
continuous feedback, support and encouragement for finally making this
possible, and I'm sure this book will receive the same affection and
acceptance you always gave me.

Xi

INTRODUCTION

When information is exchanged in XML format, there needs to be an
agreement between the sender and receiver about the structure and
content of the XML document. An XSD (XML Schema Definition Language)
Schema can be used to enforce this contract and validate the XML data
being exchanged and, given that a lot of applications exchange information
in XML format, the Art of XSD is becoming an increasingly vital technical
skill.

To give you some quick background, in SQL Server 2005 Microsoft
introduced the new native XML data type, which represents an XML
document or fragment. This is a significant enhancement to the limited
XML support available in SQL Server 2000. SQL Server 2005 supports a
limited subset of XML Schema Definition Language (XSD), and stores XML
schemas as 'XML Schema Collections,' which are a SQL Server object like
tables, views or stored procedures.

This book is intended to help you learn and use XML Schema collections in
SQL Server. Prior knowledge of XSD is not required to start reading this
book, although any experience with XSD will make your learning process
easier. I'll start with the basics of XML schemas and then walk you through
the schema concepts, schema components, examples and labs to make
sure that you're thorough with everything needed to build powerful XML
schemas in SQL Server.

If you have any question on the topics discussed in this book or on XSD in
general, feel free to write to me at Jacob@beyondrelational.com.

Xii

CHAPTER 1
INTRODUCTION TO XML SCHEMA

This chapter provides a basic introduction to XML Schema. It briefly
explains what an XML schema is and its significance in today's
programming world. Further, it gives a brief overview of DTD and XDR, the
predecessors of XSD. Finally, this chapter looks into the XML capabilities of
SQL Server 2000, 2005 and 2008.

What is an XML Schema?

An XML Schema is a document which describes another XML document.
XML Schemas are used to validate XML documents. An XML schema itself
is an XML document which contains the rules to be validated against a
given XML instance document.

When do we need an XML schema?

When we write a piece of code (a class, a function, a stored procedure,
etc.) which accepts data in XML format, we need to make sure that the
data that we receive follows a certain XML structure and should contain
values which are coherent. Let us look at an example.

Assume that you are writing a function/method for an application that
manages employee data. Your function is expecting the employee
information in the following XML structure:

<Employee>
<Name>
<First>Jacob</First>
<MiddTe>v</Midd]e>
<Last>Sebastian</Last>
</Name>
<!-- Deleted other information for brevity -->
</EmpTloyee>

Your function needs to make sure that the caller passes correct XML data.
You could make use of an XML Schema to perform this validation. An
XML Schema which describes and validates the above XML document is
given below.

13

1 — Introduction to XML schema

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Employee">
<xs:complexType>
<XS:sequence>
<xs:element name="Name'">
<xs:complexType>
<XS:sequence>
<Xs:element name="First"/>
<xs:element name="Middle"/>
<xs:element name="Last"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

By validating the XML data against this schema, you could make sure
that the XML document is structured exactly the way your function expects
it to be.

To summarize, we need an XML schema when we need to make sure that
the XML document that we need to work with is in the expected format.
Further, a schema can help to make sure that the values of elements and
attributes are within the accepted range (age should be between 18 and
65, Order Date cannot be a future date, etc.) and in the required format
(Phone Number should be in the format of (999) 999-9999, Zip Code
should have 5 digits, Product Code should start with an upper case letter
followed by 5 digits, etc.).

Relevance of XSD

There has been a significant increase in the popularity and usage of XML
in the past few years. More and more websites and applications started
adopting XML for exchanging or publishing information. A few examples
are given below:

. Web sites started publishing information in the form of XML feeds
(example: RSS, ATOM, RDF, etc.).

. XML Web services became an integral part of enterprise applications.

. A large number of applications are being written that make use of
XML web services such as Google APls, Amazon Web Services, etc.
Many small applications that work with frequently changing
information (example: news headlines, stock data, weather
information, etc.) rely on XML web services.

14

1 — Introduction to XML schema

° Most of the document formats that we use today can be converted to
and from XML. Microsoft Open Office XML Format (.docx) of office
2007 and WordML of Word 2003 are examples of XML support
getting into word processing. XML is extensively used for
documentation. An example is the XML documentation support
extended by Visual Studio.

. More and more web sites are turning to AJAX (Asynchronous Java
Script and XML) programming, where data is exchanged in XML
format. Many of the web pages today use XSLT to generate HTML
from XML data.

. An increasing number of web sites adhere to the XHTML standard.

. Many applications use xml to store session or user related data.
Microsoft Dot.net applications use XML files for storing configuration
data (web.config and app.config). Reporting Services stores report
definitions as XML documents.

When data is managed and exchanged in XML format, there needs to be
clear agreement about the structure of the XML document. Values of
elements and attributes should be in the expected range as well as in the
desired format. There needs to be a contract between the caller and the
callee about the XML document being exchanged. Once the contract is
defined, there has to be a way to enforce it and validate the XML document
to make sure that it adheres to the format defined in the contract.

This is where we need an XML Schema! A Schema provides such a
contract. It defines the structure of the XML document. It defines rules to
validate the value of elements and attributes as well as their formats. Once
a schema is defined, a Schema Validator (For example: XmlValidating
Reader class of .NET xml library, SQL Server 2005, etc.) can validate an
XML document against the rules defined in the Schema.

Schema Languages

As the usage of XML increased, schema languages were also developed
to support the validation requirements. DTD, XDR, SOX, Schematron,
DSD, DCD, DDML, RELAX NG are a few among them. We will have a
quick glance into DTD and XDR in this chapter. An introduction to the other
Schema languages is beyond the scope of this book.

15

1 — Introduction to XML schema

Document Type Definition (DTD)

Document Type Definitions (DTD) is one of the commonly used methods
for describing XML documents. A DTD can be used to define the basic
structure of the XML instance, data type of the attributes, default and fixed
values, etc. DTDs are relatively simple and have a compact syntax. On the
other side, they have their own syntax. DTD does not provide ample
support for common requirements like namespaces, data types, etc.

The following is an approximate representation of the DTD which describes
the sample XML we saw previously.

<!ELEMENT Employee (Name)>

<!ELEMENT Name (First, Middle, Last)>
<!ELEMENT First (#PCDATA) >
<!ELEMENT Middle (#PCDATA) >
<!ELEMENT Last (#PCDATA) >

An XML document may have a reference to an external DTD file or can
have the DTD embedded as part of the XML file. The XML document given
below has embedded DTD information.

<?xml version="1.0"7?>
<!DOCTYPE Employee [
<!ELEMENT Employee (Name)>
<! ELEMENT Name (First, Middle, Last)>
<!ELEMENT First (#PCDATA) >
<!ELEMENT MiddTe (#PCDATA) >
] <!ELEMENT Last (#PCDATA) >
>
<Employee>
<Name>
<First>Jacob</First>
<Middle>v</Middle>
<Last>Sebastian</Last>
</Name>
</Employee>

The example given below shows an XML document that refers to an
external DTD file.

<?xml version="1.0"7>
<!DOCTYPE Employee SYSTEM "employee.dtd">
<Employee>
<Name>
<First>Jacob</First>
<Middle>v</Middle>
<Last>Sebastian</Last>
</Name>
</Employee>

16

1 — Introduction to XML schema

XML-Data Reduced (XDR)

XML-Data Reduced (XDR) was developed in 1998 with the joint
effort of Microsoft and University of Edinburgh. The syntax of XDR
is very close to that of XSD and is documented at :

http://www.ltg.ed.ac.uk/~ht/ XMLData-Reduced.htm.

Microsoft implemented XDR in MSXML Parser. SQL Server 2000
supported creating XML using Annotated XDR Schemas. In SQLXML 4.0
Microsoft added support for XSD schemas and deprecated XDR schemas.

An approximate XDR representation of the sample schema (We have seen
an XSD version as well as DTD version) is the following:

<Schema name="Employee"
xmlns="urn:schemas-microsoft-com:xml-data">
<ElementType name="First"/>
<ElementType name="Middle"/>
<ETementType name="Last"/>

<ETementType name="Name" content="eltonly" order="seq">
<element type="First"/>
<element type="Middle"/>
<element type="Last"/>

</ElementType>

<ElementType name="Employee">
<element type="Name"/>
</ElementType>
</Schema>

XML Support in SQL Server 2000

SQL Server 2000 was released with a basic set of XML programming
capabilities, which includes generating XML data using FOR XML and
reading XML data with OPENXML.

FOR XML

FOR XML helps to generate XML output from the results of a TSQL query.
When used with AUTO, RAW or EXPLICIT, FOR XML provides different
levels of control over the structure of the XML result being generated.

17

1 — Introduction to XML schema

OPENXML

OPENXML() function shreds an XML document and provides a rowset
representation of the XML data.

SQLXML

SQLXML is an add-on which added additional XML capabilities to SQL
Server 2000. Before you could access any of those features, SQLXML
should be configured in IIS using the MMS snap-in which is installed as
part of SQLXML setup.

With the assistance of SQLXML, SQL Server 2000 offered the following
additional features:

Querying Data over HTTP

Once SQLXML is configured in IIS, you can send a TSQL statement over
HTTP to the server and receive the results.

XML Views

An XML View provides an XML representation of the relational data of one
or more tables. Using an XML View, you can run XPath queries on the
relational data exposed by the XML View. XML views can be used with
Updategrams to perform updates on the database.

Web Services
Another important feature exposed by SQLXML is the capability to expose

SQL Server 2000 as a web service. This will enable you to send HTTP
SOAP requests to the server to execute stored procedures, functions, etc.

XML Support in SQL Server 2005

In addition to many enhancements to the existing XML features, SQL
Server 2005 introduced a new data type: XML. Let us briefly examine the
XML capabilities of SQL Server 2005.

18

1 — Introduction to XML schema

FOR XML - To generate XML Data

SQL Server 2000 supported three different modes with FOR XML, namely:
RAW, AUTO and EXPLICIT. SQL Server 2005 added a new mode, PATH.
The usage of PATH is relatively simple and it helps to achieve many of the
complex XML formatting requirements which were possible only with
complex usage of EXPLICIT earlier.

XML Data Type

SQL Server 2005 introduced a new data type: XML. An instance of the
XML data type represents an XML document or fragment. XML data type
can be used to define columns and can also be passed as parameters to
functions and stored procedures. Functions can return XML values. You
can declare XML variables in TSQL.

XQuery Support

The support for XML data type raised the requirement for querying the XML
document stored in an XML column or variable. SQL Server 2005 supports
XQuery (XML Query Language). XQuery is a W3C specification designed
to provide a flexible and standardized way of querying XML data.

Support for XSD (XML Schema Definition)

SQL Server 2005 supports XSD (XML Schema Definition) to perform
validations on the structure and value of XML documents. XML columns
and variables can be bound to an XSD schema and the Schema
Processing Engine will perform validations on the data, based on the
schema definition. Please note that the support of XSD in SQL Server 2005
is still limited.

XML Support Enhancements in
SQL Server 2008

SQL Server 2008 added several enhancements to the XML capabilities of
the previous version of SQL server.

19

1 — Introduction to XML schema

Schema Validation Enhancements

SQL Server 2008 added a number of enhancements to Schema Validation.
Let us quickly examine them.

Lax Validation Support

To increase the flexibility of an XSD schema, wild card components are
often used. This is usually done by using elements <xsd:any> or
<xsd:anyAttribute>. Wild card components allow adding content that is not
known at the time of schema design.

SQL Server 2005 always had options to either "skip" the validation of such
elements or to perform a "strict" validation. When validation is "skipped" no
validation is applied on such elements. When validation is set to "strict" the
elements are always validated.

SQL Server 2008 supports "lax" validation, which validates only elements
and attributes for which schema declarations are available. If the schema
declaration is not available, the validation will be skipped for those
elements and attributes."lax" validation is explained in Chapter 13

Full support for date, time and dateTime data
types

XSD specification defines time-zone information as optional with date, time
and dateTime data types. However, the XSD implementation of SQL Server
2005 required time zone information to be present with a date, time or
dateTime value. However, it did not preserve the time zone information.
The value is normalized into UTC date/time.

SQL Server 2008 removes this limitation. You can omit time zone
information when storing date, time or dateTime data types. If you include
time-zone information, the information is preserved.
We will see these enhancements in Chapter 7.

Improved support for union and list types
SQL Server 2008 adds support for list types that contains union types. It

allows union types that contain list types as well. We will examine this in
Chapter 7.

20

1 — Introduction to XML schema

XQuery Enhancements

SQL Server 2008 adds support for the "let" clause in the "query()" method
of the XML data type. Refer to Books Online for a detailed explanation of
the "let" clause.

XML DML Enhancements

The only significant DML change is the support for inserting an XML
variable (or value of XML type) into another XML variable or XML column
(using the XQuery "modify()" method with "insert" operation).

TYPED and UNTYPED XML

SQL Server 2005/2008 supports two flavors of XML known as TYPED and
UNTYPED. Typed XML is associated with an XML Schema that defines the
structure of the XML variable or column. Any text data can be stored to an
UNTYPED XML column or variable as long as it is in XML format. But a
TYPED XML column or variable must strictly follow the structure defined in
the XML schema (XSD).

TYPED XML has many advantages over UNTYPED XML.

. SQL Server has prior knowledge about a TYPED XML column or
variable because it is bound to a schema known to it. This knowledge
will help the query optimizer generate better query plans.

. When a TYPED XML is used, SQL Server knows the data types of
elements and attributes and can do better query processing.

. SQL Server can perform validations when value is inserted or
updated. If the XML document or fragment does not pass all the
validations defined in the XML Schema, SQL Server will raise an
error and will not modify/insert the data.

By using an XSD schema, you can perform all sorts of validations that
need to be done before accepting the XML data. If you work with XML data
often you may be familiar with the following requirements, which will make
your application less prone to error.

21

1 — Introduction to XML schema

Validate the structure of the XML

Example:
<address> should occur after <name>. <phone> is optional but there
should be one or more <item> elements.

Validate the data types

Example:

<zip> should be numeric, <age> should be numeric, <phone> is alpha
numeric, <dateOfBirth> should be a valid date value, <maritalStatus>
should be Boolean.

Perform restrictions on values

Example:

<hiredate> should not be earlier than 1900. <age> should be between 18
and 80. <itemnumber> should have 3 digits, followed by a "-" and then 4
alpha-numeric characters.

There are many more validations that we might need to do, depending
upon the nature of our application and the type of data that we receive.
Performing such validations without the help of a SCHEMA will be
extremely difficult most of the time. Think of reading/parsing the XML
document using your favorite XML library and validating each element and
attribute. Though you could do this for some of the basic validations, most
of the real life validations will be impractical to perform without a SCHEMA.

By using an XSD schema you can define all the validation rules using
simple XML structure, and SQL Server 2005 will perform all the validations
on your behalf.

22

1 — Introduction to XML schema

How This Book Is Organized

Note: XSD support is added with SQL Server 2005 and that is the subject
of this entire book. The XSD support added by SQL Server 2005 is further
enhanced by SQL Server 2008. Whenever | say SQL Server, | would be
referring to both SQL Server 2005 and 2008. | will use the version number
to refer to a specific version of SQL Server.

Chapter 1: This chapter gives an introduction to XML schema, discusses a
few different schema languages, and then explains the XML support
extended by SQL Server 2000, 2005 and 2008.

Chapter 2: In this chapter we will write our first XSD schema. We will then
have a look at XML namespaces and become familiar with SQL Server
XML Schema collections. We will see how to validate XML instances
against schema collections and will have a quick overview of the SSMS
XSD editor.

Chapter 3: This chapter presents a fictitious company, North Pole
Corporation, which needs some web services developed for their order
processing application. This chapter identifies the structure of the XML data
to be exchanged and determines the validations to be performed using
XSD.

Chapter 4: This chapter explains the basic building blocks of XSD. We will
see Element Declarations, Attribute Declarations, Simple Types, Complex
Types, Attribute Groups, Element Groups, Order Indicators, Occurrence
Indicators, annotations, etc. This chapter also explains how to associate
data types with element declarations and perform additional validations on
the value of elements and attributes.

Chapter 5: This chapter explains element declarations in detail. We will
examine global and local element declarations and discuss each attribute
that an element declaration can take. We will examine name, id, type,
default, fixed, nillable, substitutionGroup, abstract, block, final, minOccurs,
maxOQOccurs, ref and form attributes.

Chapter 6: This chapter explains attribute declarations in detail. We will
have a quick glance into the behavior of elements and attributes and will
discuss global and local attribute declarations. We will then look at each
parameter of an attribute declaration and will discuss attribute groups and
their usages.

23

1 — Introduction to XML schema

Chapter 7: This chapter starts with a basic discussion on the importance of
data types. We will discuss the characteristics of XSD data types and XSD
Primitive Data Types in much detail.

Chapter 8: This chapter focuses on Simple Types. It explains the
difference between simple types and complex types and discusses local
and global simple type declarations. We will examine simple type derivation
as well as the enhancements added to list and union types in SQL Server
2008. We will also examine how to restrict derivation of simple types.

Chapter 9: We will discuss XSD Derived Data Types in this chapter. This
chapter starts with a discussion on XSD Primitive Data types and Derived
data types and then discusses the facets of the primitive data types.
Finally, it explains each of the Derived Data Types in detail.

Chapter 10: We will examine Complex Types in this chapter. We will
examine local and global complex types and discuss the different content
models of complex types. We will also examine order indicators,
occurrence indicators and element groups.

Chapter 11: This chapter focuses on derivation of complex types. It
discusses the derivation of each content model by restriction as well as by
extension. It also explains how to control complex type derivation.

Chapter 12: This chapter explains the Regular Expression language
supported in XSD. We will discuss regular expressions, patterns, meta
characters, case sensitivity, shorthand character classes, negative
expressions and character class subtraction.

Chapter 13: This chapter discusses some advanced XSD concepts. We
will discuss element wildcards, attribute wildcards, and extension of
wildcard elements and attributes. We will see different ways a schema
processor validates wildcard declarations. We will then see the different
attributes of a schema declaration.

Chapter 14: This chapter looks closer into XML Schema Collections.
We will discuss how to create schema collections having more than
one schema definition. We will then discuss how to alter schema
collections, how to retrieve the definition of a schema collection from SQL
Server and will examine the various system catalog views related to
schema collections.

24

CHAPTER 2

START WRITING THE FIRST
SCHEMA

Let us get familiar with writing schemas. We will do the following in this
chapter.

Write our first XML schema

Learn about XML Namespaces in general

Look at XSD namespaces and the concept of default namespace
Add an element declaration to our first schema

Understand SQL Server SCHEMA Collections

Validate an XML variable using a schema

Validate an XML column using a schema

Modify schema collections

Look at SSMS schema editor

We have had a basic introduction to XML schemas in the previous chapter.
It is time to start getting familiar with writing schemas. In this chapter we
will write our first schema and see how the SQL Server validates XML
instances against a schema.

Schema" to refer to an XML Schema document which
describes and validates the structure and content of another
XML document.

'ﬁ We will use the terms "XSD Schema™ as well as "XML

An XML schema is an XML document. The root element of an XML schema
should always be the "<schema>" element. All definitions should appear
under the root element "<schema>."

25

2 — Start writing the first schema

Writing the First XML Schema

Here is the basic declaration of an XML schema.

‘ <schema xmlns="http://www.w3.0rg/2001/XMLSchema">
</schema>

Listing 2.1: An empty schema declaration.

This is just an empty schema. An empty schema usually does not make
any sense. However, this would help us analyze the structure of a basic
schema. We will enhance this basic schema and make it more meaningful
later in this chapter.

<schema xmIns="http://www.w3.0rg/2001/XMLSchema">
‘ </schema>

Listing 2.2: The schema element.

As mentioned earlier, "<schema>" is the root element of an XML Schema.
The declarations of all the elements and attributes, along with the validation
rules, should appear within the root element.

<schema xmlns="http://www.w3.0rg/2001/XMLSchema" >
</schema>

Listing 2.3: The schema namespace.

All elements and attributes of XML Schema are declared in the namespace
"http://www.w3.0rg/2001/XMLSchema." Hence, every XML schema
document should contain the above namespace declaration.

Let us try to understand namespaces in a bit more detail.

XML Namespaces

XML Namespaces help to resolve ambiguity. In our day-to-day
programming life we do a lot of stuff to resolve ambiguities. Let me give
you a few examples:

Most of the times we use aliases while writing TSQL queries. When
selecting data from a single table, you may not need to prefix the column

26

2 — Start writing the first schema

names with table name or alias. But when you join tables, and if more than
one table has columns with the same name, you always need to give an
alias to resolve ambiguity.

For example:

SELECT
d.Name AS DepartmentName,
e.Name AS EmployeeName
FROM Employees e
INNER JOIN Departments d
ON d.DepartmentID = e.DepartmentID

Listing 2.4: A TSQL example showing the usage of aliases.

Since both Employees and Departments tables have a column named
Name, we use an alias to resolve the ambiguity. After we added the
alias, SQL Server can distinguish between the two columns having the
same name.

Now let us look at a VB.NET example.

'Get the data
Dim dbHelper As New Database.Helper()
dbHelper.GetSomeData()

'Display the data
Dim uiHelper As New UI.Helper()
uiHelper.DisplayThebata()

Listing 2.5: A VB.NET example showing the usage of namespaces.

In the example you could see two classes named Helper but prefixed with
two different namespaces. Those two classes would cause an ambiguity
error if you do not use the namespace prefixes.

Regardless of the tool or programming language, we almost always use
some kind of naming mechanism to avoid ambiguity. Such cases of
ambiguity can exist in XML, too. The following XML document stores the
configuration data of an application.

<configuration>

<connection>
<provider>world wide Internet Providers</provider>
<speed>512 KBPS</speed>

</connection>

<connection>
<provider>sQL Client Provider</provider>
<protocol>TCP/IP</protocol>
<authentication>Windows</authentication>

27

2 — Start writing the first schema

</connection>
</configuration>

Listing 2.6: An XML document having ambiguous elements.

The first Connection element contains information of an Internet
Connection and the second Connection element contains information of a
Database Connection.

The application needs to have a way to identify which element stores
Internet Connection information and which one stores Database
Connection information. When the application needs to make a connection
to the database, it needs to read the specific element containing
connection information. Currently, the application does not have a
way to identify the correct element due to the ambiguity those two
elements create.

This is where a namespace declaration can help. Look at the following
example that uses namespace declarations to resolve ambiguity.

<configuration
xmlns:db="http://www.sqlserverandxml.com/db"
xmlns:net="http://www.sqlserverandxml.com/net">
<net:connection>
<net:provider>wWorld wide Internet Providers</net:provider>
<net:speed>512 KBPS</net:speed>
</net:connection>
<db:connection>
<db:provider>sqQL Client Provider</db:provider>
<db:protocol>TCP/IP</db:protocol>
<db:authentication>Windows</db:authentication>
</db:connection>
</configuration>

Listing 2.7: Using XML namespaces to avoid ambiguity.

The above XML document has separate namespaces to qualify the
elements that stores Internet Connection information and Database
Connection information. The application can read the desired Connection
element by using the specific namespace associated with the element. This
removes the ambiguity we discussed with the previous example.

A namespace is declared using "xmins" attribute. It then associates a prefix
with the namespace URI. A namespace URI uniquely identifies a
namespace. It is used only to uniquely identify a namespace and it does
not need to be a valid web URL.

28

2 — Start writing the first schema

These namespace prefixes are used in the XML document to qualify
the elements, which is very close to what we do with table aliases in
TSQL queries.

Default Namespaces

When you declare namespaces in an XML document, you can specify one
of those namespaces as the default namespace. A default namespace
does not take a prefix and all the elements of the default namespace
should not take a prefix, as well. Let us modify the xml document we saw in
the previous example and add a default namespace to it.

<configuration
xmlns="http://www.sqglserverandxml.com/db"
xmlns:net="http://www.sqlserverandxml.com/net">
<net:connection>
<net:provider>world wide Internet Providers</net:provider>
<net:speed>512 KBPS</net:speed>
</net:connection>
<connection>
<provider>sQL Client Provider</provider>
<protocol>TCP/IP</protocol>
<authentication>Windows</authentication>
</connection>
</configuration>

Listing 2.8: Using default namespace.

Note that the namespace of Database Connection is declared as the
default namespace; hence, the elements of that namespace are not
qualified with namespace prefixes. There is no ambiguity because all un-
prefixed elements belong to the default namespace.

Here is another version of the XML which makes the namespace of
Internet Connection as the default namespace.

<configuration
xmlns:db="http://www.sqlserverandxml.com/db"
xmlns="http://www.sqlserverandxml.com/net">
<connection>
<provider>world wide Internet Providers</provider>
<speed>512 KBPS</speed>
</connection>
<db: connection>
<db:provider>sQL Client Provider</db:provider>
<db:protocol>TCP/IP</db:protocol>
<db:authentication>windows</db:authentication>

29

2 — Start writing the first schema

</db:connection>
</configuration>

Listing 2.9: Another example using a default namespace

The same rules are applicable here, too. The un-prefixed Connection
element is part of the default namespace; hence, there is no ambiguity.

XSD Namespace

I had mentioned earlier that all XML schema documents should take the
namespace declaration http://www.w3.0rg/2001/XMLSchema. In the
previous section we have learned about XML Namespaces and Default
Namespaces. With the new understanding that we gathered about
namespaces, let us once again look into the basic schema we created at
the beginning of this chapter.

<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
</schema>

Listing 2.10: An empty schema showing namespace declaration.

The above example declares the namespace as the default namespace.
It is a common practice to use a prefix while creating schemas. "xs"
and “xsd" are the most common prefixes assigned to the XML
schema namespace. Most of the times you will see XML schemas written
as follows:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
</Xs:schema>

Listing 2.11: A Schema using namespace prefix "xs."

Or

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
</xsd:schema>

Listing 2.12: A Schema using namespace prefix "xsd."

It is recommended that you always use”xs"” or "xsd” while creating your
schema documents. However, it is completely legal to use a different prefix;
for example:

30

2 — Start writing the first schema

<jacob:schema xmlns:jacob="http://www.w3.0rg/2001/XMLSchema">
</jacob:schema>

Listing 2.13: Example of a schema using non-standard namespace prefix.

Though you can change the namespace prefix, you cannot touch the
namespace URI. The namespace URI should always be
http://www.w3.0rg/2001/XMLSchema. Note that namespace URIs are
case sensitive. Your schema will be invalid if you do not use the correct
namespace name with correct casing.

Adding an element

The schema that we defined in the previous section was empty. It did not
declare any element that should exist in the XML instance document.

; We will use the term XML Instance Document to refer to
an XML document that we intend to validate with a
given schema.

Let us modify our schema and add an element declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>
‘ </xsd:schema>

Listing 2.14: A schema with an element declaration.

The above schema declares a root element named Greetings. The XML
Instance Document of this schema should contain a root element named
Greetings. Here is a valid XML instance document which successfully
validates against this schema.

<Greetings>welcome to XSD Workshop!</Greetings>

Listing 2.15: An XML instance document which validates against the schema
in Listing 2.14.

31

2 — Start writing the first schema

SQL Server Schema Collections

We just wrote a simple schema having a single element declaration. Our
schema is not yet added to SQL Server, and so we are not yet ready for
performing validations using the schema we just defined.

SQL Server 2005 introduced a new system object: XML Schema
Collection. An XML Schema Collection is a SQL Server object that stores
the definition of one or more XML Schemas. So the next step is to create
an XML Schema Collection from the XSD schema we created above.

An XML Schema Collection is created with TSQL command CREATE XML
SCHEMA COLLECTION. Once a Schema Collection is created, the
definition cannot be altered. If you want to modify your schema definition,
you should drop it and create it again with the new definition (which could
be a pain in many cases).

A Schema Collection, as the name suggests, can store the
definition of more than one XML Schema. In most cases,
though, you'll only want to store one schema in a schema
collection. This is explained in Chapter 14.

Creating a Schema Collection

Let us create a Schema Collection with the schema definition we wrote
earlier in this chapter. Here is the code to create an XML Schema
Collection in SQL Server.

CREATE XML SCHEMA COLLECTION GreetingsSchema AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>

</xsd:schema>"

GO

Listing 2.16: TSQL Code to create an XML Schema Collection.

In the above example, the TSQL command "CREATE XML SCHEMA
COLLECTION" creates a new XML Schema Collection with the
name "GreetingsSchema." The definition of the schema is given after the
schema name.

32

2 — Start writing the first schema

You can query the system catalog view "sys.xml_schema
_collections" to retrieve a list of all the schema collections.
Chapter 14 has a detailed discussion on all the system
catalog views related to XML Schema Collections.

Performing validations using
Schema Collections

We have just created a Schema Collection named GreetingsSchema. Now
let us perform some validations using the newly created schema collection.

In Chapter 1, we discussed a bit about TYPED and UNTYPED XML. An
XML variable or column is said to be TYPED when it is bound to a schema
collection. Only TYPED xml can be validated with an XML schema.

SQL Server validates a TYPED XML column or variable when a value is
assigned or modified. So to validate an XML document, simply create a
TYPED xml variable and try to store the value to it. If the validation
succeeds, the value will be assigned to the variable. If the validation fails,
SQL Server will raise an error and the assignment operation will fail.

Validating an XML variable

Having created an XML Schema Collection, we are ready to perform the
validations. Let us try to validate an XML variable using the XML Schema
Collection we just created.

-- declare an XML variable and bind it to a schema
DECLARE @x XML (GreetingsSchema)

| -- validate and assign a value)
SET @x = '<greetings>Hi There!</greetings>"

Listing 2.17: Validating an XML variable with a schema.

The statement "DECLARE @x XML (GreetingsSchema)" declares an XML
variable bound to the Schema Collection named "GreetingsSchema." The
next statement (skip the comments, please) tries to assign a value to the
XML variable.

If you run the above code, you will get the following error.

33

2 — Start writing the first schema

Msg 6913, Level 16, State 1, Line 2
XML Validation: Declaration not found for element 'greetings'.
Location: /*:greetings[1]

XML is case sensitive. The first letter of the element we declared in
our schema was in upper case, but the value we tried to assign to the
variable has the element name in lower case. Here is the corrected version
of the code.

‘ -- declare an XML variable
DECLARE @x XML (GreetingsSchema)

-- validate and assign a value
SET @x = '<Greetings>Hi There!</Greetings>'

Listing 2.18: Validating an XML variable with a schema.

Validating an XML column

We just saw how to validate an XML variable. Now let us look at validating
XML columns. Just as with XML variables, SQL Server performs
validations when a value is assigned to a TYPED XML column. Validation
will take place when a TYPED XML column is modified as well.

To test the validation of a TYPED XML column, let us create a table with a
TYPED XML column and see the validation in action. You can associate an
XML column with a Schema Collection while creating a table.

-- create a table with a TYPED XML column
CREATE TABLE EmployeeGreetings(
EmployeeID INT,
Greeting XML(GreetingsSchema)

)

-- insert a record)]
INSERT INTO EmployeeGreetings(EmployeeID, Greeting)
SELECT 1, '<Greetings>Hi There!</Greetings>'

Listing 2.19: Validating an XML column with a schema collection.

In the above example, we have created a table having a TYPED XML
column. The XML column is bound to an XML Schema Collection named
"GreetingsSchema.” Then we tried to insert a new record to the table.
SQL Server will perform the validations defined in the Schema Collection
before assigning the value. The operation will succeed only if the
validation succeeds.

34

2 — Start writing the first schema

You could also use ALTER TABLE syntax to add a new TYPED XML
column to a table. The following code snippet demonstrates that.

-- add a new TYPED XML column
ALTER TABLE EmployeeGreetings)
ADD TodaysGreeting XML (GreetingsSchema)

Listing 2.20: Adding a new TYPED XML Column.

The ALTER COLUMN syntax can be used to change the schema binding.
You can use it to change a TYPED XML column to UNTYPED, as well as
to change the Schema Collection to which the column is associated.

-- create an UNTYPED XML column
ALTER TABLE EmployeeGreetings
ADD YesterdaysGreetings XML

-- alter the UNTYPED XML column to TYPED
ALTER TABLE EmployeeGreetings ALTER COLUMN
YesterdaysGreetings XML (GreetingsSchema)

Listing 2.21: Altering an UNTYPED XML column to TYPED.

Again, the following code shows how to turn a TYPED XML column
to UNTYPED.

‘ -- alter the TYPED XML column to UNTYPED
ALTER TABLE EmployeeGreetings ALTER COLUMN
YesterdaysGreetings XML

Listing 2.22: Altering a TYPED XML column to UNTYPED.

It is also possible to directly change the Schema Collection to which the
column is bound. The following code snippet demonstrates that.

-- Bind the column to "GreetingsSchema"
ALTER TABLE Emp]oyeeqreet1ngs ALTER COLUMN
YesterdaysGreetings XML (GreetingsSchema)

-- Alter the schema binding to "MessageSchema"
ALTER TABLE Emp1oyeeqreet1ngs ALTER COLUMN
YesterdaysGreetings XML (MessageSchema)

Listing 2.23: Changing the binding to a new schema.

When a column is bound to a schema collection, SQL Server will validate
each row in the table to make sure that the value stored in the column
(being modified) validates successfully with the new Schema Collection. If

35

2 — Start writing the first schema

any of the rows has a value that does not validate successfully, the ALTER
operation will fail.

Modifying a Schema Collection

As | had mentioned earlier, SQL Server does not easily allow editing the
definition of a Schema Collection. If you want to make changes, you should
drop the XML Schema Collection and recreate it.

This will be a problem if the Schema Collection is bound to one or more
columns in any of the tables in the database. SQL Server will not allow you
to drop a Schema Collection if it is bound to a column of any of the tables
in the database. This makes modifying a schema definition very difficult
and frustrating.

To update the schema, you will have to do the following:

1.Alter all TYPED XML columns bound to the given Schema Collection
to UNTYPED XML (or bind to any other Schema Collection which is
compatible with the data already stored in the column).

2.Drop the schema collection.

3.Create the schema collection with the updated definition.

4.Bind the columns back to the newly created Schema Collection.

Let us try to follow the above steps and try to alter the Schema
Collection we created previously. First of all, let us alter the columns to
UNTYPED XML to remove the association between columns and the
Schema Collection.

-- alter the columns to UNTYPED
ALTER TABLE EmployeeGreetings
ALTER COLUMN Greeting XML
ALTER TABLE EmployeeGreetings
ALTER COLUMN TodaysGreeting XML
ALTER TABLE EmployeeGreetings
ALTER COLUMN YesterdaysGreetings XML

GO

Listing 2.24: Altering columns to UNTYPED before dropping Schema
Collection.

Now, let us drop the schema collection.

36

2 — Start writing the first schema

-- drop the schema collection]
DROP XML SCHEMA COLLECTION Greet1 ngsSchema
GO

Listing 2.25: Dropping a Schema Collection.

The next step is to recreate the Schema Collection with the modified
definition. Let us modify our schema definition a bit. Let us rename the root
element name from Greetings to GreetingsOfTheDay. Here is the code to
create the new schema.

-- create updated schema collection

CREATE XML SCHEMA COLLECTION GreetingsSchema AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="GreetingsOofTheDay" />

</xsd:schema>"

GO

Listing 2.26: Creating a new schema collection with updated schema
definition.

After recreating the Schema Collection with the new definition, let us alter
the columns and bind them back to the newly created Schema Collection.

-- alter the columns back to TYPED
ALTER TABLE EmployeeGreetings
ALTER COLUMN Greeting XML(GreetingsSchema)
ALTER TABLE EmployeeGreetings
ALTER COLUMN TodaysGreeting XML (GreetingsSchema)
ALTER TABLE EmployeeGreetings
ALTER COLUMN YesterdaysGreetings XML (GreetingsSchema)

Listing 2.27: Altering columns to bind them to a Schema Collection.

If you attempt to run this code, you will see that SQL Server generates the
following error.

Msg 6913, Level 16, State 1, Line 2

XML Validation: Declaration not found for element 'Greetings'.
Location: /*:Greetings[1]

The statement has been terminated.

The error occurs because some of the records in the columns that we tried
to alter have data that is not valid per the Schema Collection to which we
are trying to bind the column. When you bind a column to a Schema
Collection, SQL Server will validate the data stored in the column with the
given Schema Collection and make sure that all the rows succeed the

37

2 — Start writing the first schema

validation. If any of the rows fails the validation, SQL Server will generate
an error and the operation will fail.

In our case, the new schema definition has a different root element. The
name of the root element was "Greetings" in the previous version. The
records already stored in the table have this root element. The new
schema collection has a different root element. The name of the new root
element is "GreetingOfTheDay." Because of this, the validation of existing
values with the new schema collection will fail and SQL Server will raise an
error and abort the operation.

To overcome this, either we need to delete the existing records or update
the values with correct data (that validates with the new schema definition)
before binding the column to the new schema collection.

SQL Server Management Studio -
Schema Editor

Earlier in this chapter we learned to create XML schemas. The simplest
tool you can use to create a schema is a text editor. It could be as simple
as notepad or as complicated as any specialized XML/XSD editors
available today. Specialized XSD editors can increase productivity by
providing intellisense/auto-completion features, real-time syntax checks,
etc. There are many such tools available today. Visual Studio and SQL
Server Management Studio contain such tools that | think would be familiar
to most of you.

SQL Server Management Studio comes with a nice XML editor. It helps you
to quickly write schemas. The intellisense support and features like auto-
completion will help you write schema code faster and with less of a
possibility of typing errors.

Launching the Schema Editor

So, how do we launch the schema editor so that we can start creating
a schema and see those nice features? Where is the menu? File -> New
and then?

Well, there isn't a menu available to launch the XML/Schema editor.

I am not kidding! SSMS does not have a menu to launch the
XML/Schema editor.

38

2 — Start writing the first schema
So what do we do now? Well, there are a few workarounds to launch the
XML/Schema editor of SSMS.

Open a dummy XML file.

I think this would be the easiest way. Go to File menu and select Open.
Select an XML file from any of the folders. If you don't have an XML file
available, create one.

T.. Microsoft SQL Server Management Studio

File Edit W“iew Tools ‘Window O i Help
Qnewouery | Oy |1 05 55 G S 4 15 .
Cbject Explorer = 1 X

Comnect~ | @3 ®3 m F 3] B

= [I8CI50L2005 (SOL Server 9.0,1406 - JACPACOE)

—
- pa—
=0 Lok in: |[E:|temp v| @ -0 | QO X Ci B~ Tooks~
[-
] == Harme Size Type Date Modifise £ |
@ |2 daka,xml ZKE %ML Document FI5/2008 328
Desktop @names.xml 3KE XML Document 6/11/20085:1 =
=] CallReports s 12KE #ML Document 5/12f2008 1:3
e = objinfo.:xml 3,033KE =ML Document 53,2003 12:1
LJ = employee, xml 1KE ¥ML Document 42712008 2.5
My Projects =] customer_Z00&H119_150633,.., 1KE #ML Document 4/26/2008 314
=] employees, sl 3KE XML Document 4/21/2008 11:

| 1KE ¥ML Document 4/20/2008 2:5
¢ 2KE %ML Document 4/17}2008 12:
My Computer | S 1KE %ML Document 4132008 &:2
|2 skipdays2,zml S3KE =ML Document 4f8/2008 11:0
=] skipdarys1, sl S3KE XML Docurent 4/8/2008 11:0
=] skipdarys.xml S3KE XML Docurent 4/5/2003 11:0
I%’,TSQL.".I:DmlD-QV 3KE RML Docurnent 472008 6:31 ¥
< | =
File narme: I |test.xm| I ijl L Open H

Files of type: |><ML Files (*.xml) v | Canicel

Atfter selecting the XML file, click on the "Open" button. SSMS will open the
XML in the XML/XSD editor. If It is a dummy file (a file that you don't really
need), just delete the content and start writing your schema. If it is not a
dummy file, then save it with a new name (using File->Save As menu) and
start editing it.

39

2 — Start writing the first schema

Write a dummy FOR XML query

Another option is to write a fake FOR XML query. For example:

SELECT TOP 1 * FROM SYS.TABLES FOR XML AUTO

This query will produce an XML output if you have selected the Output to
Grid option. You can enable Output to Grid by pressing CTRL + D.

.« Microsoft SQL Server Management Studio

File Edit ‘Wiew CQuery Project Debug Tools Window Community Help

2 Mewe query | [Ty | 0fy ofy B [| B W S B G 2 B master + ¥ Execute B
Object Explorer >0 x SOLNuersl ol - IACY {513
Connect = | &3 & =3 SELECT TOPF 1 # FROM S¥S.TABLES FOR XML AUTO

= [I8CISQL2005 (SGL Server 9.0,1406 - JAC\H
[Databases
[Security
[server Objects <
[Replication 1 Fesuls _'j Messages

1 Managernent
il CEACancd 40l 4431 nnE nooncCannacn

Ltb SCL Server Agent (Agent ¥Ps disabled) .]
1 | <5¥S.TABLES name="spt fallback db' object id="11.. :

Click on the query result and it will open the XML document in a new XML
editor window. Delete the existing content and then start writing your
schema.

Write a dummy CAST

The approach used by the previous point is to generate an XML result and
clicking on the XML result to open it in a new XML editor window. Hence,
we wrote a FOR XML query that produces an XML output. So the key here
is to produce an XML output.

An XML output can be easily produced by a query as simple as
the following:

SELECT CAST('<A />' AS XML)

This will produce an XML output and you can click on the result window to
open the XML document in a new XML editor window. This is what | usually
do to open the XML editor when | want to write a new schema.

40

2 — Start writing the first schema

Open a new Analysis Services XMLA Query

Another option is to open a new Analysis Services XMLA Query. You can
do it from the File menu.

l__..x:- Microsoft SOL Server Management 5tudio

ﬁ' Edit Wiew Query Project Debug XML Tools Window Community Help
2¢ Connect Cbject Explorer..., Lj H = El ;
& Disconnect Object Explorer 1 9 Fuonite o = 2 | iE 55| A
| New v 5] Project... ChrShift-+M E
Cpen ¥ |] Query with Current Connection Chrl+N
Add 4 |_-|':j Database Engine Query
Close woils Analysis Services MDY Query
j Close: Solution ouily Analvsis Services DME Ouery
e Save ¥MLAGueryl.xmla Chrl4S Uy Analysis Services XMLA Query
Save XMLAQueryl,xmla As, ., _DEI SQL Server Compact Query
@ saveal Chrl+Shift+5 ll Foicy
Source Cantrol 3 I
| Page Setup...
= Print... Chrl+P
Recent Filas 3
Recent Projects k
E:xit

When you select Analysis Services XMLA Query, SSMS will ask you to
provide information to connect to an Analysis Server instance. Since we
don't really need to do anything with Analysis Services (our intention is to
open a new XML editor window) you can press the "Cancel” button. This
will take you to a new instance of XML editor window.

| hope the next version of SSMS will have a File —> New —> XML File menu
which will open a new XML editor window. SQL Server 2008 RCO does not
have this yet — maybe on the next version.

LY

2 — Start writing the first schema

Editor Features

The XML editor window of SSMS has quite a lot of features to help writing
schemas. There are three basic features that the XML editor provides.

1. Intellisense
The intellisense support helps to quickly write schema elements.

S wmilresult.aml® [<MLAGQUEry 1. xm, . .of connected® SQLQueryl . sgl - JaC.. ... [s1n*

<xsischema xmlns:xs="http://wwy. gl"

=| http:ffschemas, <mlsoap.argfsoapenvelope)
=| http:/ischemas, <milsoap,orgfwsdl)

=| http:fischemas, xmlsoap. orgfwsdlisoap)

=| http:ffschemas, xmlsoap, orgfwsdlfsoaplzf
=] hkkpe f e o3 org) 1999 xhkml

=] hkkpe /e w3 orgl 1999 % link

=| httpe /v w3, 0rgl 2000709 mldsig#

=] htkp: f e o3 orgf 2001 /04 fxmlenca

|

argf2001 X
=] hkkp: /v w3 0rgl 2001 f¥MLSchema-instance

| £

wmilresult . eml® | XMLAQuUery1.xm. ..ot connected® aQLoueryl,sql - 1A, S1*

[<x=s:3chema Xmlns:xs="http:/ uww. w3 .org/ 2001/ XMLEchema™ >

{} =s

[£3] ws:annotation
[£3] ws:attribute

(£ xs:attribukeGroup
28 ws:complexType
[£3] wsielement
(£ xs:group
[£2] xsiimpoart

| £

42

2 — Start writing the first schema

wmilresultlxml* | XMLAQuery1.xm. ..ot connecked® SOLQueryl,sgl - 1aCh,.. ... =)

[<xa:achema xmlns:xs="http: /Ay, w3 . org/ 2001/ XML 3chema =
L <Hsiel

< £ annotation ”
[£3] attribute
[£3] attribubeGroup
£ complexType
B et
[£3] group
[22] import
[£3] include
[£3] nokation
122 redefine il

wmiresultlaml* | =“MLACQUery1,xm. ..ot connected® SoLoueryl.sgl - JaCh. ... (513"
[<®x=:2chema xmlhs:xs="http://vww. w3 . org/ 2001 /XML 3 chemns -
|_ <xzielement r1|
sixsischens 0 ahstract
5 block
i defaulk
25 final
5 fived
= id
= EE
25 nillable
25 substitutioniGroup

5 type

2. Auto Completion

The Auto completion feature helps writing schema elements faster and
helps avoid making typing mistakes. The editor will automatically add an
end tag when you create a start tag.

S Hmiresultlxml* [¥MLAGQueryl. xm, . of connected* SOLouerylsgl - 380 ..., (510

O <x3:achema xmlns:xa="http: /S unw. w3 . org/ 2001/ EMLIchema ™
L <z :ielement na.me="Greetings":-|<,-’xs:Element:-
<f¥s 1 achemasr

43

2 — Start writing the first schema

3. Real-time syntax checks

One of the most important features of the XML editor is the real-time syntax
check feature. This will help you to quickly spot mistakes.

wmilresultl.xml¥* | X“MLAQUeryl.xm. ..ok connected® SOLQueryl.sgl - Jadh...... (51*
O <xs:ischema xmlns:xs="http://vyv.v3d . orgq/ 2001/ XML 3chema ™
|_ <xz:ielement name="Grestingstr

</ ¥{Tag was not closed. |

¥milresultl.xml* [#MLACQUEry1.xm. . .of connecked® SoLoueryl . sgl - 180, (517
] =xs:3chems xmlns:xs="http:/ uvw. w3 ., org/ 2001/ XML 3chems ™ -
L <xgielement name="Grestings" type="varchar ™/ >

</)qupe “earchar' is not declared.|

You will experience these features when we go ahead and start writing a
few schemas in the next few chapters.

Chapter Summary

XSD Schema is an XML document which describes and validates other
XML documents. The root element of an XML schema is <schema>. All the
elements and attributes of XSD are defined in the namespace
"hitp://www.w3.0rg/2001/XMLSchema." You can use any namespace prefix
while creating an XSD schema. However, "xs” and “xsd" are the most
commonly used namespace prefixes.

SQL Server stores schema definitions in XML Schema Collections. An XML
Schema Collection can store the definition of more than one XML schema.
When an XML column or variable is bound to a Schema Collection, it is
called TYPED XML. When they are not bound to any Schema Collection
they are called UNTYPED XML. An XML column or variable can be bound
to only one Schema Collection. However, each schema collection can
contain the definition of more than one schema.

SQL Server validates TYPED XML variables and columns when the value
is assigned or modified. The assignment/modification operation will
succeed only if the validation succeeds. If the validation fails, SQL Server
will throw an error and will abort the operation.

44

2 — Start writing the first schema

SQL Server does not allow modifying the definition of a Schema Collection.
If you want to modify the definition, you need to drop the Schema
Collection and recreate it with the new definition.

SQL Server will not allow you to drop a Schema Collection which is bound
to a column. Before dropping a Schema Collection you need to alter the
columns to UNTYPED XML or to any other Schema Collection compatible
with the values stored in the columns.

When you bind an existing column to a Schema Collection, SQL Server will
validate the data stored in all the rows against the new Schema Collection
and will throw an error if any of the rows fails the validation.

SQL Server Management Studio comes with a nice XML/XSD editor. It has
a number of features that makes schema writing lot easier. Intellisense,
auto-completion, real-time syntax checks, etc., are a few of those features.

45

CHAPTER 3

LAB: ORDER PROCESSING
APPLICATION FOR NORTH POLE
CORPORATION

We have started our journey to learn SQL Server XSD and have so far
reached two milestones. In the coming chapters we will build significantly
on what we have learned so far about XSD and will do a few hands-on labs
to make sure that we have learned it well. All the hands-on labs that we will
take in this book are focused around an order processing application
required by North Pole Corporation, a fictitious company.

This chapter will give you an introduction to the Order Processing
Application and the detailed requirements. We will use this information
to develop the required schema in the labs that we will attend in the
coming chapters.

North Pole Corporation

North Pole Corporation, based in New York City, is a leading distributor of
consumer goods. They have a nationwide distribution network and have
ten warehouses throughout the country.

The company has its own sales team that deals directly with retail outlets
and manages orders and delivery of shipments. As part of its expansion
plans, the company has decided to appoint franchisees (Let us call them
Partner Agencies hereafter) in some of the cities where the company does
not have its own sales team. Under this model, the Partner Agencies will
collect orders from customers and will submit the orders to North Pole
Corporation. North Pole Corporation will process the order and will deliver
the merchandise to the customers.

The IT team of North Pole Corporation was given the responsibility to
identify the additional software requirements to fully support and manage
the new business model. After doing the required research and analysis,
the IT team came up with the following recommendations.

46

3 — LAB: Order processing application for North Pole Corporation

° The partner agencies will use their own software to register and
manage orders.

. North Pole Corporation will develop an integration module that will
enable data exchange with the application of the partner agencies.

° The partner agencies will do the required software changes/additions
on their side to communicate with the integration module of North
Pole Corporation.

. When the partner agencies receive an order from a customer, they
will register it with their software system. Once the order is registered
in their software system, the order will be submitted to North Pole
Corporation using the integration module.

° After an order is submitted to North Pole Corporation, the partner
agencies will use the integration module to query the status of the
order.

The recommendations of the IT team were approved and the software
development team started designing the integration module. They decided
to develop a web service which exposes the required web methods needed
for the integration.

The Web Service

The Software Team identified the web methods needed for the integration.
They needed two web methods: one to register the order and the other to
query the status of an order previously submitted.

1. RegisterOrder

This method accepts order information from the software system of partner
agencies. They will submit the order data in the form of an XML document
that contains information of one or more orders.

2. QueryOrderStatus

After submitting an order, partner agencies will call this method to query the
status of the order. An order cycle usually takes a few days and during that
period the order will pass through different states (Waiting, Approved,
Picking, Shipped, etc.). Partner agencies can track the current status of
their orders using this web method.

47

3 — LAB: Order processing application for North Pole Corporation

The XML Data

The software system of partner agencies will call Web Method
RegisterOrder and pass the order information as an XML document. The
XML document needs to follow a certain structure and the values of
attributes and elements need to follow a set of rules. These rules are to be
explained to each partner agency to make sure that they will send data in
correct format to the application. This brings up the need for the following:

° A method to describe the XML structure to be used for registering
orders. The development team of vendor agencies will carefully
examine the required XML structure and will make sure that they will
use the correct XML structure while registering orders.

. A method to validate the XML data being passed to the web service.
Before accepting the XML data it has to be validated, and if the
validation fails the order should not be accepted.

Sheryl from the development team suggested that they should create a
Word Document that explains the XML structure. The document should
clearly outline the elements and attributes along with all the validation
rules. The format and ranges of values should also be clearly documented.

This document can be sent to all the partner agencies with a request that
they make sure that the data that they send will comply with the
requirements specified in the document.

When the web service receives the order information, it should perform the
same set of validations on the XML data and should not accept an order if
the validation fails. She suggested using the .NET XML library to perform
the validations. A validation function needs to be created that uses the
.NET XmlITextReader class to parse the XML document. The function will
traverse through the XML tree and will validate each element and attribute
against the rules defined in the document.

Enter XSD

Steve, the lead developer, was not convinced by the approach suggested
by Sheryl. He had read about the XML capabilities of SQL Server. He had a
basic idea of XSD and the XSD support in SQL Server. He decided to
investigate further and came up with a more elegant solution using XSD.

48

3 — LAB: Order processing application for North Pole Corporation

After doing some exercises with SQL Server and XSD, Steve and his team
set up the plan to create an XSD schema to describe and validate the XML
data accepted by the web service. It is decided that, once the schema is
developed, it will be sent to all the partner agencies. The development
team of the partner agencies will get a clear idea about the required XML
structure from the schema. They will develop the integration module per
the rules defined in the XSD schema.

At North Pole Corporation, SQL Server will validate the XML submitted by
the client applications. Steve and his team need not worry about the
validation. The only task they need to focus on is to write a SCHEMA that
correctly describes and validates the XML accepted by the web service.

As you could figure out from the above, the decision to use an XSD
schema helped Steve and his team in a number of ways:

° Communications with the development team on the other end
became easier. Since a schema explains the required XML structure
much better than a word document or a document of any other kind,
there are no chances of misunderstanding or misinterpreting what is
required.

. Validation of the XML data submitted by the client applications
became easier. SQL Server will perform the validation based on the
schema that Steve and his team developed; hence, no other
validation process is needed in the web service.

Identifying the Data Elements

The next step that Steve and his team took was to identify the different
pieces of information needed to register an order. They looked into existing
order processing systems, as well as the new requirements, and came up
with a final listing as follows:

Order Header Information

Agency Code Alpha-numeric code of the partner agency

Order Number An order number generated by each agency. They
will use this code while querying the status of an
order.

Order Date Date on which the Customer placed the order.

49

3 — LAB: Order processing application for North Pole Corporation

Order Header Information

Delivery Date

Date on which the merchandise is to be delivered
at the shipping address.

Customer Number

Code to identify the customer within an agency.
They may use this code while querying the status
of an order.

Customer Name

Name of the customer

Billing Address

Billing Address

Shipping Address

Shipping Address

Terms

Payment Terms

Contact Person

The name of the person to contact for any queries
related to the order. Usually this will be the
purchase in-charge/manager of the customer.

Title Title of the contact person. Example: Purchase
Manager, Store Supervisor, etc.

Email Email address of the contact person.

Phone Phone number of the contact person.

Fax Fax number of the contact person.

Order Note Notes to be considered while processing the order.

Invoice Note Notes to be considered while invoicing the order.

Discount Some times the customer is eligible for a discount.

Discount may be given as a fixed amount or as a
percentage of the total invoice amount.

Item Information

Iltem Number Unique code of an item as it exists in the
inventory system of North Pole Corporation.

Quantity Quantity ordered.

Price Price per case. North Pole Corporation always

sells in cases and not in units.

50

3 — LAB: Order processing application for North Pole Corporation

After identifying the data elements, they proceeded to define the structure
of the order XML document.

Defining the XML Structure

After a few rounds of discussions, Steve finalized the XML structure and
created a sample XML document.

<orderinfo AgencyCode="s008">
<order OrderNumber="20001">
<OrderDate>2008-01-01z</0OrderDate>
<DeliveryDate>2008-01-20T08:00-08:00</DeliveryDate>
<Customer CustomerNumber="GREAL">
<CustomerName>Great Lakes Food Market</CustomerName>
<Billing City="Eugene" State="OR" Zip="97403">
<Address>2732 Baker Blvd.</Address>
</Billing>
<Shipping City="Eugene" State="OR" Zip="97403">
<Address>2732 Baker Blvd.</Address>
</Shipping>
<Terms>30 Days Credit</Terms>
<Contact Name="Howard Snyder" Title="Purchase Manager">
<Email>hsnyder@greatlakes.com</Email>
<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>
</Contact>
</Customer>
<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
<Item ItemNumber="SG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />
</Items>
<orderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount>
<Amount>300</Amount>
</Discount>
</order>
<order orderNumber="20002">
<OrderbDate>2008-01-01z</0OrderDate>
<DeliveryDate>2008-01-16T09:00-08:00</DeliveryDate>
<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing City="walla walla" State="WA" Zzip="99362">
<Address>12 oOrchestra Terrace</Address>
</Billing>
<Shipping City="walla walla" State="wA" Zip="99362">
<Address>12 Orchestra Terrace</Address>
</Shipping>
<Terms>30 Days Credit</Terms>
<Contact Name="John Steel" Title="Store Manager">
<Email>jsteel@lazykountry.com</Email>
<Phone>(509) 555-7969</Phone>
<Fax>(509) 555-6221</Fax>
</Contact>

51

3 — LAB: Order processing application for North Pole Corporation

</Customer>
<Items>
<Item ItemNumber="FB001923" Quantity="24" Price="18.25" />
<Item ItemNumber="FB060020" Quantity="20" Price="12.75" />
<Item ItemNumber="SG031667" Quantity="48" Price="3.50" />
</Items>
<0orderNote></0OrderNote>
<InvoiceNote></InvoiceNote>
<Discount>
<Percent>7.5</Percent>
</Discount>
</order>
</0orderInfo>

Listing 3.1: Sample XML document with order information.

Most of the elements and attributes in the above XML structure are self
explanatory. However, elements like OrderDate or DeliveryDate might look
a little strange as the value contains some characters that we usually do
not expect as part of a date value.

The XSD implementation of SQL Server expects time-zone information
along with a date, time or datetime values. This is the reason why we have
z (which stands for UTC time zone) along with the OrderDate value.
DeliveryDate has date and time information that indicates the time at which
the delivery is required on the given date. Some customers expect
merchandise to be delivered at a predefined time and the Delivery Time is
very important for them. Hence, the DeliveryDate element should include
the delivery time as well as the time zone (GMT -08:00 hours for Eugene)
of the cities specified in the Shipping Address.

dateTime data types requires time zone information to be
present along with the value. Per XSD specification, this is
optional information. However, SQL Server's implementation
made it mandatory. This behavior changed in SQL Server
2008. Time zone information is optional in SQL Server 2008.

% SQL Server 2005's implementation of XSD date, time and

: A more detailed description of date, time and dateTime data
types is given in Chapter 7.

52

3 — LAB: Order processing application for North Pole Corporation

Defining the Validation Rules

The next step was to define the validation rules. As we discussed earlier,
the validation rules are to be defined using an XSD Schema. Before writing
the schema, Steve made a list of validations that had to be included in the
XSD Schema. He organized the validation rules into a few logical sections
to make it simpler to understand and easier while translating them to XSD.

The Root Element

The root element of the XML document should be defined as follows:

<orderinfo AgencyCode="s008">
<order />
<order />
<order />

</orderInfo>

Listing 3.2: Root element of Order Information XML.
The root element should be validated against the following rules:

. The name of the root element should be Orderinfo.

° There may be multiple Order elements inside the root element. Each
Order element will hold information of a single order. If the Orderinfo
has information of three orders, there should be three order elements
inside the Orderinfo element. Orderinfo element should contain at
least one Order element and there is no maximum limit.

o Orderinfo element should have an attribute named AgencyCode.

o The AgencyCode attribute is mandatory and should be exactly four
characters long.

. The first character of the AgencyCode should be an alpha character
and the other three should be numeric.

The Order Element

The definition of the root element says that it should contain one or more
Order elements. Each Order element should contain complete information
about a particular order and should look like the example given below.

<Order orderNumber="20002">
<Orderbate>2008-01-01z</OrderDate>
<Deliverybate>2008-01-16T09:00-08:00</DeliverybDate>

53

3 — LAB: Order processing application for North Pole Corporation

<Customer />
<Items />
<orderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount />
</order>

Listing 3.3: Example of an Order element.
The Order element should comply with the following rules:

It should have a mandatory attribute named OrderNumber.
The value of OrderNumber attribute should be non-empty.
This value should not be longer than twenty characters.
OrderNumber can hold any combination of digits as well as
letters of the English alphabet (in upper, lower or mixed case).
° Order element can have the following child elements:

o OrderDate
DeliveryDate
Customer
ltems
OrderNote
InvoiceNote
Discount

. The child elements of Order should follow the same order as
given above.

° OrderDate, DeliveryDate, Customer and Items are
mandatory elements.

. OrderNote, InvoiceNote and Discount are optional elements.

. None of the elements can appear more than once under an
Order element.

° OrderDate should be of date type, which should contain a valid date
value. The date value should not contain time information.

o DeliveryDate should be a datetime value, which should contain date
as well as time information.

O O O O O O

. If present, OrderNote can store a text note as long as
500 characters.
. If present, InvoiceNote can store a text note as long

as 500 characters.

54

3 — LAB: Order processing application for North Pole Corporation

The Customer Element

Each order should contain certain information about the customer who
booked the order. The following example shows how a Customer element
should look.

<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing />
<Shipping />
<Terms>30 Days Credit</Terms>
<Contact />

</Customer>

Listing 3.4: Example of a Customer element.
The Customer element should follow the rules given below:

° Each Customer element should contain an attribute named
CustomerNumber.

. CustomerNumber is mandatory, should be EXACTLY five characters
long, and contain only alphabets A to Z in upper case.

. A Customer element can have the following child elements:

o CustomerName
o Billing

o Shipping

o Terms

o Contact

. The child elements of Customer should appear exactly in the same
order as given above.

. None of the elements should appear more than once under a
Customer element.

. CustomerName is optional and if present should not be more than
fifty characters long.

° Billing is mandatory.

° Shipping is optional. If not present, the address given in Billing is
assumed to be the shipping location.

. Terms is mandatory. It should be one of the following values:

o 30 Days Credit

o 60 Days Credit
o 90 Days Credit
o Against Delivery

. Contact is mandatory.

55

3 — LAB: Order processing application for North Pole Corporation

Billing and Shipping Addresses

The Customer element should contain billing and shipping information.
Only the billing address is mandatory. If the shipping address is not
specified, the billing address is assumed to be the shipping location.

Billing and Shipping elements have the same structure and they follow the
same validation rules. The following example shows how shipping and
billing addresses should look.

<Bil1Tling City="Eugene" State="OR" Zzip="97403">
<Address>2732 Baker Blvd.</Address>
</Billing>

Listing 3.5: Example of a Billing Address.

<Shipping City="Eugene" State="OR" Zip="97403">
<Address>2732 Baker Blvd.</Address>
</Shipping>

Listing 3.6: Example of a Shipping Address.

As mentioned earlier, Billing and Shipping elements should follow the same
validation rules. Here are the rules that these elements should follow:

. Should have three mandatory attributes: City, State and Zip.

. The value of City should not be empty and should not be longer than
thirty characters.

. The value of State should be exactly two characters long. Only upper
case letters are permitted.

. The length of Zip should be exactly five characters and should
contain only digits 0 to 9. Leading zeros are not allowed.

° Address is mandatory and should not be more than fifty
characters long.

The Contact Element

Each Customer element should contain a Contact element. This element
contains information about the contact person at the customer's
organization. In the event of any queries or communication related to the
order, this person should be contacted.

56

3 — LAB: Order processing application for North Pole Corporation

Here is an example of a Contact element.

<Contact Name="Howard Snyder" Title="Purchase Manager">
<Email>hsnyder@greatlakes.com</Email>
<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>

</Contact>

Listing 3.7: Example of a Contact element.
The contact element should follow the rules given below:

Should have two mandatory attributes: Name and Title.

o Value of Name should not be empty and should not contain more
than twenty characters.

. Value of Title should not be empty and should not contain more than
twenty characters.

. Contact element can have the following child elements:

o Email
o Phone
o Fax

. The child elements should appear exactly in the same order
as given above.

. Email is mandatory and is expected in the format of
string1@string2.string3. The schema should contain only the
following simple validations. (Steve did not want to make it too
complicated.)

o Only alpha-numeric characters are allowed in string1, string2
and string3.

o There should be EXACTLY one "@" sign in the whole email
address and it should appear between string1 and string2.

o There should be at least one "." between string2 and string3.

. Phone is mandatory and should be in the following format:
(503) 555-7555.

. Fax is optional. If present, it should be in the same format as the
phone number.

The Items Element

Each order should have an items element, which contains the details
of items ordered. The following example shows the structure of the
Items element.

57

3 — LAB: Order processing application for North Pole Corporation

<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
<Item ItemNumber="SG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />
</Items>

Listing 3.8: An example of Items element.

The ltems element can contain one or more ltem elements. There should
be one Item element for each item the customer has ordered.

. There should be at least one ltem element.
° There is no maximum limit.
° Each /tem element should have three mandatory attributes:

o ltemNumber
o Quantity
o Price

ltemNumber should be exactly eight characters long.

° The first two characters of the ltemNumber should be upper case
letters [A to Z] and the next six characters should be digits.

. Quantity should be a number and should be between 1 and 9999.
Decimals are not allowed.

. Price should be a number between 0.01 and 999999.99. The value
should have two decimal places.

The Discount Element

Each Order element may contain an optional Discount element. Discount
may be given in terms of a fixed amount or as a certain percentage of the
total invoice amount. Here are some examples of Discount element.

‘ <Discount>
<Amount>300</Amount>
</Discount>

Listing 3.9: Discount as Amount.

‘ <Discount>
<Percent>7.5</Percent>
‘ </Discount>

Listing 3.10: Discount as Percentage.

58

3 — LAB: Order processing application for North Pole Corporation
The Discount element should follow the rules given below:

. It should contain either an Amount element or a Percent element.
These two elements are mutually exclusive. Either one of them can
be present in a Discount element.

o If Amount is present, the minimum value should be 0.01. There is no
maximum limit. The value should always have two decimals.
. If Percent is present, the value should be between 0.01 and 100.00.

The value should always have two decimals.

Getting Ready to Write the
Schema

Steve and his team are ready to start writing the schema. They have all the
input needed. We have had a good look into the information they have
collected and documented so far. The next step is to create an XSD
schema based on the rules we have seen above.

We will have our first hands-on lab at the end of Chapter 6. In Chapters 4
and 5 we will try to develop the skills needed to write the schema based on
the information documented by Steve and his team.

We will develop the schema for the root element in Chapter 6, the Order
element in Chapter 7, the Customer element in Chapter 8, the Billing and
Shipping elements in Chapter 9, the Contact element in Chapter 10, the
Items element in Chapter 11 and the Discount element in Chapter 12. Then
we will combine all the pieces we developed from Chapters 6—12 and will
assemble the final schema.

59

CHAPTER 4

UNDERSTANDING SCHEMA
COMPONENTS

An XSD Schema is an XML document. An XML document is primarily
composed of elements and attributes. Hence, we could say that the
building blocks of an XSD Schema at the most granular level are elements
and attributes. Then there are bigger blocks like Simple Types, Complex
Types, Attribute Groups and Modal Groups, etc. All of these bigger blocks
are built using basic components: elements and attributes.

We will try to have a closer look at the basic building blocks of XSD in this
chapter. In this chapter we will:

o Examine the building blocks of XSD such as element declarations,
attribute declarations, simple types, complex types, attribute groups,
modal groups, annotations, etc.

. Learn declaring elements and attributes, adding child elements,
defining occurrence and order of child elements.

. Have a quick look into XSD data types and see how to perform basic
data validation using XSD.

Building Blocks of XSD

We will examine the building blocks of XSD in this section. | had mentioned
earlier that the schema components at the most granular level are
elements and attributes. At a higher granular level there are types (simple
types, complex types), groups (attribute groups, modal groups), etc. We
will examine each of them in detail.

Element Declarations

Writing the XSD code for describing and validating an element in an
XML document is called element declaration. Each element in the XML
instance document (the document to be validated) is represented by an
element declaration.

60

4 — Understanding schema components

In Chapter 2 we saw a basic element declaration. We created a sample
schema having a single element. We could say that we wrote a schema
having an element declaration.

The following example shows an element declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>
</xsd:schema>

Listing 4.1: Example of an element declaration.

This element declaration describes an XML instance document that has a
single element named Greetings. This is how the XML instance might look.

<Greetings>Hi</Greetings>

Listing 4.2: An XML instance document that validates with the schema given
in Listing 4.1.

The element declaration we created above has an attribute named name.
This attribute specifies the name of the element expected in the XML
instance document. This is just one of the several attributes that an
element declaration usually takes. Examples of other attributes are id, type,
etc.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ElementDeclaration'
) BEGIN
DROP XML SCHEMA COLLECTION ElementDeclaration
END
GO

-- Create new schema collection

CREATE XML SCHEMA COLLECTION ElementDeclaration AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>

</xsd:schema>"

GO

-- validate an XML instance]
DECLARE @x XML (ElementDeclaration)
SELECT @x = '<Greetings>Hi</Greetings>'

Listing 4.3: TSQL Code demonstrates an element declaration.

61

4 — Understanding schema components

We will have a very detailed look into element declarations in
Chapter 5.

Attribute Declarations

The XSD code to describe and validate an attribute in an XML instance
document is called aftribute declaration. Attribute declarations usually
comes along with element declarations. An attribute cannot exist without a
parent element; hence, attribute declarations usually comes along with
element declarations. An element declaration need not necessarily be
followed with an attribute declaration.

The following example shows an attribute declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="FirstName"/>
</xsd:schema>

Listing 4.4: Example of an attribute declaration.

The above schema declares an attribute named FirstName. Though this is
a valid schema, this does not really make any sense. Attributes cannot
exist by themselves. Attributes are always placed within XML elements and
should appear along with element declarations. Thus, it is impossible to
create an XML document that is valid according to the above schema.

To make this schema meaningful, we need to add an element to it. Here is
a schema that describes an XML fragment storing employee information.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:compTlexType>
<xsd:attribute name="Name"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.5: Example showing an element declaration as well as attribute
declaration.

-- Drop previous schema collection

IF EXISTS(
\ SELECT * FROM sys.xml_schema_collections
WHERE name = 'ElementAndAttribute'
|) BEGIN

DROP XML SCHEMA COLLECTION ElementAndAttribute

62

4 — Understanding schema components

END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ElementAndAttribute AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:attribute name="Name"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- validate an XML instance
DECLARE @x XML (ETementAndAttribute)
SELECT @x = '<Employee Name="Jacob"/>'

-- Drop the schema collection]
DROP XML SCHEMA COLLECTION ElementAndAttribute

Listing 4.6: A TSQL example showing element and attribute declarations.

@ Chapter 6 explains attribute declarations in great detail.

Simple Types

When you look at an XML document, you might see elements with different
characteristics. Some elements might have child elements and attributes
and others may have just a value. An element may have a simple type or
complex type based on its structure/content. It has a simple type if it does
not have any child element or attribute. If it has an attribute or contains
other child elements, it has a complex type.

The following example declares an element named Greetings and has a
simple type.

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>
</xsd:schema>

Listing 4.7: XSD example showing a simple type.

63

4 — Understanding schema components

This schema describes an XML instance document that looks like
the following.

<Greetings>Hi</Greetings>

Listing 4.8: XML example showing a simple type.

The Greetings element does not have child elements or attributes and has
a simple type.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'SimpleType'
) BEGIN
DROP XML SCHEMA COLLECTION SimpleType
END
GO

-- Create new schema collection

CREATE XML SCHEMA COLLECTION SimpleType AS

'<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Greetings"/>

</xsd:schema>"

GO

-- Validate an XML instance
DECLARE @x XML (SimpleType))
SELECT @x = '<Greetings>Hi</Greetings>'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION SimpleType

Listing 4.9: TSQL Code showing a simple type.

@ Chapter 8 explains Simple Types in detail.

Complex Types

If an element contains child elements or attributes, it has a complex type.
The following XML fragment shows an XML element that has an attribute.
Because it has an attribute, we could say it has a complex type.

A complex type contains elements and/or attributes. Elements and
attributes appear within "<xsd:complexType>"tag.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>

64

4 — Understanding schema components

‘ <xsd:attribute name="FirstName"/>
</xsd:compTlexType>
| </xsd:element>
</xsd:schema>

Listing 4.10: Defining a Complex Type.

Let us look at an XML element that has a complex type.

<EmpTloyee FirstName="Jacob"/>

Listing 4.11: A complex type having an attribute.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ComplexType'
) BEGIN
DROP XML SCHEMA COLLECTION ComplexType
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ComplexType AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:attribute name="FirstName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- validate an XML instance
DECLARE @x XML (CompTlexType)
SELECT @x = '<Employee FirstName="Jacob"/>'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ComplexType

Listing 4.12: TSQL code showing a complex type.

The above example shows a Complex Type having an attribute. A complex
type can have attributes, child elements or both. Here is another example
that shows a complex type having child elements.

<Employee> .
<FirstName>Jacob</FirstName>
</EmpTloyee>

Listing 4.13: A complex type having a child element.

65

4 — Understanding schema components

Employee element has a child element FirstName and is a complex type.
Here is the schema that describes the above XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="FirstName"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 4.14: Another complex type example.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ComplexType'
) BEGIN
DROP XML SCHEMA COLLECTION ComplexType
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ComplexType AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance

DECLARE @x XML (ComplexType)

SELECT @x =

'<Employee>
<FirstName>Jacob</FirstName>

</Employee>"

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ComplexType

Listing 4.15: TSQL code showing a complex type having child elements.

Chapter 10 covers Complex Types in detail.

66

4 — Understanding schema components

Attribute Groups

Attribute Groups provide a certain level of reusability of XSD code. If a few
attributes are to be declared in more than one complex type, those
attributes can be put to an Attribute Group and you can simply insert the
attribute group at the locations where you need the attributes to be present.

Let us look at an example. Look at the following XML fragment.

<Employees>
<Manager FirstName="Jacob" LastName="Sebastian"/>
<Programmer FirstName="Bob" LastName="Jones"/>
</Employees>

Listing 4.16: Employee information XML document.

Both Manager and Programmer elements have attributes FirstName and
LastName. While writing the schema, an attribute group can be defined
which may then be reused in both the elements. Here is the schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attributeGroup name="FullName">
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName"/>
</xsd:attributeGroup>
<xsd:element name="Employees">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Programmer'>
<xsd:complexType>
<xsd:attributeGroup ref="FullName"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Manager">
<xsd:complexType>
<xsd:attributeGroup ref="FullName"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 4.17: Example of an attribute group.

-- Drop previous schema collection

IF EXISTS(]
SELECT * FROM sys.xml_schema_collections
WHERE name = 'AttributeGroup'

67

4 — Understanding schema components

) BEGIN

DROP XML SCHEMA COLLECTION AttributeGroup
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION AttributeGroup AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attributeGroup name="FullName'>
<xsd:attribute name="FirstName" />
<xsd:attribute name="LastName"/>
</xsd:attributeGroup>
<xsd:element name="Employees'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Programmer"'>
<xsd:complexType>
<xsd:attributeGroup ref="FullName"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Manager">
<xsd:complexType>
<xsd:attributeGroup ref="FullName"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (AttributeGroup)
SELECT @x =
'<Employees>
<Programmer FirstName="Bob" LastName="Jones"/>
<Manager FirstName="Jacob" LastName="Sebastian"/>
</Employees>"'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION AttributeGroup

Listing 4.18: TSQL code showing an attribute group.

Attribute Groups are explained in Chapter 6

Element Groups

Just like Attribute Groups, Element Groups also provide a good deal of
reusability. You can create a named element group and then add a
reference to it at other parts of the schema.

68

4 — Understanding schema components

<Employees>
<Manager>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>
</Manager>
<Programmer>
<FirstName>Bob</FirstName>
<LastName>Jones</LastName>
</Programmer>
</Employees>

Listing 4.19: Employee information XML document.

The above example shows an XML fragment containing employee
information. Both Manager and Programmer have elements FirstName and
Last Name. The schema of this XML document can use an element group
to reuse the declarations for elements FirstName and LastName.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:group name="FulIName">
<xsd:sequence>
<xsd:element name="FirstName"/>
<xsd:element name="LastName"/>
</xsd:sequence>
</xsd:group>
<xsd:element name="Employees">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Manager'">
<xsd:complexType>
<xsd:group ref="FullName"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Programmer">
<xsd:compTlexType>
<xsd:group ref="FullName"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.20: Example of an element group.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ElementGroup'
) BEGIN
DROP XML SCHEMA COLLECTION ElementGroup
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ElementGroup AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

Y

4 — Understanding schema components

<xsd:group name="FullName">
<xsd:sequence>
<xsd:element name="FirstName" />
<xsd:element name="LastName"/>
</xsd:sequence>
</xsd:group>
<xsd:element name="Employees'>
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Manager">
<xsd:complexType>
<xsd:group ref="FullName"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Programmer"'>
<xsd:complexType>
<xsd:group ref="FullName"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (ETementGroup)
SELECT @x =
'<Employees>
<Manager>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>
</Manager>
<Programmer>
<FirstName>Bob</FirstName>
<LastName>Jones</LastName>
</Programmer>
</Employees>"'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ElementGroup

Listing 4.21: TSQL code showing an element group.

Element Groups are discussed in Chapter 5.

Order Indicators

Order of elements matters a lot to XML. Most of the time XML parsers
would expect elements to be present in a specific order. On the other hand,
order of attributes is not significant at all. Attributes can appear in any
order and there is no way in XSD to restrict the attributes to be in a
specific order.

70

4 — Understanding schema components

XSD uses Order Indicators to control the order of child elements and they
are: all, sequence and choice.

When all is used, the child elements can appear in any order.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:all>
<xsd:element name="FirstName"/>
<xsd:element name="LastName"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.22: Example showing "all" indicator.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'OrderIndicatorAll'
) BEGIN
DROP XML SCHEMA COLLECTION OrderIndicatorAll
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION OrderIndicatorAll AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:all>
<xsd:element name="FirstName" />
<xsd:element name="LastName"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (OrderIndicatorAll)

-- LastName follows FirstName

SELECT @Xx =

'<Employee>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>

</Employee>"

-- FirstName follows LastName

SELECT @x =

'<Employee>
<LastName>Sebastian</LastName>
<FirstName>Jacob</FirstName>

</Employee>"'

-- Drop the schema collection

4

4 — Understanding schema components

DROP XML SCHEMA COLLECTION OrderIndicatorAll

Listing 4.23: TSQL example showing "all” indicator.

When sequence is used, the child elements should appear in exactly the
order given in the schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName"/>
<xsd:element name="LastName"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.24: Example showing "sequence" indicator.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'OrderIndicatorSequence'
) BEGIN
DROP XML SCHEMA COLLECTION OrderIndicatorSequence
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION OrderIndicatorSequence AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" />
<xsd:element name="LastName"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance

DECLARE @x XML (OrderIndicatorSequence)

SELECT @x =

'<Employee>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>

</Employee>"

-- Drop the schema collection)
DROP XML SCHEMA COLLECTION OrderIndicatorSequence

Listing 4.25: TSQL example showing "sequence" indicator.

72

4 — Understanding schema components

When choice is used, only one element from a given set of elements
should appear in the XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentInfo">
<xsd:complexType>
<xsd:choice>
<xsd:element name="CheckNumber" />
<xsd:element name="cCreditCardNumber" />
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.26: Example showing "choice"” indicator.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'OrderiIndicatorchoice'
) BEGIN
DROP XML SCHEMA COLLECTION OrderIndicatorcChoice
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION OrderIndicatorcChoice AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentInfo">
<xsd:complexType>
<xsd:choice>
<xsd:element name="CheckNumber" />
<xsd:element name="CreditCardNumber"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

-- validate an XML instance]
DECLARE @x XML (OrderIndicatorchoice)

-- XML Instance having "FirstName"

SELECT @x =

'<PaymentInfo>
<CheckNumber>1234</CheckNumber>

</PaymentInfo>'

-- XML Instance having "LastName"

SELECT @x =

'<PaymentInfo>
<CreditCardNumber>****1234</CreditCardNumber>

73

4 — Understanding schema components

</PaymentInfo>"'

-- Drop the schema collection))
DROP XML SCHEMA COLLECTION OrderiIndicatorchoice

Listing 4.27: TSQL example showing "choice"” indicator

Iﬂ Order indicators are explained in Chapter 10.

Occurrence Indicators

The number of times in which an element can appear in an XML document
might be very important in most of the cases. An Order information XML
document may have only one Order Date or Customer Number. However,
it may have any number of jitem elements.

XSD provides a way to control this by using occurrence indicators.
Occurrence of an element can be controlled by setting correct values to the
facets minOccurs and maxOccurs.

The following example shows an order date element that is mandatory and
should appear EXACTLY once.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderiInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderbDate" minOccurs="1"
maxoccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.28: An element that should appear only once.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create new schema collection

74

4 — Understanding schema components

CREATE XML SCHEMA COLLECTION Examp1eSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderbDate" minOccurs="1"
maxoccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- vValidate an XML instance

DECLARE @x XML (ExampleSchema)

SELECT @x =

'<orderInfo>
<OrderbDate>2008-01-01</0Orderbate>

</orderinfo>'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ExampleSchema

Listing 4.29: TSQL code showing a mandatory element that should appear
only once.

The following example shows the Item element of an order information
XML document that allows one or more Item elements.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Item" minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 4.30: An element that can appear any number of times.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:sequence>

75

4 — Understanding schema components

<xsd:element name="Item" minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (ExampleSchema)
SELECT @x =
'<orderInfo>
<Item>Item l</Item>
<Item>Item 2</Item>
<Item>Item 3</Item>
</orderInfo>"'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ExampleSchema

Listing 4.31: TSQL code showing a an element that appears more than once.

@ Occurrence indicators are discussed in Chapter 10.

Annotations are used to add documentation to schema components. By
storing this documentation within the defined annotation element, it is
readable by humans as well as by other applications (e.g. using XSLT).

Let us add some documentation to the schema that we defined earlier.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation xml:Tang="en-us">
"orderinfo" stores details of the order.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="OrderInfo"/>
</xsd:schema>

Listing 4.32: Example showing an annotation.

Annotations are used to describe the schema only. Presence or absence of
annotations does not affect the validation of the XML instance in any
manner.

@ Annotations are explained in Chapter 13.

76

4 — Understanding schema components

Working with XSD Data Types

XSD has a number of built-in data types. When we declare an element or
attribute, we can associate it with a certain data type and the XSD
processor (inside SQL Server) will perform additional validations to make
sure that the value is valid for the given data type.

The following XML fragment shows the name and age of an employee.

<Employee Name="Jacob" Age="30" />

Listing 4.33: Employee information document.

Here is a schema which validates the above XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:attribute name="Name" />
<xsd:attribute name="Age" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.34: Schema to validate the employee XML instance.

The above schema has a shortcoming. It does not validate the data type or
the value stored in the attributes. For example, this schema will consider
the following XML instances as valid:

<EmpTloyee Name="Jacob" Age="thirty" />

Listing 4.35.a

<Employee Name="Jacob" Age="who knows" />

Listing 4.35.b

The first example shows the age of an employee as "thirty,” which makes
sense to a human reader but may not be recognized by an application
reading the XML document. For example, if the application needs to do
some processing for employees older than 25 this record will cause a
problem. In most cases the application may not be able to understand that
the text value "thirty” stands for the number 30.

77

4 — Understanding schema components

The value in the second example does not make sense as well. We need a
way to validate this type of data and to make sure that the value stored in
the Age attribute is a valid numeric value. This is one of those cases where
the XSD Data Types will help us.

Let us rewrite our declaration of Age attribute using XSD integer data type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:compTlexType>
<xsd:attribute name="Name" />
<xsd:attribute name="Age" type="xsd:integer"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 4.36: Declaration of an attribute using xsd:integer data type.

Note the usage of type attribute, which is set to xsd:integer. This is an
instruction to the XSD processor to consider the value of this attribute as
an integer value and to validate it.

Let us create a schema collection and see the validation in action.

CREATE XML SCHEMA COLLECTION DataTypeTest AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:attribute name='"Name" />
<xsd:attribute name="Age" type="xsd:integer"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

Listing 4.37: Schema collection with data type validation.

Let us validate an XML variable given in Listing 4.11.a against this schema.

DECLARE @x XML (DataTypeTest))
SET @x = '<Employee Name="Jacob" Age="thirty" />'

Listing 4.38: Incorrect value for "Age" which is declared as integer.

If you run the above code, SQL Server will generate the following error:

(local) (JAC\JACOB): Msg 6926, Level 16, State 1, Line 2
XML Validation: Invalid simple type value: 'thirty'. Location:
/*:Employee[1]/@*:Age

78

4 — Understanding schema components

Let us correct the data and try again.

DECLARE @x XML (DataTypeTest)
SET @x = '<Employee Name="Jacob" Age="30" />'

Listing 4.39: Example of an XML instance with correct integer value.

Data Type and Chapter 9 covers integers and other XSD

lﬂ XSD data types are explained in Chapter 7. Integer is a Derived
derived data types in detail.

Performing Basic Data Validations

We just saw the importance of XSD data types to validate the value stored
in elements and attributes; most of the time we need a few additional levels
of validation other than just the validation of data types. For example, the
primary validation on the age of an employee could be that the value
should be a number. But we may still need additional validations to make
sure that the value is within a given range.

Each data type has a number of properties that can be restricted to perform
additional validations on the value. The string data type can have length;
numbers can have min and max, etc. These properties are called Facets
in XSD.

So each data type has a certain number of predefined Facets. You can
apply restrictions to these facets to perform additional validations on the
value stored in an element or attribute. We will see a few basic validations
in the following sections. More detailed validations are demonstrated in
Chapter 7 — XSD Primitive Data Types.

Range Validation

We have seen how to validate the data type of an element or attribute.
We have seen the example of the "age"” attribute earlier. There may be
times when we will come across cases where we need a few additional
levels of validation.

For example, by declaring Age as "xsd:integer,” we applied a certain level
of restriction on the value. With this validation values like "Blah" or "Ten"
should be restricted. However, what if the Age is set to -70 or 8667 Those

79

4 — Understanding schema components

values are indeed integers but they are not acceptable as a valid value for
the Age attribute of an employee.

This raises the need for another level of validation. We need a way to
specify the minimum and maximum ranges of numeric values. We need to
be able to set the number of decimals a numeric value can take. We need
to be able to set the length of string values. And so on.

Such restrictions can be achieved in XSD using the facets of a data type. A
facet controls a certain attribute or characteristic of a data type. For
example, integer data type has a facet mininclusive, which specifies the
smallest value it can store. String data type has a facet named maxLength,
which specifies the maximum length of the value.

= Facets of data types are explained in Chapter 7 — XSD
Primitive Data Types

Let us see how to rewrite our DataTypeTest schema so that it applies a
restriction on the Age attribute. Let us restrict the age to be between 18
and 55 inclusive. (18, 55 and any other number between them are
acceptable.)

The previous version of attribute definition was very simple and basic. We
declared an attribute element and assigned values to the name and type
attributes. To apply a restriction on any of the facets of an attribute we need
to declare the attribute as a simpleType. So, first of all, we need to alter the
definition from:

<xsd:attribute name="Age" type="xsd:integer"/>

Listing 4.40: An attribute with integer data typeTo:

<xsd:attribute name="Age" type="xsd:integer">
| <xsd:simpleType>
<!-- other definition here -->
</xsd:simpleType>
</xsd:attribute>

Listing 4.41: Basic declaration of a simpleType.

After the simpleType is defined, we need to add a restriction element to it.

80

4 — Understanding schema components

<xsd:attribute name="Age" type="xsd:integer">
<xsd:simpleType>
<xsd:restriction>
<!-- restrictions here -->
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

Listing 4.42: A simpleType with restriction element.

A restriction always works based on a particular data type. The restrictions
applicable for strings may not be applicable for numeric data types. For
example, maxLength makes sense to strings but is meaningless to numeric
values. Similarly, mininclusive and maxinclusive are applicable to numeric
data types but they do not make sense with string data types.

Hence, we need to specify on which data type the restrictions should be
based when vyou declare xsd.restriction. The base attribute of
xsd:restriction should be set to the desired data type. Here is an updated
version of the schema.

<xsd:attribute name="Age" type="xsd:integer">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<!-- restrictions here -->
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

Listing 4.43: Restriction with base attribute.

Note that we need to remove the type definition from the attribute
declaration. A simpleType cannot take a type attribute. The base attribute
of xsd:restriction is used to identify the data type of an element or attribute
when it is declared as a simpleType.

The next step is to apply restrictions on the facets of our choice. We need
to restrict the value of age between18 and 55. Let us use the mininclusive
and maxinclusive facets to set this restriction. Here is the version of the
schema that includes this restriction.

<xsd:attribute name="Age'">
| <xsd:simpleType>
<xsd:restriction base="xsd:integer">
\ <xsd:minInclusive value="18"/>
<xsd:maxInclusive value="55"/>

81

4 — Understanding schema components

‘ </xsd:restriction>
</xsd:simpleType>
‘ </xsd:attribute>

Listing 4.44: Restricting the attribute value between two numeric values.

Refer to Chapter 7 for a detailed description of all the data
types and their facets.

Let us test this schema with SQL Server. Let us drop the previous Schema
Collection and create the new version.

-- DROP the previous version
DROP XML SCHEMA COLLECTION DataTypeTest
GO

-- CREATE the new version
CREATE XML SCHEMA COLLECTION DataTypeTest AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name='"Name" />
<xsd:attribute name="Age">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="18"/>
<xsd:maxInclusive value="55"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'

Listing 4.45: Code to create the new version of "DataTypeTest."

Let us create a TYPED XML variable bound to this schema and see if SQL
Server validates the data correctly.

DECLARE @x XML (DataTypeTest)
SET @x = '<Employee Name="Jacob" Age="60" />'

Listing 4.46: An invalid XML fragment.

If you run this code, you will notice the following error:

Msg 6926, Level 16, State 1, Line 2
XML Vvalidation: Invalid simple type value: '60'. Location:
/*:Employee[1]/@*:Age

82

4 — Understanding schema components

60 is an invalid value per the Schema Collection we just created. Age can
accept only a value between 718 and 55. Here is a correct XML value.

DECLARE @x XML (DataTypeTest)
SET @x = '<Employee Name="Jacob" Age="55" />'

Listing 4.47: A valid XML fragment for Schema Collection "DataTypeTest."”

Length Validation

String data types have a different set of facets than numeric data types. We
have seen two facets of numeric data types in the previous section. Now,
let us see how to restrict the length of a string value.

Here is a schema that restricts employee ID to 6 characters.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="ID">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="6"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.48: Example of restricting the length of a string.

; Refer to Chapter 7 for a detailed description of all the data
types and their facets.

Format Validation

One of the common validations applied on a string value is format
validation. Certain values are expected to be in a specified format (for
example, phone numbers, email addresses, etc).

Format validation is done in XSD using the pattern facet. The pattern facet
takes an expression which specifies the required format of the value. XSD
supports a regular expression language, which is very close to the regular

83

4 — Understanding schema components

expression languages used by programming languages like Perl or
Microsoft .NET.

A detailed explanation of the regular expression language
supported by XSD is explained in Chapter 12.

In this section we will see a simple example which validates the format of a
value using pattern facet. We will not touch this regular expression
language in detail just yet as later in the book | have dedicated a complete
chapter to the regular expression language of XSD.

Let us take the XML fragment we used for the other examples in this
chapter.

<Employee Name="Jacob" />

Listing 4.49: Sample XML to store employee information.

Let us add a restriction to the name of the employee. Let us insist that the
employee name should always be in upper case. Here is the schema
which declares the pattern to perform this validation.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 4.50: Example showing pattern restriction.

The expression "[A-Z]" stands for any character from "A" to "Z" in upper
case. The plus sign (+) stands for one or more occurrence of the preceding
character. So a combination of "[A-Z]" and "+" stands for "one or more
occurrence of letters A to Z in upper case."

84

4 — Understanding schema components

— Chapter 12 has a number of examples that explain how to
create patterns for various format validation requirements.

Chapter Summary

In this chapter we have seen the basic building blocks of XSD. An XML
document is composed of elements and attributes. An XML schema
describes and validates XML documents. Description and validation of the
XML elements and attributes are written in XSD using element declarations
and attribute declarations.

An element may have a simple type or complex type. If an element
contains attributes, child elements, or both, it has a complex type;
otherwise, it has a simple type.

Commonly used attributes and elements can be grouped together into
Attribute Groups and Element Groups. You can then refer to such a group
at multiple locations in your schema definition. Attribute groups and
Element groups provide a certain level of reusability.

Most of the time the physical position or order of elements within a parent
node is significant in an XML document. You can control the order of
elements using XSD Order Indicators. If you want the elements to appear
in a specific order, you could use sequence order indicator. Or if you don't
care about the order, you could use all indicator. Sometimes you would
need only one element out of a set of given elements. You could use
choice indicator in such situations.

Occurrence of elements is important, too. Certain elements may be
optional, certain elements mandatory, and some others may appear more
than once. Attributes can appear only once (or may not appear if they are
optional), whereas elements may appear even more than once.
Occurrence of elements is controlled in XSD using minOccurs and
maxOccurs indicators. You can set an element to optional by setting
minQOccurs to 0.

Documentation is important in any piece of code that we write. XSD
provides a documentation mechanism using annotations. Annotations can
be used to add documentation helpful to humans as well as to applications
that process/read the schema document.

To perform validations on the value of an element or attribute, XSD
supports the concept of data types. When an element or attribute is

85

4 — Understanding schema components

declared with a data type, the schema processor will validate the value
against the given data type.

Each XSD data type has a certain characteristics/properties known as
facets. Length of a string or minimum or maximum values of a number are
examples of such facets. These facets can be restricted to perform
additional validations on the value stored in a given element or attribute.
Examples of most common validations are range validations on numeric
values and length or format validations on string values.

86

CHAPTER 5

UNDERSTANDING ELEMENT
DECLARATIONS

An XSD element declaration represents an element in the XML instance
document. In Chapter 4 we covered the basics of element declarations. In
this chapter we will have a closer look at element declarations. We will
learn the following:

Element Declarations

Global and local element declarations

Different parameters that an element declaration takes

A detailed look at the xsi:nil attribute and handling of null values
Creating variable content containers with substitution groups
Different ways of controlling element substitution

Let us examine these points in detail.

Element Declaration

Elements are broadly classified into Simple Types and Complex Types. If
an element has attributes and/or child elements, it is said to have a
Complex Type. An element is said to have a Simple Type if it does not have
any attributes and does not have child elements. Simple Types can only
store a value.

Let us look for a second at the following XML fragment:

<Employee EmployeeID="101">
<Name>
<FiFSENaié>Jacob</FirstName>
<LastName>Sebastian</LastName>
</Name>
<Aﬁe>30</Age>
<Phone Location="home">999 888 7777</Phone>
</Employee>

Listing 5.1: An XML fragment which contains Simple and Complex Types.

87

5 — Understanding element declarations

The "Employee" element should be declared as complexType in the
SCHEMA because it contains an attribute (EmployeelD) and child elements
(Name, Age and Phone). The "Name" element is also a candidate to have
a complexType because it contains child elements: FirstName and
LastName. The Phone element should have a complexType as well,
because it contains an attribute (Location).

On the other hand, the XSD declaration of FirstName, LastName and Age
should have a simpleType because they contain only a value and do not
have a child element or attribute.

Simple Types and Complex Types are explained in Chapters
8 and 10 respectively.

An XSD schema which validates the above XML fragment might look like
this.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" />
<xsd:element name="LastName" />
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
<xsd:element name="Age" />
<xsd:element name="Phone">
<xsd:complexType>
<xsd:attribute name="Location" />
</xsd:compTlexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="EmployeeID" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.2: A schema showing Simple Types and Complex Types.

All the lines above that are marked in yellow are examples of element
declarations. The declarations of "FirstName" and "LastName" are very
simple. On the other hand, the declaration of "Employee” or "Name" is
much more complex and detailed (note that they have child elements).

88

5 — Understanding element declarations

Global And Local Element
Declaration

An XSD schema may contain Global and Local element declarations.
Global element declarations are top level element declarations right under
the schema element. Local element declarations usually appear inside a
complexType or element group declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:complexType>
<xsd:attribute name="First"/>
<Xsd:attribute name="Last"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="Employee">
<xsd:complexType>
<xsd:all>
<xsd:element ref="Name"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.4: Example of a "Global" element declaration.

Note the declaration of the global element “Name." It is declared right
under the "schema" element. The advantage of using a global element
declaration is that it can be reused (referred) at other locations from within
the same schema. Note the usage of attribute "ref” to refer to a global
element declaration.

Let us create a schema collection and see this in action.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:compTlexType>
<xsd:attribute name="First"/>
<xsd:attribute name="Last"/>

89

5 — Understanding element declarations

</xsd:complexType>
</xsd:element>

<xsd:element name="Employee'>
<xsd:complexType>
<xsd:all>
<xsd:element ref="Name"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Employee>
<Name First="Jacob" Last="Sebastian"/>
</Employee>"'

-- Drop the schema collection
DROP XML SCHEMA COLLECTION ExampleSchema

Listing 5.5: An example showing a global element declaration.

One of the interesting things about this schema is that it allows two
different XML structures.

-- validate an XML instance
| DECLARE @x XML (ExampleSchema)
SELECT @x = '
| <EmpTloyee>
<Name First="Jacob" Last="Sebastian"/>
‘ </EmpTloyee>"'

Listing 5.6: This XML instance will be validated against global element
"Employee.”

This is a valid XML instance. The Employee element is declared in the
schema collection as the root element of the XML instance document. It
has a child element named Name which contains two attributes: First and
Last that represent First Name and Last Name respectively.

However, the schema collection also allows the following XML instance.

-- Validate an XML instance
DECLARE @x XML (ExampleSchema))
SELECT @x = '<Name First="Jacob" Last="Sebastian"/>'

Listing 5.7: This XML instance will be validated against global
element "Name."

90

5 — Understanding element declarations

The reason is that the schema contains two global elements: Name and
Employee. SQL Server accepts any XML instance that successfully
validates with any of the global elements declared in the schema.

reusability benefits of a global type. In Chapter 12 we'll show

Iﬁ Often you won't want this behavior, but you will want
you how to achieve this by using a named complex type.

Assume that the XML instance we intend to validate is the following.

<Employee> .
<Name First="Jacob" Last="Sebastian"/>
</EmpTloyee>

Listing 5.8: Employee information XML document.

We have already seen how to write a schema to describe this XML
fragment using a global element declaration (Listing 5.4). Now let us see
how to write the same schema using a local element declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:all>
<xsd:element name="Name">
<xsd:complexType>
<xsd:attribute name="First"/>
<xsd:attribute name="Last"/>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.9: A schema that uses a local element declaration to describe
employee information.

This schema uses a local element declaration to describe the Name
element. Note that the Name element is declared NOT under the schema
element, but under the Employee element.

When you have a global element declaration, you can refer it in multiple
locations in your schema. This gives you a certain level of reusability. Local
element declarations cannot be reused. If you want the element to appear
in multiple places, you need to repeat the declaration code. You cannot add
a reference to a local element declaration.

91

5 — Understanding element declarations

Element Declaration Parameters

Declaration of an element can take a number of attributes/parameters that
perform different levels of validation. The shortest declaration of an
element is:

<xsd:element name='"'Name'">

Listing 5.10: A basic element declaration.

The above element declaration shows an element with a single attribute:
"name."” It is a mandatory attribute. You cannot declare an element without
the name attribute.

The only mandatory attribute that an element declaration should take is
the "name" attribute. There are a few other optional attributes that an
element declaration can take, depending on whether it is declared globally
or locally.

All element declarations (global as well as local) can take the following
attributes.

name
type

id
default
fixed
nillable
block

In addition to the above attributes, a global element declaration can take
the following attributes. These attributes are not permitted in a local
element declaration.

. final
° abstract
. substitutionGroup

Local element declarations can have the following additional attributes.
These attributes are not permitted in a global element declaration.

92

5 — Understanding element declarations

minOccurs
maxOccurs
ref

form

Let us look at these attributes in detail.

Attribute: name

This is the only mandatory attribute that an element declaration
should have. The following example describes an XML element with the
name "Age.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Age" />
</xsd:schema>

Listing 5.11: An element declaration with "name" attribute.

There are a few points to be aware of while naming your XML elements. An
XML element name should follow the rules given below.

. Name of an element should start with a letter or an underscore ().
Name of an element can contain letters, numbers and other
characters. However, the most commonly used characters are letters
"a"to "z"in lower and upper case, digits 0 to 9, underscore, period
and hyphen.

. Name of an element cannot start with the word "xm/" in uppercase,
lower case or mixed case.

° Name of an element cannot contain spaces.

It is a good practice to give meaningful names to the elements. It is
also important that you use correct casing of letters. It is a recommended
practice to use either camel Case ("employeeName") or Pascal
Case ("EmployeeName").

n

You could also name elements like " employeeName,"” "employee.name,
or "employee_name,” or "employee-name.” But such naming can be
confusing to applications that process the XML document. Though the
element name is valid, it might cause trouble for some applications that do
not expect such characters to be part of an element name. If your XML
instance contains database related information, it is a good practice to
follow the database naming rules by avoiding special characters and
reserved keywords.

93

5 — Understanding element declarations

It is good to be descriptive while giving names to XML elements.
"SalesOrderNumber" or "SalesPersonCode" is more informative than
"ordno” or "srcode.” However, when you have a hierarchy of elements,
sometimes the child elements can be short without losing clarity
of information.

Let us look at an example:

<order>
<SalesRepName>Jacob</SalesRepName>
<SalesRepCode>1000</SalesRepCode>

‘ </0order>

Listing 5.12: A long name (SalesRepName) is more meaningful most of
the time.

<order>
<SalesRep>
\ <SalesRepName>Jacob</SalesRepName>
<SalesRepCode>1000</SalesRepCode>
</SalesRep>
</order>

Listing 5.13: A long name (SalesRepName) looks like overkill under the
'‘SalesRep’ element.

<Order>
<SalesRep>
<Name>Jacob</Name>
\ <Code>1000</Code>
</SalesRep>
</0order>

Listing 5.14: A short name (name) is good enough to refer to the name of a
sales rep when it is put under the ‘SalesRep'’ element.

"SalesRepName" and "SalesRepCode"” looks good when they are the
children of "Order” element (Listing 5.12). However, they look a little odd in
the second example (Listing 5.13) where the parent element is "SalesRep."
Under the element "SalesRep” it will be more reasonable to add the
elements "Name" and "Code” rather than using "SalesRepName" and
"SalesRepCode" (Listing 5.14).

Attribute: type

"type" adds more restrictions on the content of the XML element. "type”
adds data type related validations to the declaration of an element. When

94

5 — Understanding element declarations

“type" is not specified, the element is assumed to be "xsd:anyType," which
allows any text value in the column. By adding “type"” we can restrict the
value to a given data type. For example, the value of an element declared
as "xsd:integer" can accept only a numeric value. It cannot have a decimal
component, nor can it accept a non-digit character.

Let us look at another version of the employee information XML fragment
that we saw earlier in this chapter.

<EmpTloyee>
<Name>Jacob</Name>
<Age>30</Age>

</Employee>

Listing 5.15: Employee information.

Here is a basic schema that validates the above XML structure.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" />
<xsd:element name="Age" />
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 5.16: SCHEMA definition for the XML presented in Listing 5.15.

This SCHEMA will validate the XML structure but none of the values stored
in the elements. For example, the following XML fragments will be
accepted as valid by the above schema.

<Employee>
<Name>Jacob</Name>
<Age>forty</Age>

</Employee>

Listing 5.17.a: This XML makes sense to a human reader. However, it may
not be meaningful to an application that processes the XML document.
Though we expect the "Age" to be specified as a numeric value, the
SCHEMA does not have a validation for this.

95

5 — Understanding element declarations

<Employee>
<Name>Jacob</Name>
<Age>Who knows?</Age>
</Employee>

Listing 5.17.b: This XML is not meaningful. However, since the SCHEMA
does not have a validation for the value, this XML fragment will be accepted
as a valid piece of XML.

To fix the issues we saw in Listing 5.17.a and 5.17.b, let us add a "type"
declaration to the element declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Name" />
<xsd:element name="Age" type="xsd:integer"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.18: The schema declares "Age" as "xsd:integer." This will validate
the "Age"” element so that it will contain only integer values.

n

The new version of the schema (Listing 5.18) will make sure that the "Age
element should contain only a numeric value. The “infeger” data type will
allow only a numeric value and, hence, the two XML fragments we saw
earlier (Listing 5.17.a and 5.17.b) will not be accepted anymore.

few dozen different data types. We will examine them in detail

Iﬁ XSD data types are explained in Chapter 7. XSD supports a
in Chapters 7 and 9.

While the new version of the schema (Listing 5.18) makes sure that the
"Age” element will contain only numeric values, there can still be problems.
Look at this example.

<Employee>
<Name>Jacob</Name>
<Age>-30</Age>

</EmpTloyee>

Listing 5.19: This XML does not make sense. "Age" cannot be negative.
However, the schema we saw in listing 6.9 does not restrict negative values.

96

5 — Understanding element declarations

A negative value does not make the "Age" element meaningful. Let us
change the data type to "xsd:positivelnteger” to make sure that a negative
value is not accepted in the "Age" element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" />
<xsd:element name="Age" type=''xsd:positiveInteger"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.20: This version of the schema makes sure that the "Age" element
does not take a negative value.

We might still need restrictions to make the value more
meaningful. For example, the value "200" or "0" does not
make any sense when provided as the "Age" of an employee.
Such validations can be added by using "xsd:restriction”
and applying restrictions on the facets of the given data
type. We will examine this when we discuss Simple Types in
Chapter 8.

The example given above uses one of the built-in data types of XSD. You
could also use a simpleType or complexType that you have defined
globally in your schema. Chapter 8 explains Simple Types and Chapter 10
covers Complex Types.

Attribute: id

"id" is an optional attribute which uniquely identifies the given element. If
present, it should be unique within the SCHEMA document.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" id="EmpName" />
<xsd:element name="Age" 1id="EmpAge"
type="xsd:nonNegativeInteger"/>
</xsd:sequence>

97

5 — Understanding element declarations

</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.21: The 'id’ attribute has significance only within the schema
document.

Usage of "id" attribute has nothing to do with the XML instance. "id" is
used only to identify the XSD objects. In no way will it affect the XML
instance, its structure, or the values stored in elements and attributes. The
same XML data we used in the previous example will validate against this
schema, too.

Attribute: default

The attribute "default” is used to specify the default value of an element. It
is applicable only if the element is optional. When the XML data is assigned
to the column/variable, if an element is empty and a default value is
specified for that element in the schema, the default value is assigned to
the element.

Let us look at an example:

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="0S" type="xsd:string" default="windows XP"/>
‘ </xsd:schema>

Listing 5.22: An element declaration with a 'default’ value.

The above SCHEMA specifies that the default value of "OS" element
is "Windows XP." Let us create an XML SCHEMA CLLECTION and test a
few scenarios.

CREATE XML SCHEMA COLLECTION DefaultElement AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="0S" type="xsd:string" default="windows XP"/>

</xsd:schema>"

GO

Listing 5.23: Creates a new XML SCHEMA COLLECTION named
"DefaultElement.”

DECLARE @x XML(DefaultElement)
SET @x = '<0S />'

-- Read the value from the XML variable
SELECT

98

5 — Understanding element declarations

@x.value('(/0s)[1]', 'VARCHAR(20)') AS 0S
/:‘:
OUTPUT:

windows XP

(} row(s) affected)

Listing 5.24: Note that a blank value is assigned to the XML variable.
However, when reading the value we see that it is filled with the default
value.

: In the above example | have used XQuery to read values
from the XML variable. | will show you some simple usages
of XQuery in this book. However, a detailed explanation is
beyond the scope of this book. | have given a detailed
XQuery tutorial in my upcoming book XQuery For SQL
Server Developers.

The default value of an element is similar to the default value that we
assign to the column of a table. When no value is inserted to the column,
the default value is stored. Similarly, when you store an empty value to an
element that has a "default" value specified, SQL Server will store the
default value in the element.

The following code is equivalent to the previous one and will produce the
same result.

DECLARE @x XML (DefaultElement)
SET @x = '<0S></0S>'

-- Read the value from the XML variable
SELECT
@x.value('(/0S)[1]"', 'VARCHAR(20)') AS o0S

99

5 — Understanding element declarations

windows XP

E} row(s) affected)

Listing 5.25: The schema processor assigns the default value to the element
if the value is missing in the XML instance.

The "default” value does not have any effect if the element contains a
value. The following example demonstrates it.

DECLARE @x XML (DefaultElement)
SET @x = '<O0S>Linux</0S>'

-- Read the value from the XML variable
SELECT
@x.value('(/0S)[1]"', '"VARCHAR(20)') AS 0S

OUTPUT:
0S

E} row(s) affected)

Listing 5.26: In the above example, the "default” value specification has no
effect because the element is not empty.

The default value will be inserted to the XML element only if the element is
present and is empty. If the element is not present, then it is not added
automatically. The default specification has no effect when the element is
absent in the XML instance.

The value assigned to the default attribute must be of the correct data type.
For example, it is illegal to specify a date value as the default value of an
integer element.

The default value of an element will not be assigned if the
element is declared as in the schema and the XML instance
contains an attribute as is explained later in this chapter.

Iﬁ There is an exception to the rules we have defined above.

100

5 — Understanding element declarations

Attribute: fixed

The attribute "fixed" is used to restrict the value of an element to a pre-
defined value. If the value is missing, then the predefined value is assigned
to the element. If the value is present, it must be the same value as defined
in the schema. If you try to assign a different value, SQL Server will
generate an error.

"fixed" and "default" are mutually exclusive. Either one of them can be
present in the declaration of an element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="0S" type="xsd:string" fixed="windows"/>
</xsd:schema>

Listing 5.27: Example using "fixed" element.

In this example, the element OS should always take the predefined value:
"Windows." If the XML fragment contains any other value, SQL Server will
raise an error.

-- Create the XML SCHEMA collection

CREATE XML SCHEMA COLLECTION FixedElement AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="0S" type="xsd:string" fixed="windows"/>

</xsd:schema>'

GO

-- Declare a variable_bound to the schema
DECLARE @x XML (FixedElement)
SET @x = '<O0S>Linux</0S>'

Listing 5.28: 'Linux’ is not an accepted value because the element is
declared with a fixed value 'Windows.'

The above code will generate the following error:

‘ Msg 6921, Level 16, State 1, Line 4
XML Validation: Element or attribute '0S' was defined as fixed,
| the element value has to be equal to value of 'fixed' attribute
specified in definition. Location: /*:0S[1]

Listing 5.29: When an element is declared as "fixed" it cannot accept a
different value.

101

5 — Understanding element declarations

If you provide a value, it must be Windows. Note that XSD is case
sensitive. The following will throw an error as well, because the letter W in
Windows is expected in Upper Case.

-- Declare a variable bound to the schema
DECLARE @x XML(E1xedE1ement)
SET @x = '<O0S>windows</0S>"

Listing 5.30: values defined with 'fixed’ attributes are case sensitive.

The following is the correct XML.

-- Declare a variable_bound to the schema
DECLARE @x XML (FixedElement)
SET @x = '<OS>Windows</0S>"

Listing 5.31: Example showing the correct XML instance for schema defined
in Listing 5.27.

Just as in the case of "default,” if the element is empty the value defined
in the "fixed" attribute will be assigned to the element.

-- Declare a variable_bound to the schema
DECLARE @x XML (FixedElement)
SET @x = '<0S></0S>'

-- Read the value from the XML variable
SELECT
@x.value('(/0S)[1]"', 'VARCHAR(20)') AS OS

OUTPUT :
0S

windows

(} row(s) affected)

Listing 5.32: If an element declared with the ‘fixed' attribute is empty, the
schema processor assigns the ‘fixed’ value to the element.

Attribute: nillable

Several times we come across empty elements in an XML instance. Often
they have different meanings. There are times when an empty element
does not make any sense and can therefore be dropped from the XML
instance. There are also times when an empty element is meaningful, even

102

5 — Understanding element declarations

though it is empty. A familiar example is the XHTML </br> element, which is
always empty.

An empty element may be interpreted differently by different applications.
Some applications might make it mandatory to have an element present in
the XML instance, even though it is empty. On the other hand, some
applications will generate a validation error if the element is empty. There
are times when you really want to keep an empty element to indicate that
the information is missing. However, this missing information should be
distinguished from another having a blank value. XSD provides a way to do
that using xsi:nil.

Blank vs. Missing values

In database programming, we sometimes use NULL to indicate that the
value is missing. A missing value is different from an empty value. Numeric
columns can have different meaning for 0 and NULL. In one of my
applications we used a bit for the gender attribute which took values 0, 1
and NULL. 0 stood for female, 1 stood for male and null stood to indicate
that the information is not available yet.

Many applications use NULL to indicate that the value is not initialized.
If a value is not available (missing) it may be assigned with NULL. In
such cases, we need a way to differentiate between a missing value
from an empty value (empty string in case of text column or 0 for a
numeric column).

The same is true for XML. When we process an XML document, we need a
way to differentiate an element without a value from another element that
has an empty string as its value. XSD does not have a data type equivalent
to the NULL value in SQL Server. None of the XSD data types can store a
NULL value. The effect of a NULL can be produced in an XML instance by
declaring the element as "nillable.”

Let us look at an example which explains this. Here is the SCHEMA of an
employee element.

CREATE XML SCHEMA COLLECTION NillableElement AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employees'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Remarks" type="xsd:string" />

103

5 — Understanding element declarations

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"

Listing 5.33: Employee Schema.

Now, look at the following XML fragment which validates against the above
XML SCHEMA.

DECLARE @x XML(NilTlableElement)
SET @x =
'<Employees>
<Employee>
<Name>Jacob</Name>
<Remarks> </Remarks>
</Employee>
<Employee>
<Name>Steve</Name>
<Remarks/>
</Employee>
</Employees>'

SELECT
e.value('Name[1]", '"VARCHAR(20) ') AS Name,
e.value('Remarks[1]", 'VARCHAR(20) ') AS Remarks
FROM @x.nodes('/Employees/Employee') x(e)

Name Remarks

Listing 5.34: It is difficult to differentiate an empty element from another
element that is blank or having one or more spaces.

Look at the above XML fragment. The first employee element ("Jacob") has
a Remarks element which contains a space. The second employee
element ("Steve") has an empty Remarks element. Look at the query
results. Both rows show empty strings. How do we distinguish between
the two?

This can be done by making the element "nillable.” Here is the version of
the schema with "Nillable" attribute.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employees">
<xsd:compTlexType>
<xsd:sequence>

T4

5 — Understanding element declarations

<xsd:element name="Employee" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Remarks" type="xsd:string"
nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 5.35: An example using 'xsd:nillable.’

Let us update the XML Schema Collection. As discussed previously, we
cannot update a Schema Collection. We need to drop the previous
Schema Collection and create a new one.

DROP XML SCHEMA COLLECTION NillableElement
GO
CREATE XML SCHEMA COLLECTION NillableElement AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employees'>
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Employee" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Remarks" type="xsd:string"
nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"

Listing 5.36: Employee Schema with nillable element.

Here is the new XML instance. You will notice a few changes here. First of
all, the element is declared with a namespace. The second difference is the
presence of attribute “xsi:nil" in the second employee element.

DECLARE @x XML(NiTTabTeElement)
SET @x =
'<Employees xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<EmpTloyee>
<Name>Jacob</Name>
<Remarks> </Remarks>
</Employee>
<Employee>

105

5 — Understanding element declarations

<Name>Steve</Name>
<Remarks xsi:nil="true"/>
</Employee>
</Employees>"'

SELECT
e.value('Name[1]", '"VARCHAR(20) ') AS Name,
e.value('Remarks[1]", 'VARCHAR(20) ') AS Remarks
FROM @x.nodes('/Employees/Employee') x(e)

/7‘:

Name Remarks
Jacob

Steve NULL

Listing 5.37: An XML instance that shows an element with 'xsi:nil.’

"xsi:nil" is declared in the namespace ‘“http.//www.w3.0rg/2001/
XMLSchema-instance." Hence, we need to declare it in the XML instance.
Note that the query returns NULL for the remark element of the second
Employee row.

Excluding Validation of NULL Values

Sometimes we need to apply a validation on values if they are not NULL.
However, no validation may be needed if the value is null. For example,
think of a validation rule that says, "if present, the Age of an employee
should be between 22 and 55." How do we implement such a rule? Let us
try to build such a schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Age">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="22"/>
<xsd:maxInclusive value="55"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

106

5 — Understanding element declarations

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 5.38: A schema that restricts the 'Age' element to values between 22
and 55 inclusive.

The above schema restricts the "Age"” element to be between 22 and 55
inclusive. Now let us create an XML Schema Collection with the schema
definition we just saw.

DROP XML SCHEMA COLLECTION NillableElement
GO

CREATE XML SCHEMA COLLECTION NillableElement AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Age'">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="22"/>
<xsd:maxInclusive value="55"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
f/xsd:schema>

Listing 5.39: Schema collection that applies a range restriction on age.

Here is an XML instance which validates with the above
Schema Collection.

DECLARE @x XML(NillabTleElement)
SET @x =
'<Employee>
<Name>Jacob</Name>
<Age>22</Age>
</Employee>"'

Listing 5.40: "Age" should be between 22 and 55 as per the restrictions
given in the Schema Collection.

Though the above Schema Collection restricts "Age” to be between 22 and
55 and does not allow it to be NULL, the rule that we were trying to

107

5 — Understanding element declarations

implement should allow NULL values. The validation should occur only if
the value is not NULL.

If you try the below code, you will get a validation error.

DECLARE @x XML(NillableElement)
SET @x =
'<Employee>
<Name>Jacob</Name>
<Age></Age>
</Employee>"'

Listing 5.41.a: This will generate a validation error because the value of Age
should be between 22 and 55.

‘ DECLARE @x XML(NillabTleETement)
SET @x =
| '<Employee>
<Name>Jacob</Name>
\ <Age />
</Employee>'

Listing 5.41.b: This is equivalent to the previous example. Schema processor
will generate an error because the Age element is empty.

Both examples given above will produce the following error.

JAC\SQL2005(CJAC\JACOB) : Msg 6926, Level 16, State 1, Line 2
XML Vvalidation: Invalid simple type value: ''. Location:
/*:Employee[1]/*:Age[1]

We should make the "Age” element "nillable” to get the requested
validation done. After making the element nillable, we could add
xsi:nil="true" to the XML instance to instruct the Schema processor to skip
validating the given element.

Here is the updated version of the Schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Age" nillable="true">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="22"/>
<xsd:maxInclusive value="55"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

108

5 — Understanding element declarations

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.42: A corrected version of the schema using the 'nillable’ attribute.

Let us update the Schema Collection.

DROP XML SCHEMA COLLECTION NillableElement
GO

CREATE XML SCHEMA COLLECTION NillableElement AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Age" nillable="true">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="22"/>
<xsd:maxInclusive value="55"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
f/xsd:schema>

Listing 5.43: Employee information with nillable element.

And here is the XML instance which has an Age element with NULL value.

DECLARE @x XML(NillabTleETement)
SET @x =
| '<Employee xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Name>Jacob</Name>
\ <Age xsi:nil="true"/>
</Employee>"

Listing 5.44: By setting "nillable” to "true" in the schema and then adding
"xsi:nil" in the XML instance, you can generate a "validate-if-exists" effect.
The Schema will allow the value to be empty and will perform the validation
only if it is not empty.

109

5 — Understanding element declarations

"nillable" and default

When an element is declared as "nillable" in the schema and if the XML
instance contains "xsi:nil," then the default value is not assigned to the
element.

As discussed earlier in this section, different applications treat missing
values in different manners. Sometimes we need to specify explicitly that a
piece of information is missing. However, if the element has a default value
assigned, the value of the empty element will be replaced with the default
value.

Let us look at an example:

<EmpTloyees>
<Employee>
\ <Name>Jacob</Name>
<Gender>Male</Gender>
| </Employee>
</Employees>

Listing 5.45: Employee information XML document.

The XML fragment contains a list of employees and each employee
element contains the Name and Gender of the employee. Assume that we
have a schema that sets the default value of Gender to Male. Here is
the schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Gender" type="xsd:string"
default="male" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.46: Schema that describes the employee information XML
document.

Note that the SCHEMA declares Male as the default value of element
Gender.

DROP XML SCHEMA COLLECTION NillableElement
GO
CREATE XML SCHEMA COLLECTION NillableElement AS '

1T

5 — Understanding element declarations

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Gender" type="xsd:string"
default="mMale" />
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"

Listing 5.47: TSQL code that creates the Schema Collection that describes
the employee information XML document.

If the Gender element is empty in the XML instance, the value "Male" is
assigned to it by the schema processor. Let us see an example.

DECLARE @x XML(NillabTleETement)
SET @x = '
<Employee>
<Name>Jacob</Name>
<Gender></Gender>
</Employee>"'

SELECT @x

<Employee>
<Name>Jacob</Name>
<Gender>Male</Gender>
<;Emp1oyee>

Listing 5.48: "Male" is declared as the default value of "Gender," and hence
the schema processor adds it to the empty Gender element.

DECLARE @x XML(NillabTleETement)
SET @x = '
<EmpTloyee>
<Name>Jacob</Name>
<Gender />
</Employee>'

SELECT @x

<EmpTloyee>
<Name>Jacob</Name>
<Gender>Male</Gender>
<§Emp1oyee>

Listing 5.49: "Male" is declared as the default value of "Gender," and hence
the schema processor adds it to the empty Gender element.

111

5 — Understanding element declarations

There are times we need the Schema processor to ignore the default value
assignment on a given element. It can happen that the information about
the gender of a given employee is not available, and we do not want the
schema processor to set it to the default value.

This can be done by making the element "nillable” in the schema and
adding an "xsi:nil" attribute to the given element. Here is an example:

DROP XML SCHEMA COLLECTION NillableElement
GO
CREATE XML SCHEMA COLLECTION NillableElement AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Gender" type="xsd:string"
default="Male" nillable="true"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'

Listing 5.50: A variation of the schema that sets the "Gender"
element "nillable.”

This example works in the same way it did previously.

DECLARE @x XML(NillabTleETement)
SET @x = '
<Employee>
<Name>Jacob</Name>
<Gender />
</Employee>"'

SELECT @x

<Employee>
<Name>Jacob</Name>
<Gender>Male</Gender>
<;Emp1oyee>

Listing 5.51: "Male" is declared as the default value of "Gender,” and the
schema processor adds it to the empty Gender element.

However, when "xsi:nil" attribute is added, the default value is not assigned
to the Gender element.

DECLARE @x XML(NillabTleETement)
SET @Gx = '
<Employee >

112

5 — Understanding element declarations

<Name>Jacob</Name>
<Gender xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:nil="true" />

</Employee>'

SELECT @x

<Employee>
<Name>Jacob</Name>
<Gender xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:nil="true" />

<;Emp1oyee>

Listing 5.52: When "xsi:nil" is set to "true" the schema processor does not
assign the default value to an empty element.

Attribute: SubstitutionGroup

When you have a TYPED XML column or variable bound to a Schema
Collection, SQL Server will perform very strict validations on the XML
value. SQL Server will make sure that the structure of the XML, as well as
the values of elements and attributes, strictly follows the rules defined in
the Schema Collection.

This strict validation is good most of the time. However, there are times
when we will need a little flexibility. Let us take the example of a billing
application. The billing application needs to work with payment information.
The payment information will vary based on the payment type: Credit Card,
Cash or Check. If the payment is done through check, then we will have to
store check number, bank name, etc. If it is done by Credit Card, we might
need to store the card number, card type, expiration date, etc. If the
payment is done by cash, we might need to store the currency as well as
the denomination of the bills.

These types of requirements point to a certain type of element declaration
that allows different sets of XML structure and values based on a certain
flag value. Such elements are generally called ‘“variable content
containers.”" As the name indicates, they are containers capable of storing
different types of content. XSD provides a few different ways to declare
such elements. One way to declare variable-content-containers is by using
substitutionGroups. Using "substitutionGroup,” we could create an
extensible chain of XSD element declarations, just as you create an
inheritance chain in your favorite OOP language.

113

5 — Understanding element declarations

Another way of creating variable content containers is by

: using choice groups. Choice Groups are explained in
Chapter 10.

The Employee Information Document

To understand the usage of substitutionGroup, let us take the example of
an employee information document. Assume that we need to write the
schema of an XML document that stores employee information. Information
of each employee will be represented by an element under the employee
root node.

Simple so far; now let us move to the difficult part. The information being
stored will not be the same for every employee. A manager will have a
different set of attributes than a developer. The attributes of a developer will
be different from that of a salesperson.

At first glance, you might think this could be easily done by declaring
optional attributes so that each employee row can fill the attributes relevant
to it. This will not work, however. We need to perform a strict validation
based on the employee type. For example, "Area"” should be mandatory for
a sales person but should not be allowed in the element representing
a developer.

This is an XML instance document for which we need to write the schema.

<EmpTloyees>
<Manager Name="Jacob" Dept="IT" ReportsTo="CEQO" />
<Developer Name="Richard" Project="BI Tools" />
<SalesPerson Name="David" Area="NY" ReportsTo="Jacob" />
\ <Developer Name="John" Project="BI Tools" />
</Employees>

Listing 5.53: Employee information XML document.

Note that the element employee has three different elements as its
children: Manager, SalesPerson and Developer. Each child element has
its own set of attributes and may appear any number of times.

Before we think about the XSD way of doing this, let us think a second in
an OOPS (Object Oriented Programming System) way. If we were to do it
in an Object Oriented Programming Language, we might have landed with
something like the following.

114

5 — Understanding element declarations

|

| Employee | EmployeeCollect... (%)
Abstract Class Class
List=Employes=
=| Properties
7 Name
| SalesPerson 7 | | Manager 2 | Developer ES
Class Class Class
= Emnplayee = Ermplayee = Employes
=l Properties =| Properties =| Properties
1 area 5 Dept # project

5 ReportsTo 5 ReportsTo

Listing 5.54: Diagram showing employee inheritance chain.

The class diagram given above is pretty simple and self explanatory. Many
of us must have done this several dozen times in our programming career.

The above diagram shows a base class named Employee and three
classes that derive from it. The base class has a property named "Name"
and all the child classes inherit this property from the base class. The
diagram also shows a collection class that can store Employee objects.

Since SalesPerson, Manager and Developer classes are derived from
Employee and EmployeeCollection is a list of Employee objects, we could
add an object of Manager, Developer and SalesPerson into
EmployeeCollection.

This is exactly what we need to do in XSD. We need to make an element
declaration that can store employee, manager or salesperson elements. To
achieve this, let us follow the same steps as given in the OOPS class
diagram given above.

Step 1: Define the Base Type
Let us first define the base type named EmployeeBase. The class diagram

shows that the base class should have a name attribute which the other
three classes inherit. Let us define the base class.

115

5 — Understanding element declarations

<xsd:complexType name="EmployeeBase">]
<xsd:attribute name="Name" type="xsd:string"/>
</xsd:complexType>

Listing 5.55: Definition of the Base types.

have not yet discussed Complex Types. Refer to Chapter 10

@ We have defined a Complex Type named EmployeeBase. We
for a detailed discussion of Complex Types.

Step 2: Declare Employee element

The next step is to define the Employee element. The Employee element
will be of type EmployeeBase, which will serve as the base element for the
collection that we will shortly declare.

<xsd:element name="Employee" type="EmployeeBase" />

Listing 5.56: Employee element derives from EmployeeBase and will be used
for substitution.

Step 3: Declare the Manager Element

Let us now declare the Manager element. The Manager type will derive
from base type EmployeeBase by extension. It inherits the name attribute
from the parent and adds two new attributes named Dept and ReportsTo.

<xsd:element name="Manager" substitutionGroup="Employee">
<xsd:compTlexType>
<xsd:compTlexContent>
<xsd:extension base="EmployeeBase'">
<xsd:attribute name="Dept" type="xsd:string" />
<xsd:attribute name="ReportsTo" type='"xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

Listing 5.57: Declaration of the Manager element.

116

5 — Understanding element declarations

or by restriction. This is explained in Chapter 11 — Complex

A new type can be derived from a complex type by extension
Type Derivation.

Step 4: Declare the Developer Element

Now let us look at the declaration of the Developer element. We will do it in
the same manner we did for the Manager element. We will derive the
Developer element from EmployeeBase by extension. It inherits the name
attribute from the parent and adds a new attribute named Project.

<xsd:element name="Developer" substitutionGroup="Employee">
<xsd:compTlexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase">
<xsd:attribute name="Project" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

Listing 5.58: Declaration of the Developer element.

Step 5: Declare the SalesPerson Element

Next, let us declare the SalesPerson element. Just as with the other
elements, it inherits the name attribute from the parent type and adds two
instance specific attributes named Area and ReportsTo.

<xsd:element name="SalesPerson" substitutionGroup="Employee">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase'">
<xsd:attribute name="Area" type="xsd:string" />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

Listing 5.59: Declaration of the SalesPerson element.

117

5 — Understanding element declarations

Step 6: Declare the root element

We have created all the building blocks needed for the employee
information schema. Now it is time to assemble them and build the
final declaration.

<xsd:element name="Employees'">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element ref="Employee"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Listing 5.60: Declaration of the root element "Employees."

Step 7: Congratulations! The schema is done.

We are done with the schema. Let us put everything together so that | can
show you the complete schema definition. Here is the final schema. | have
added comments to explain the flow.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- root element declaration -->
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence maxoccurs="unbounded">
<xsd:element ref="Employee"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>

<!-- The root element contains a sequence of "Employee"
elements.) o
Here is the definition of "Employee" element
-=>

<xsd:element name="Employee" type="EmployeeBase" />

<!-- The "Employee" element is of Type "EmployeeBase"
Here is the definition of EmployeeBase
-=>
<xsd:complexType name="EmployeeBase">)
<xsd:attribute name="Name" type="xsd:string"/>
</xsd:complexType>

<!-- Manager Element : derived from EmployeeBase -->
<xsd:element name="Manager" substitutionGroup="Employee">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase">
<xsd:attribute name="Dept" type="xsd:string" />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
</xsd:extension>

118

5 — Understanding element declarations

</xsd:complexContent>
</xsd:compTlexType>
</xsd:element>

<!-- Developer Element : derived from EmployeeBase -->
<xsd:element name="Developer" substitutionGroup="Employee">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase">
<xsd:attribute name="Project" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

<!l-- salesPerson Element : derived from EmployeeBase -->
<xsd:element name="SalesPerson" substitutionGroup="Employee">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase'">
<xsd:attribute name="Area" type="xsd:string" />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 5.61: Complete listing of the schema showing substitutionGroup.

Let us create a Schema Collection and see this in action:

CREATE XML SCHEMA COLLECTION
EmployeeCollectionSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence maxoccurs="unbounded">
<xsd:element ref="Employee"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Employee" type="EmployeeBase" />
<xsd:complexType name="EmployeeBase">
<xsd:attribute name="Name" type='xsd:string"/>
<xsd:element name="Manager" substitutionGroup="Employee">
<xsd:complexType>
<xsd:compTlexContent>
<xsd:extension base="EmployeeBase'">
<xsd:attribute name="Dept" type="xsd:string" />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:compTlexType>
</xsd:element>
<xsd:element name="Developer" substitutionGroup="Employee">
<xsd:complexType>
<xsd:compTlexContent>
<xsd:extension base="EmployeeBase'">

119

5 — Understanding element declarations

<xsd:attribute name="Project" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="SalesPerson" substitutionGroup="Employee">
<xsd:compTlexType>
<xsd:complexContent>
<xsd:extension base="EmployeeBase">
<xsd:attribute name="Area" type="xsd:string" />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>"

Listing 5.62: TSQL code to create a schema collection with
substitutionGroup.

Now let us validate our XML instance document against the schema
collection that we just created.

DECLARE @x XML (EmployeecCollectionSchema)

SET @x = '

<Employees>
<Manager Name="Jacob" Dept="IT" ReportsTo="CEO" />
<Developer Name="Richard" Project="BI Tools" />
<SalesPerson Name="David" Area="NY" ReportsTo="Jacob" />
<Developer Name="John" Project="BI Tools" />

</Employees>"

Listing 5.63: Validating the Employee information XML document against the
schema having substitutionGroup.

Run the above code and you will see that we have created a correct
schema that fulfills all the requirements we discussed. Note that each
element, Manager, Developer and SalesPerson, is validated based on
rules specific to each one.

This design is highly extensible. In the future we could easily add new
types derived from EmployeeBase and you will not need to modify the
schema other than adding the new type definition. However, | do feel that
the usage of substitutionGroup is a little more complex than it might
have been.

120

5 — Understanding element declarations

declarations. Only global element declarations can take a

Earlier in this chapter we discussed local and global element
@ substitutionGroup element.

Attribute: abstract

We have seen the power of Substitution Groups in the previous section.
Since Substitution Groups are very powerful and provide a great amount of
flexibility, there needs to be a way to control their usage. The usage of
Substitution Groups can be controlled by using abstract, block and
final attributes.

When an element is declared as abstract, it cannot be instantiated. This is
very close to the OOPS concept of abstract classes. An abstract class
usually serves as a base class and cannot be instantiated. It is the same
with XSD. When an element is declared as abstract, you cannot use it in
an element declaration.

Let us see an example.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION Examp1eSchema AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="FirstName" />
<xsd:attribute name="LastName"/>
</xsd:complexType>
</xsd:element>

<!-- Instaitiate the "Employee element" -->
<xsd:element name="Employees'">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Employee"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>'
GO

DECLARE @x XML (ExampleSchema)
SET @x = '
<EmpTloyees>

121

5 — Understanding element declarations

<Employee FirstName="Jacob" LastName="Sebastian"/>
</Employees>"'

| DROP XML SCHEMA COLLECTION ExampleSchema
GO

Listing 5.64: Schema showing a global element declaration.

The above example declares a global element named "Employee."” Another
global element "Employees" holds a reference to the Employee element.

Now let us try to make the Employee element abstract and see
what happens.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee" abstract="true">
<xsd:complexType>
<xsd:attribute name="FirstName" />
<xsd:attribute name="LastName"/>
</xsd:compTlexType>
</xsd:element>

<!-- Instaitiate the "Employee element" -->
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Employee"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)
SET @x = '
<Employees>
<Employee FirstName='"Jacob" LastName="Sebastian"/>
</Employees>"'

DROP XML SCHEMA COLLECTION ExampleSchema
GO

Listing 5.65: Abstract elements cannot be used in the XML instance.

122

5 — Understanding element declarations

The above code will produce the following error because the element
Employee is declared as abstract and cannot be used directly.

‘ XML validation: Element 'Employee' requires substitution, because
it was defined as abstract. Location:
/*:Employees[1]/*:Employee[1]

Only global element declarations can use the
abstract attribute.

Attribute: block

In the previous section we examined the abstract attribute which forces an
element substitution. Abstract elements cannot be used unless they are
substituted, and thus force an element substitution. The usage of block is
the opposite. It is used to control substitution. The block attribute can take
4 different vales, namely: substitution, extension, restriction and #all. Let us
examine each one of them.

Substitution

By setting the block attribute to substitution you can prevent an element
from being substituted. For example:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee" block="substitution">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<Xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.66: Blocking substitution of an element.

Since the Employee element is declared with block attribute set to
substitution, it cannot be substituted.

Restriction

| had mentioned earlier that a new type can be derived from a base type by
extension or by restriction. By setting block to restriction you could prevent
the element being inherited by restriction.

123

5 — Understanding element declarations

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee" block="restriction">
<xsd:complexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 5.67: Blocking derivation by restriction.

Extension

By setting the value of block to extension you can prevent the element/type
from being inherited by extension.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee" block="extension">
<xsd:complexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 5.68: Blocking derivation by extension.

#all

By setting the value of block attribute to #all you could restrict inheritance
as well as type substitution. When #all is specified it prevents type
substitution, derivation by extension, as well as derivation by restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Employee element -->
<xsd:element name="Employee" block="#all1">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.69: Blocking substitution as well as derivation.

124

5 — Understanding element declarations

blockDefault

If the block attribute is not specified, the schema processor will check the
value of the blockDefault attribute in the declaration of the schema
element. If this attribute is present, its value is used for all elements that do
not have a block attribute. If the blockDefault attribute is missing, no
restriction is applied on substitution.

The following example shows a schema declaration with blockDefault
value set to substitution.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
blockbefault="substitution">
<xsd:element name="Employee" final="">
<xsd:complexType>
<Xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.70: A schema declaration with "blockDefault” attribute.

| %? | Only global element declarations can use the block attribute.

Attribute: final

The final attribute limits the declaration of substitution groups in schemas.
The behavior of "final" attribute is close to that of "block, " except that final is
used to apply restrictions at the schema level and block is used to apply
restrictions at the instance level.

The validation of final attribute takes place when the schema collection is
generated, whereas the validation of block takes place when you actually
validate an XML instance with the schema collection.

The final attribute can take the following values: #all, restriction and
extension.

extension
When final attribute of an element is set to restriction you cannot declare a
substitution group with the restricted element as the head. Let us see an
example in order to understand this. Let us modify the schema we created

125

5 — Understanding element declarations

for demonstrating substitution groups and add a final attribute with value
extension.

éj <!—— The root element cohtains a seguence of "Employee™ elements.
Here is the definition of "Employee'™ element
- b
<xsd:element nawe="Employee™ type="EmployeeBase"|final="extension"f>I

= gl=— The "Employee" slemEht iz of Type "EmplogyeeBase™
Here is the definition of EmployeeBase
Foo——>
= <xsd:icomplexType nsme="EmployeseBase™:
<xad:attribute name="Name" type="xsd:string"/>
FoogfxadicomplexTypes

<!== Manager Element : derived from EwmployeeBase -->

<xsd:element name="Nanager™ substitutionGroup="Employee™>

{1}

|'Manager' cannot be a member of substitution group with head elerment 'Employee'.|
W DU I E AL UL ETIL

<wxsd:iextension base="Employeebase™>

<xsd:attribute name="Dept" type="xsd:string” />
<xsd:attribute name="ReportsTo" type="xsd:string"/>
o </xsd:extension>
F </ ®sd:complexContents>
- </ wadicomplexTypes
' </xsdielement>

Listing 5.71: The SSMS schema editor will show an error when you try to use
the "Employee" as a substitution group head.

If you still go ahead and try to create a schema collection, SQL Server will
generate an error.

Invalid element definition, element 'Manager' is not valid
derivation of element 'Employee'

restriction

When the final attribute is set to "restriction," the element cannot be used
as the head of a substitution group that derives by restriction.

The SSMS XSD editor will show a warning message when you try to use a
restricted element as the head of a substitution group. If you try to create a
Schema Collection with such a declaration, SQL Server will generate
an error.

#all

By setting final attribute to "#all" you can restrict the element from being
used as the head of a substitution group completely. The following example
shows the declaration of an element with final attribute set to #all. This
element cannot be used for substitution, by restriction, or by extension.

126

5 — Understanding element declarations

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee" final="#all">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.72: A declaration showing the final attribute with "#all."

The following schema is equivalent to the one given above. By specifying
restriction and extension together, we could generate the same restriction
effect as #all.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee" final="restriction extension">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.73: A combination of "restriction” and "extension" will produce the
same effect as "#all."

finalDefault

If the final attribute is not specified, the schema processor will look for a
finalDefault attribute in the schema element declaration. If the finalDefault
attribute is not present in the declaration of schema element, no restriction
will be applied on substitution.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
finalbefault="#all">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.74: A schema with "finalDefault” set to "#all."

The finalDefault attribute of the above schema declaration is set to "#all,”
and, hence, substitution of the Employee element is not permitted.

127

5 — Understanding element declarations

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:attribute name="FirstName"/>
<xsd:attribute name="LastName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 5.75: A schema declaration without "final" and "finalDefault”
attributes.

The above schema does not apply any restriction on substitution because
neither final nor finalDefault attributes are declared.

@ Only global element declarations can use the final attribute.

Attributes: minOccurs and maxOccurs

These two attributes control the occurrence of the elements. minOccurs
specifies the minimum number of times the element should appear in the
XML instance. maxQOccurs specifies the maximum number of times the
element can appear within its parent.

The default value of minOccurs and maxOccurs is 1. You can make an
element optional by setting minOccurs to 0.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<xsd:element name="Employee" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" />
<xsd:element name="MiddleName" minOccurs="0"/>
<xsd:element name="LastName"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)

128

5 — Understanding element declarations

SET @x = '

<Employee>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>

</Employee>"'

Listing 5.76: Example showing the declaration of an optional element.

The above example shows the declaration of an optional
element: MiddleName.

minOccurs and maxOccurs are applicable to local element
declarations only. We will have a detailed look into it when we
examine complex types in Chapter 10.

Attribute: ref

Local element declarations can refer to other elements declared globally in
the same schema. This is achieved by using the ref attribute in an element
declaration.

Referring to an element in this manner adds a certain level of reusability.
You can declare the element once, and then refer it multiple times at
different locations of the schema. This could avoid some duplication
of code.

Let us look at an example in order to understand this.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION Examp1eSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<!-- Employee element -->
<xsd:element name="EmployeeInfo" >
<xsd:complexType>
<xsd:attribute name="FirstName" />
<xsd:attribute name="LastName"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="Manager">
<xsd:complexType>
<xsd:sequence>

129

5 — Understanding element declarations

<xsd:element ref="EmployeeInfo"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)
SET @x = '
<Manager>
<EmployeeInfo FirstName="Jacob" LastName="Sebastian"/>
</Manager>"

Listing 5.77: Example showing the usage of "ref" attribute.

Attribute: form

The form attribute specifies whether the element needs to be qualified with
a namespace prefix. The value of form may be "qualified” or "unqualified."”

When the value of form attribute is set to "qualified,” the element needs to
be qualified with a namespace prefix at all times. If the value is set to
"unqualified,” the element should not be qualified by a namespace prefix.

Let us look at an example:

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.jacob.com">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" form="qualified"/>
<xsd:element name="LastName" form="unqualified"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)
SET @x = '

130

5 — Understanding element declarations

<jac:Employee xmlns:jac="http://www.jacob.com">
<jac:FirstName>Jacob</jac:FirstName>
<LastName>Sebastian</LastName>
</jac:Employee>"'

Listing 5.78: An example showing the usage of the "form" attribute.

Note that the form attribute of FirstName is declared as qualified and,
therefore, the XML instance should take a namespace prefix. The next
attribute, LastName, is declared with form attribute set to unqualified and
therefore cannot take a namespace prefix.

If the form attribute is not present, the schema processor will look for the
elementFormDefault attribute in the declaration of the schema element.
The following example shows the declaration of a schema with
elementFormDefault attribute.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.jacob.com"
elementFormbefault="qualified">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" />
<xsd:element name="LastName" form="unqualified"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>"'
GO

DECLARE @x XML (ExampleSchema)

SET @x = '

<jac:Employee xmlns:jac="http://www.jacob.com">
<jac:FirstName>Jacob</jac:FirstName>
<LastName>Sebastian</LastName>

</jac:Employee>'

Listing 5.79: An example showing "elementFormDefault" attribute.

Note that we have not specified the form attribute for FirstName element.
However, the form of FirstName is considered as "qualified” because the
elementFormDefault attribute is set with "qualified.”

131

5 — Understanding element declarations

Chapter Summary

This chapter provided a detailed overview of element declarations. When
an element is declared as a direct child of the schema element, it is a
global element declaration. When an element is declared within other
schema components (Complex Types, Element Groups, etc.), it is a local
element declaration.

An element declaration takes several parameters, out of which the only
required parameter is the name of the element. There are several other
parameters (attributes) that are optional.

The type attribute is used to associate an element declaration with a given
data type. When an element declaration is associated with a type, SQL
Server will perform a data type validation on the value stored by the
element. If the value is not valid for the given data type, SQL Server will
generate an error.

The default attribute is used to assign a predefined value to an element
declaration. The schema processor will assign this value to the element if
the element is empty. The fixed attribute works in a similar manner. If the
element contains a value, it should be the same value declared with the
fixed attribute. If the element does not have a value, the schema processor
will assign the value declared with fixed attribute to the element.

The nillable attribute is helpful when we need to distinguish between an
element that is blank and an element that is empty. It is also helpful in
cases where we need to perform a certain validation only if a value is
present in the XML instance. When an element is declared as "nillable" and
the element contains the attribute"xsi:nil" in the XML instance, the XSD
processor will not assign a default value to the element even if it is empty.

The substitutionGroup attribute is used to declare elements capable of
serving as variable content containers. Abstract is used to specify that the
element cannot be instantiated directly. To instantiate such an element, a
substitution element needs to be created. The block and final attributes are
used to control substitution of the element. Final restricts substitution at
schema level and block restricts it at instance level.

minOccurs and maxOccurs are used to control the occurrence of the
elements. The default value of both attributes is 1. By setting the value of
minQOccurs to 0, you make the element optional.

ref is used to insert a globally declared element at a specific location within
a schema (usually under a Complex Type or Element Group). The form
132

5 — Understanding element declarations

attribute specifies where the element should be fully qualified or not in the
instance document.

133

CHAPTER 6

UNDERSTANDING ATTRIBUTE
DECLARATIONS

Elements and attributes are the basic building blocks of XML. XSD, being
an XML document, is composed of elements and attributes at the most
granular level. We have discussed element declarations in Chapter 5. This
chapter will focus on attribute declarations and will examine the following.

Elements vs. Attributes

Basic attribute declarations

Global and local attribute declarations
Attributes of an Attribute declaration
Attribute groups

Elements vs. Attributes

When designing the structure of an XML document, one question returns
time and time again. Should this piece of data go in an element or in an
attribute? Sometimes you don't have a choice; there are times when only
an element will do.

On many occasions, your piece of data could be stored equally well in an
attribute as in an element with no loss of information. This is where you
have to make the decision — element or attribute? The good news is that at
the end of day, it doesn't really matter which you choose. They both do the
same job. Even the experts are divided on this question — to such a degree
that in fact it ends up being largely a matter of personal taste. For this
reason we'll not be entering into this debate in this book, as ultimately —
while the topic may be interesting — it won't help you write schemas that
work any better.

In this section we're going to focus on those occasions where you
don't have a choice. While there are no occasions when you have to use
an attribute over an element, there are occasions when only an element
will do.

The following restrictions on attributes compared to elements may compel
you to use an element.
134

6 — Understanding attribute declarations

° Attributes are parasites! They can only exist within an element; thus,
any top level declaration must be an element.

. Attributes can only store a value, while elements can also store child
elements and attributes.

. An element can appear more than once within a parent node, but an
attribute can appear only once. Thus, an attribute always has a one
to (zero or) one relationship with the element it describes.

. The order of attributes is not significant and there is no way to control
the order of attributes in XSD. If order is important to you then you
have to use elements.

If an attribute is still an option, then you should be aware of some
differences in behavior between elements and attributes.

Both element declarations and attribute declarations can take a default
value. However, the processing of the default value is slightly different. The
default value is assigned to the attribute only if the attribute is missing (not
present). If the attribute is present the default value is not assigned, even if
the value of the attribute is an empty string.

On the other hand, the default value of elements is assigned only when the
element is present and is empty. If the element is missing, the default value
is not assigned.

Also note that elements are mandatory by default while attributes are
optional by default.

As | mentioned previously, many times you can store a piece of information
in the form of an attribute or as an element. Let us look at an example:

<Employees>)
<Emplyee FirstName="Jacob" LastName="Sebastian"/>
</Employees>

Listing 6.1: Storing employee information in attributes.

<EmpTloyees>
<Emplyee>
<FirstName>Jacob</FirstName>
<LastName>Sebastian</LastName>
</Emplyee>
</Employees>

Listing 6.2: Storing employee information in elements.

The first example stores FirstName and LastName as attributes and the
second example stores them as elements.
135

6 — Understanding attribute declarations

A Basic Attribute Declaration

Let us start with a basic attribute declaration. The simplest form of an
attribute declaration is given below:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
\ <xsd:attribute name="status" />
</xsd:schema>

Listing 6.3: A basic attribute declaration.

Though this is a valid schema, an attribute declaration really does not
make sense without an element. Hence, a basic attribute declaration that
makes some sense should be something like the following:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="status" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.4: A complexType with an attribute declaration.

Employee element is declared as Complex Type. Complex

I‘a Only a Complex Type can have attributes; hence, the
Type is explained in Chapter 10.

An instance document that validates with the above schema is given below.

<Employee status="Active"/>

Listing 6.5: An XML instance showing an attribute.

136

6 — Understanding attribute declarations

element can take a number of different attributes that control
the behavior of the attribute being declared. | will call them
"attributes of an attribute declaration” throughout this book.

Iﬁ An attribute is declared with <xsd:attribute> element. This

The only mandatory attribute of an attribute declaration is "name.” There
are several other attributes that an attribute declaration can take. We will
examine those attributes a little later in this chapter.

Global and Local attribute
declarations

When an attribute is declared right under the "<xsd:schema>" element, it is
called global attribute declaration. When it is declared within a Complex
Type, it is called Local attribute declaration. Let us see an example of a
global attribute declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="status" />
<xsd:element name="Employee">
<xsd:complexType>
<Xsd:attribute ref="status"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.4: A global attribute declaration.

When an attribute is declared globally, it can be referenced within other
Complex Types declared in the same schema. The "ref” attribute is used to
insert a globally defined attribute to a given location.

Here is a different version of the above schema, using a /ocal
attribute declaration.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:compTlexType>
<xsd:attribute name="status" />
</xsd:complexType>

137

6 — Understanding attribute declarations

</xsd:element>
</xsd:schema>

Listing 6.5: A local attribute declaration.

We just saw two different ways of declaring an attribute. The first example
used a global attribute declaration and the second example used a local
attribute declaration. They both describe an XML instance with the same
structure. Here is an XML instance that validates with both the schemas.

<Employee status="Active'"/>

Listing 6.6

Let us create a schema collection and see this in action.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="status" />
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute ref="status"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

-- validate an XML instance
DECLARE @x XML (ExampleSchema))
SELECT @x = '<Employee status="Active"/>'

Listing 6.7: A schema that uses a global attribute declaration.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create new schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS

190

6 — Understanding attribute declarations

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:attribute name="status" />
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate an XML instance
DECLARE @x XML (ExampleSchema))
SELECT @x = '<Employee status="Active"/>'

Listing 6.8: A schema showing a local attribute declaration.

Global attribute declarations are useful when an attribute is declared with
several validations. By declaring the attribute global, we could avoid
rewriting the rules every time we need to declare the same attribute.

For example, the following two schemas describe the same XML instance.
The second one is more manageable.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employees'">
<xsd:complexType>
<xsd:all>
<xsd:element name="Manager'">
<xsd:complexType>
<xsd:attribute name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="10"/>
<xsd:maxLength value="12"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="Supervisor">
<xsd:complexType>
<xsd:attribute name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="10"/>
<xsd:maxLength value="12"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType> </xsd:element>
</xsd:all>

139

6 — Understanding attribute declarations

</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.9: An example that uses a local attribute declaration and resulting
in duplication of code.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="10"/>
<xsd:maxLength value="12"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:element name="Employees'">
<xsd:complexType>
<xsd:all>
<xsd:element name="Manager'">
<xsd:compTlexType>
<xsd:attribute ref="Phone"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Supervisor'">
<xsd:complexType>
<xsd:attribute ref="Phone"/>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.10: A schema that uses a global attribute declaration and reuses
the code.

Both examples above describe the following XML instance.

<EmpTloyees>
<Manager Phone="9999999999" />
\ <Supervisor Phone="9999999999"/>
</Employees>

Listing 6.11: Employee information XML document.

The first example shows two local attribute declarations that define an

attribute named "Phone.” Each attribute declaration is local and is not

visible to the other. Hence, we had to write the validation rules twice.

The second example shows a global attribute declaration. The Manager

and Supervisor elements refer to the attribute declared globally. The

140

6 — Understanding attribute declarations

validation rules are defined only once (in the global declaration). Thus,
global attribute declarations provide some sort of re-usability.

Attributes of Attribute Declaration

We saw attribute declarations earlier in this chapter. An attribute is declared
using <xsd:attribute /> element. This declaration can take a number of
attributes that control the way the attribute is validated by the schema
processor. Let us examine each of these attributes in detail.

Just as with element declarations, the only mandatory attribute that an
attribute declaration should take is the "name"” attribute.

A global attribute declaration can take the following attributes:

name
id

type
default
fixed

A local attribute declaration can take all the attributes of global attribute
declarations mentioned above (name, id, type, default and fixed) plus the
following three attributes:

) ref
. use
. form

Let us look at each of these attributes in detail.

Attribute: name

This attribute refers to the name of the attribute as it should appear in the
XML instance. This is a mandatory attribute. No attributes can be declared
without a name. The first character of the name should be a letter or
underscore. Other characters (except for the first character) can contain
any combination of letters, digits, underscores, hyphens and periods.

The name of an attribute should be unique in its scope. It means that there

can be only one global attribute with a given name. However, two different
complexTypes can have attributes with the same name.

141

6 — Understanding attribute declarations

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="name" />
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:attribute name="name"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Department">
<xsd:complexType>
<xsd:attribute name="name"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.12: Example of global and local attributes having the same name.

The above schema has three attribute declarations with the same name.
However, each of them appears in a different scope and each is valid. The
first is a global declaration and does not conflict with any other attributes
declared globally. The other two declarations are local and they are unique
within each complexType.

It may be a good idea to avoid using hyphens and periods within the name
of an attribute. Though the usage of those characters is permitted, it might
confuse certain XML parsers.

Attribute: id

"id" is an optional attribute that an attribute declaration can take. The
presence or absence of this attribute does not affect the XML instance in
any manner. "id" is used by the schema processor to uniquely identify the
XSD components within a given schema.

The same naming rules as the "name" attribute are applicable to "id," too.
To some people the name "id" may give a feeling that it can take a numeric
value. However, that is not true. The following is invalid.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
\ <xsd:complexType>
<xsd:attribute name="EmployeeName" id="101"/>
‘ </xsd:complexType>

142

6 — Understanding attribute declarations

</xsd:element>
</xsd:schema>

Listing 6.13: The value of "id" cannot start with a digit.

The value of "id" cannot start with a digit. It should start with a letter or an
underscore. Just like the "name" attribute it can contain digits, periods and
hyphens (except for the first character). The following is valid.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="EmployeeName" id="_101"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.14: The value of "id" can start with an underscore or letter and can
contain digits, hyphens, periods and letters.

The value of the "id" attribute should be unique within the schema. Every
"id" declared in a schema has global scope and the following is invalid.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="EmployeeName" id="EmpName" />
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="EmployeeName" id="EmpName" />
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.15: Each "id" declared in a schema has global scope; hence, there
cannot be two "id" with same value.

Two elements within a schema cannot have the same id. The following is
invalid, too.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="EmployeeName" />
<xsd:element name="Employee" 7id="EmpName">
<xsd:complexType>
<xsd:attribute name="EmployeeName" id="EmpName" />
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.16: The above schema is invalid because the "EmpName"
is duplicated.

143

6 — Understanding attribute declarations

The uniqueness of the "id" attribute is to be ensured not only within the
attribute elements, but also within all other XSD components declared in
the schema.

Attribute: type

"type" associates a data type with an attribute and thus facilitates data type
specific validation on the value of the attribute. The "type” of an attribute
can be declared as one of the built-in data types or a simpleType defined
globally in the schema document.

| % ? | Simple Types are explained in Chapter 8.

The "type" attribute behaves the same way it does with element
declarations. A simple example is the Age element we saw when we
discussed element declarations. In the absence of a type declaration, the
Age attribute of an Employee might contain values which may not make
sense at all. For example:

<Employee Age="twnty"/>

Listing 6.17

By associating the Age attribute with integer data type, we could make sure
that only valid integers are accepted. Going a step further, we could even
use xsd.positivelnteger to make sure that only values greater than zero are
accepted.

<Employee Age="20"/>

Listing 6.18

Here is the schema that declares the above validation.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:compTlexType>
<xsd:attribute name="Age" type="xsd:positiveInteger"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.19: positivelnteger restricts negative values and zero.
144

6 — Understanding attribute declarations

XSD native data types are discussed in Chapter 7. XSD
Derived data types are discussed in Chapter 9.

Attribute: default

The default attribute assigns a default value to an attribute declaration. The
attribute is missing in the instance document; the default value will be
assigned to the attribute.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="Name" type="xsd:string"/>
<xsd:attribute name="Gender" type="xsd:string"
default="male" />
</xsd:complexType>
</xsd:element>
</xsd:schema>"'

Listing 6.20: A schema using "default” attribute.

DECLARE @e XML (ExampleSchema)

-- if_the attribute exists and is empty, the default
-- value is not assigned

SET @e = '<Employee Name="Jacob" Gender=""/>'"
SELECT @e
<Employee Name="Jacob" Gender="" />

-- The default value will be assigned only
-- If the attribute is missing

SET @e = '<Employee Name="Jacob"/>'

SELECT @e

<Employee Name="Jacob" Gender="Male" />

Listing 6.21: the default value of an attribute is assigned only if the attribute
is missing.

145

6 — Understanding attribute declarations

The default value is assigned to the attribute only if the attribute is missing
(not present). If the attribute is present the default value is not assigned,
even if the value of the attribute is an empty string.

This behavior is totally different from that of elements. The default value of
elements is assigned only when the element is present and is empty. If the
element is missing, the default value is not assigned.

Attribute: fixed

The behavior of the "fixed" attribute in an attribute declaration is similar to
the behavior of the "fixed" attribute in an element declaration. It prevents
the attribute from taking any value other than the pre-defined one. If the
attribute is not present, the value declared with fixed attribute will be used.
If the attribute is present, it can store only the value declared with the
fixed attribute.

Let us look at an example:

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Document'>
<xsd:compTlexType>
<xsd:attribute name="Tang" type="xsd:string" fixed="EN-US"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

Listing 6.22: A schema showing the "fixed" attribute.

DECLARE @x XML (ExampleSchema)

-- If the attribute is present, it should store

-- the same value declared with the "fixed" attribute
SET @x = '<Document lang="EN-US" />'

;ELECT @x

<Document lang="EN-US" />

-- If the attribut is missing, the "fixed" value
-- will be assigned to it.

146

6 — Understanding attribute declarations

SET @x = '<Document />'
SELECT @x
/7‘:

<Document lang="EN-US" />

Listing 6.23: If the attribute is missing, it is created and assigned with the
value declared with the "fixed" attribute.

The first example assigns the value "EN-US" to the "lang” attribute. The
second example does not have the attribute and the schema processor
adds the attribute with value "EN-US."

When an attribute declaration has a "fixed" attribute, the attribute cannot
take any value other than the one declared in the schema. The following is
an invalid XML instance because the value "FR"is not accepted (Only "EN-
US" will be accepted).

DECLARE @x XML (ExampleSchema)
SET @x = '<Document lang="FR" />'

Listing 6.24: This XML instance is invalid because the "lang" attribute is
declared with a "fixed" value, "EN-US."

Attribute: ref

Earlier in this chapter we have discussed global attribute declaration and
local attribute declaration. A globally declared attribute can be inserted into
a complex type by using the "ref" attribute. This adds a reference to the
globally declared attribute

Let us look at an example.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attribute name="status" />
<xsd:element name="Employee'">
<xsd:complexType>
<xsd:attribute ref="status"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.25: A schema showing the "ref" attribute.

This is particularly useful if the attribute needs complex validations and
needs to be used in more than one complex type. In such a case you could
declare the attribute globally, with all the validations, and add a reference to

147

6 — Understanding attribute declarations

it in one or more complex types. This allows a certain level of reusability of
code. For example:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone attribute -->
<xsd:attribute name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{10}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence>
<!-- Manager -->
<xsd:element name="Manager">
<xsd:complexType>
<xsd:attribute ref="Phone"/>
</xsd:complexType>
</xsd:element>
<!-- Developer -->
<xsd:element name="Developer">
<xsd:complexType>
<xsd:attribute ref="Phone"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.26: An example showing a global attribute declaration and reusing
the global declaration in two complex types.

Attribute: use

This attribute specifies whether the attribute is optional or mandatory. You
could manage this by setting the value of this attribute to optional or
required. The default value is "use” is optional; hence, all attributes are
optional by default. It can take a third value, prohibited to restrict the
attribute from being included in an XML instance.

The following example sets an attribute to be mandatory.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

148

6 — Understanding attribute declarations

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:attribute name="status" use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

Listing 6.28: An example showing a mandatory attribute.

The schema processor will generate an error if the XML instance does not
contain the "status" attribute. The following is a correct XML instance that
validates with the above schema.

DECLARE @x XML(ExampleSchema)
SET @x = '<Employee status="Active" />'

Listing 6.29: "status” is a mandatory attribute and the XML instance will be
accepted only if this attribute is present.

The schema processor will raise an error if the “status” attribute is missing.

DECLARE @x XML (ExampleSchema)
SET @x = '<Employee />'

Listing 6.30: This XML instance is invalid because the "status” attribute is
missing.

You can make the attribute optional by declaring "use"” with "optional.” Here
is an example:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:attribute name="status" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.31: An example showing an optional attribute.

The default value of “use” is "optional."” Hence, the following schema is also
equivalent to the one given above.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee">

149

6 — Understanding attribute declarations

<xsd:complexType>
<xsd:attribute name="status"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.31.a: The default value of "use” is optional and the "status"
attribute in this schema is optional.

Note that the "use” attribute is not declared in this version of the schema. If
the "use" attribute is not declared, "optional” is assumed.

We have seen the usage of optional and required. The use attribute can
take one more value: prohibited. "prohibited" is used to restrict the use of
an attribute in a derived type.

Sometimes it can happen that you want to derive a new type from a base
type, but want to restrict one or more attributes. In such cases, you can
declare the attribute as prohibited so that the XML instance that validates
against the derived type cannot have that attribute. We will see this when
we examine Complex Type derivation in Chapter 11.

Attribute: form

The form attribute specifies whether the attribute needs to be qualified by a
namespace prefix or not, in the XML instance. This is very similar to the
form attribute of element declarations. The form attribute can take two
values: qualified and unqualified. When the value is set to qualified, the
attribute should be qualified by a namespace prefix. When it is set to
unqualified, the attribute should not be qualified by a namespace prefix.

Let us see an example in order to understand this.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION Examp1eSchema AS
'<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.jacob.com">
<xsd:element name="Employees'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee" >
<xsd:complexType>

150

6 — Understanding attribute declarations

<xsd:attribute name="FirstName" form="qualified"/>
<xsd:attribute name="LastName" form="unqualified"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)
SET @x = '
<jac:Employees xmlns:jac="http://www.jacob.com">
<Employee jac:FirstName="Jacob" LastName="Sebastian"/>
</jac:Employees>'

Listing 6.32: An example showing "qualified"” and "unqualified” forms.

Note that the attribute "FirstName" is declared as qualified and should
always take a namespace prefix. "LastName" is declared as unqualified
and cannot take a namespace prefix.

If the form attribute is not present, the attributeFormDefault attribute of the
schema element declaration will be used as the default value.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.jacob.com"
attributeFormbefault="qualified">
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee'">
<xsd:complexType>
<xsd:attribute name="FirstName" />
<xsd:attribute name="LastName" form="unqualified"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)
SET @x = '

151

6 — Understanding attribute declarations

<jac:Employees xmlns:jac="http://www.jacob.com">)
_ <Employee jac:FirstName="Jacob" LastName="Sebastian"/>
</jac:Employees>'

Listing 6.33: An example showing the usage of "attributeFormDefault"
attribute.

In the above example the attributeFormDefault attribute of the schema
element is set to "qualified" and, accordingly, all the attributes without form
will take "qualified" as their form. If neither form nor attributeFormDefault is
present, the value will default to unqualified.

Attribute Groups

Attribute Groups provide a convenient means to reuse attribute
declarations in multiple complex types. At the beginning of this chapter we
covered global attribute declarations and found that they provide a certain
extent of reusability. Attribute Groups provide a better level of reusability by
grouping one or more attribute declarations into a named group.

Let us look at an example that would explain this well. Here is an XML
instance which stores some information about employees of a Technology
Company.

<Employees>
| <Manager name="Jacob" department="IT"/>
<TechLead name="Bob" department="sw"/>

‘ </EmpTloyees>

Listing 6.34: Employee information XML document.

Let us write a simple schema to describe this XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- peclaration of root element "Employees" -->
<xsd:element name="Employees">
<xsd:compTlexType>
<xsd:sequence>
<!-- Declaration of "Manager" element -->
<xsd:element name="Manager">
<xsd:complexType>
<xsd:attribute name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="department">

104

6 — Understanding attribute declarations

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!l-- peclaration of "TechLead" element -->
<xsd:element name="TechLead">
<xsd:complexType>
<xsd:attribute name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="department">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="2"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.35: A schema that describes the employee information
XML document.

Note that the declaration of name and department attributes is repeated
under Manager and TechLead elements. By using an attribute group, you
can avoid this repetition of code. An Attribute Group can simplify this code
further, as given below.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:attributeGroup name="EmpAttributes">
<!-- peclaration of attribute "name" -->
<xsd:attribute name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<!-- peclaration of attribute "department" -->
<xsd:attribute name="department">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

153

6 — Understanding attribute declarations

</xsd:attributeGroup>
<!-- Dpeclaration of root element "Employees" -->
<xsd:element name="Employees">
<xsd:compTlexType>
<xsd:sequence>
<!-- Declaration of "Manager" element -->
<xsd:element name="Manager'">
<xsd:compTlexType>
<xsd:attributeGroup ref="EmpAttributes"/>
</xsd:complexType>
</xsd:element>
<!-- Declaration of "department" element -->
<xsd:element name="TechLead">
<xsd:complexType>
<xsd:attributeGroup ref="EmpAttributes"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.36: A schema that shows the usage of an attribute group.

Attribute groups can contain references to other attribute groups, as given
in the below example.

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'AttributeTest'
) BEGIN
DROP XML SCHEMA COLLECTION AttributeTest
END

GO
CREATE XML SCHEMA COLLECTION AttributeTest AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Attributes of employee -->
<xsd:attributeGroup name="EmpAttributes">
<xsd:attribute name="name"/>
<xsd:attribute name="department"/>
</xsd:attributeGroup>
<!-- Attributes of Tech Lead -->
<xsd:attributeGroup name="TechLeadAttributes">
<xsd:attributeGroup ref="EmpAttributes"/>
<xsd:attribute name="email" />
</xsd:attributeGroup>
<!-- Attributes of Manager -->
<xsd:attributeGroup name="ManagerAttributes">
<xsd:attributeGroup ref="TechLeadAttributes"/>
<xsd:attribute name="phone"/>
</xsd:attributeGroup>
<!-- peclaration of root element "Employees" -->
<xsd:element name="Employees'">
<xsd:complexType>
<xsd:sequence>
<!-- DpDeclaration of "Manager" element -->
<xsd:element name="Manager'">
<xsd:complexType>

154

6 — Understanding attribute declarations

<xsd:attributeGroup ref="ManagerAttributes"/>
</xsd:complexType>
</xsd:element>
<!-- Declaration of "department" element -->
<xsd:element name="TechLead">
<xsd:complexType>
<xsd:attributeGroup ref="TechLeadAttributes"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

Listing 6.37: A schema that shows attribute groups that refers to other
attribute groups.

You could see a chain of attribute group hierarchies in this example.
TechLeadAttributes inherits from EmpAttributes and adds an "email"”
attribute to it. ManagerAttributes inherits from TechLeadAfttributes and adds
a "phone" attribute to it. Here is an XML instance which validates with
this schema.

DECLARE @x XML (AttributeTest)
SET @x =
'<Employees>
<Manager name="Jacob" department="IT" email="a@b.com"
phone="222-222-2222"/>
<TechLead name="Bob" department="sw" email="a@b.com" />
</Employees>'

Listing 6.38

LAB1: Write schema for the Order
Processing Application -
The Root element

In Chapter 3 we discussed the order processing application of North Pole
Corporation. We have seen the structure of the XML document that the
application expects and saw what the validation rules required. In Chapter
5 we learned element declarations and saw attribute declarations in this
chapter. We are armed with enough knowledge to write the XSD schema
for the root element of the order information XML document.

This is how the root element should look.
155

6 — Understanding attribute declarations

<orderinfo AgencyCode="s008">
<order />
<order />
<order />

</0orderInfo>

Listing 6.39: Structure of the Order Information Root element.

The schema that we write for the root element should implement the
following rules.

. The name of the root element should be Orderinfo.

. There may be multiple Order elements under the root element. Each
Order element will hold the data of a single order. If the Orderinfo has
the data of three orders, there should be three order elements under
the Orderinfo element. Orderinfo element should contain at least one
Order element and there is no maximum limit.

. Orderinfo element should have an attribute named AgencyCode.
The AgencyCode attribute is mandatory and should be exactly four
characters long.

. The first character of the AgencyCode should be an alpha and the
other three should be digits.

Let us translate these rules into XSD code. Let us take the first rule and
see how we could translate it into XSD.

Rule 1

The name of the root element should be "Orderinfo"

Let us see how the first rule can be translated to an XSD declaration. Here
is the declaration of the first rule that defines the root element.

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo"/>
</xsd:schema>

Listing 6.40: Declaration of the "Orderinfo” element.

In Chapter 2 we have learned to create basic schema declarations. We
discussed element declarations in Chapter 5. So the above schema must
look very familiar to you, as it includes only the stuff we have learned
so far.

156

6 — Understanding attribute declarations

Let us create an XML Schema Collection with the above schema definition
and see the schema validation in action.

CREATE XML SCHEMA COLLECTION Labl AS '

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
| <xsd:element name="orderInfo"/>
</xsd:schema>'
GO

Listing 6.41: Schema collection for the root element.

Let us now validate an XML instance with this schema

-- test with an XML variable
DECLARE @x1 XML(Lab1l)
DECLARE @x2 XML(Labl)

-- an empty element
SET @x1 = 'KOrderInfo></0rderInfos’
SET @x2 = '<OrderInfo />'

SELECT @x1 AS x1, @x2 AS x2

/:‘:

output:

x1 x2

§9rder1nf0 /> <orderInfo />

Listing 6.42: Validating an XML instance.

Look a second at the above example. Both @x1 and @x2 store an empty
element. SQL Server stores an empty element as "<elementname />" even
if you provided the value as "<elementname></elementname>."

Since both XML variables are bound to the schema collection Lab7, SQL
Server will validate the XML values being assigned to them. SQL Server
will accept the value only if the element name is "Orderinfo.” The
"OrderInfo” element is not supposed to store any value; instead, it is meant
to hold the child elements containing order information. But the current
version of the schema allows a text value in the "Orderinfo” element, as
shown in the example below.

-- declare a variable
DECLARE @x1 XML (Labl)

| -- assign a text value
SET @x1 = '<OrderInfo>some text</OrderInfo>'

157

6 — Understanding attribute declarations

-- read the value
SELECT @x1 AsS 'x1'

/7‘:
output:

<Orderinfo>some text</OrderInfo>

Listing 6.43: Storing a text value to "Orderinfo” element.

This is an undesired behavior and will be restricted when the other rules
are added to the schema definition.

We validated our schema collection with XML variables. Let us now
perform the same validation against an XML column.

-- test with an XML column_
-- create a memory table with an XML column
DECLARE @t TABLE (Data XML(Labl))

-- 1insert some data

INSERT INTO @t(DPata) SELECT '<OrderInfo></OrderInfo>'

INSERT INTO @t(Data) SELECT '<OrderInfo />'

INSERT INTO @t(pPata) SELECT '<OrderInfo>Some text</OrderInfo>'

-- read values from the table
SELECT * FROM @t

/7‘:
output:

<Orderinfo />
<OrderInfo />
<Orderinfo>Some text</OrderInfo>

Listing 6.44: Performing validations against an XML column.

You could see that the results are identical to what we have seen with XML
variable.

158

6 — Understanding attribute declarations

Rule 2:

There may be multiple Order elements under the root element.
Each Order element will hold the data of a single order.

If the Orderinfo has the data of three orders, there should be
three Order elements under the Orderinfo element.

Orderinfo element should contain at least one Order element and
there is no maximum limit.

This rule describes the children of "Orderinfo.” 1t has only one child
element named "Order.” There should be at least one "Order" element
under "Orderinfo” and there is no maximum limit. Let us enhance the
schema to include these rules.

| mentioned earlier that only a Complex Type can have child elements. We
have not seen complex types in detail. Refer to Chapter 10 for a detailed
discussion on Complex Types.

Before we could add a child element to "Orderinfo,"” we should mark it as a
Complex Type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.45: An element having Complex Type declaration.

All the child elements of a Complex Type should appear between the
complexType element. As | mentioned earlier, the order of elements is
significant in XML. So before we declare the child elements, we need to
decide the order of child elements. If we need a specific order, the child
element declarations should appear within a sequence block. If we don't
need any specific order, we could use an all block.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:all>
</xsd:all>
</xsd:complexType>

109

6 — Understanding attribute declarations

</xsd:element>
</xsd:schema>

Listing 6.46: Using order indicator "all.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:compTlexType>
<xsd:sequence>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.47: Using order indicator "sequence.”

There is only one child element under "Orderinfo" and it does not make a
difference whether we use "all” or "sequence.” However, we need to use
sequence for this example because we need to allow unlimited number of
Order elements. This works only with sequence indicator.

After the sequence block is declared, we could add the declaration of the
Order element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo'">
<xsd:compTlexType>
<xsd: sequence>
<xsd:element name="oOrder" />
</xsd: sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.48: Declaration of "Order” element.

The next step is to control the occurrence of the Order element. This can
be controlled by using the "minOccurs” and "maxOccurs” attributes.

The default value of "minOccurs” is 1; therefore, all elements should
appear at least once. So the following definition is equivalent to the
example given above.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Order"
minoccurs="1" />
</xsd:sequence>
</xsd:compTlexType>

100

6 — Understanding attribute declarations

</xsd:element>
</xsd:schema>

Listing 6.49: Using "minOccurs" to control occurrence.

Though both usages are equivalent, | would prefer to use the second
approach where we explicitly specify the occurrence for the sake of clarity.

Occurrence indicator "maxOccurs" is used to control the maximum
occurrence of an element. By setting it to "unbounded” we could allow
unlimited number of occurrences of an element.

"unbounded” can be used only when the order indicator is
"sequence." It cannot be used with "all.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="order"
minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.50: using "maxOccurs” to control occurrence.

Let us create a Schema Collection with enhanced version of the schema
and test it against an XML instance.

-- DROP the previous SCHEMA COLLECTION

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'Labl'

) BEGIN
DROP XML SCHEMA COLLECTION Labl

END

GO

-- CREATE the SCHEMA COLLECTION with the updated
-- definition.
CREATE XML SCHEMA COLLECTION Labl AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Order"
minoccurs="1"
maxoccurs="unbounded" />

161

6 — Understanding attribute declarations

</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>'
GO

Listing 6.51: Recreating the Schema Collection with new definition.

As we have discussed in the previous chapters, there is no way to modify a
Schema Collection. If we want to alter the schema definition, we need to
drop the schema collection and create it again. This will be a pain if there
are columns bound to the Schema Collection that we want to modify. If a
Schema Collection is bound to a column, it cannot be dropped unless all
the references are removed.

Let us try to see if the XML instance that validated with the previous
version of the schema still gets validated or not.

DECLARE @x XML (Labl)

SET @x =
'<orderInfo>
</orderInfo>"'

Listing 6.52: This XML instance is invalid because it does not have an
"Order" element, which is declared as mandatory.

If you run the above code, SQL Server will generate an error because there
is no "Order" element present in the XML instance. Per the schema, there
should be at least one Order element in the XML instance and, accordingly,
this value is invalid.

Both the examples given below are valid because the Schema Collection
accepts any number of "Order"” elements.

DECLARE @x XML (Labl)

SET @x =
| '<orderinfo>
<Oorder />
</0orderInfo>"

Listing 6.53: Orderinfo with a single "Order” element.

DECLARE @x XML (Labl)

SET @x =
'<orderInfo>
<order />

162

6 — Understanding attribute declarations

<Order />
<Oorder />
</orderinfo>'

Listing 6.54: "Orderinfo" with three "Order" elements.

Rule 3

Orderinfo element should have an attribute named "AgencyCode."

The third rule adds an attribute to the "Orderinfo” element. We have
learned attribute declaration earlier in this chapter. Let us add an attribute
declaration for AgencyCode.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="order"
minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.55: Declaration of "AgencyCode" attribute.

Note that the attribute declaration should occur inside the complexType
declaration. If the complexType contains an order indicator (all, sequence,
or choice) the attribute declaration should appear after the order indicator.
The following Schema is invalid because the attribute declaration occurs
before the order indicator (sequence) element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo'">
<xsd:complexType>
<xsd:attribute name="AgencyCode" />
<xsd:sequence>
<xsd:element name="Order"
minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

163

6 — Understanding attribute declarations

</xsd:element>
</xsd:schema>

Listing 6.56: Attributes should be declared after order indicators.

Rule 4

The "AgencyCode" attribute is mandatory and should be exactly
four characters long.

The previous rule added a declaration for the AgencyCode attribute. Now
we need to enhance the attribute declaration with two validations. The first
part of the rule is to make the attribute mandatory and the next part is to
validate the length of the attribute value.

By default an attribute is optional. We can make an attribute mandatory by
using the "use” attribute. To make an attribute optional, the "use” attribute
should be set to "optional” and to make it mandatory "use" should be set to
“required.” The default value of "use" is "optional" and consequently the
following two Schema definitions are equivalent.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Order"
minoccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.57: Attribute "AgencyCode" is explicitly set to "optional.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="order"
minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode" />

164

6 — Understanding attribute declarations

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.58: Attribute "AgencyCode" is implicitly set to "optional.”

The following Schema sets "AgencyCode" as mandatory.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderiInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="oOrder"
minoccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.59: Using "required"” to set an attribute as mandatory.

Rule 5

The first character of the "AgencyCode" should be an alphabet
and the other three should be digits.

The implementation of this rule needs a format validation. XSD supports a
regular expression language similar to the regular expression languages
supported by Microsoft .NET and Perl. We have seen a basic example
using a regular expression pattern in Chapter 4. Refer to Chapter 12 for a
detailed discussion on the regular expression language supported by XSD.

Before applying a format validation, the attribute should be declared as a
simpleType. Only a simpleType can take a pattern restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderInfo">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Order"
minOccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="required">
<xsd:simpleType>
</xsd:simpleType>

165

6 — Understanding attribute declarations

</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.70: Making an attribute "simpleType."

The next step is to add an "xsd:restriction” element to the simpleType. The
restriction should be based on “xsd:string"” because AgencyCode is an
alpha-numeric value.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="oOrder"
minoccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 6.71: Adding a restriction to a simple Type.

After declaring the "xsd:restriction” element, we could add a pattern
restriction with a regular expression pattern.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderiInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Order"
minoccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{1}[0-9]1{3}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

166

6 — Understanding attribute declarations

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 6.72: Adding a regular expression pattern to an attribute.

The regular expression pattern specifies that the first character should be
alphabets in either lower or upper case. Then the next three3 should be
digits between 0 and 9.

[a-zA-z] stands for a single occurrence of a single lower case character
within the range of "a"to "z" or an upper case character within the range of
"A n to "Z. n

{3} restricts the occurrence of the preceding characters to be EXACTLY
three times. Hence, [a-zA-Z]{3} translates to the occurrence of three
characters of the English alphabet in either lower or upper case.

Similarly, [0-9] stands for a single occurrence of any of the digits between 0
and 9. The whole expression [0-9]{3} stands for the occurrence of three
digits between 0 and 9.

Refer to Chapter 12 for a detailed explanation of the Regular
expression language of XSD.

Let us create a Schema Collection with the new schema definition and see
the validation in action.

-- DROP the previous SCHEMA COLLECTION

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'Labl'

) BEGIN
DROP XML SCHEMA COLLECTION Labl

END

GO

-- CREATE the SCHEMA COLLECTION with the updated
-- definition.
CREATE XML SCHEMA COLLECTION Labl AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrderInfo">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Order"
minoccurs="1"
maxoccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="AgencyCode"
use="required">

167

6 — Understanding attribute declarations

<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[a-zA- Z]{3}[0 91{3}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

Listing 6.73: Schema showing a pattern restriction.

Let us try to validate the XML instance that successfully got validated with
the previous version of the schema.

DECLARE @x XML(Labl)

SET @x =

'<orderInfo>
<order />
<order />
<order />

</orderInfo>"'

Listing 6.74: Invalid XML value as it is missing the AgencyCode attribute.

If you run the above code, SQL Server will generate an error message.
This XML instance was good for the previous version of the schema. But
we added a new mandatory attribute in this version of the schema and,
consequently, SQL Server will not accept this XML value.

This version of the schema will accept an XML value only if it satisfies all
the rules defined with the previous version of the schema, plus the new
rules. The XML instance should have an attribute named AgencyCode and
it should be exactly six characters long. The first three characters should
be alphabets and the other three should be digits. Here is an XML instance
that validates with the above schema.

DECLARE @x XML(Labl)

SET @x =

'<orderinfo AgencyCode="JAC123" >
<Oorder />
<order />
<Oorder />

</orderinfo>'

Listing 6.75: Example of a correct XML instance for Phase1 schema.

168

6 — Understanding attribute declarations

Try running different variations of the above XML instance and you will
realize that SQL Server will accept only those values that pass all the
validations we have defined in the schema so far.

Chapter Summary

We have had a comprehensive overview of attribute declarations in this
chapter. We had a quick discussion on some fundamental differences
between elements and attributes. Elements can hold other elements and
attributes. Attributes can only store a value. Elements can appear without
an attribute, but attributes can appear only within elements. Elements are
mandatory by default, whereas attributes are optional. An element can
appear more than once under a parent node, but attributes can appear
only once. Position of elements is significant in XML but attributes can
appear in any order.

Attribute declarations can be global or local. Global attribute declarations
can be referred (re-used) within the declaration of other complexTypes.
Global attribute declarations provide re-usability to a certain extend.

An attribute declaration takes a number of attributes. "name” is the only
mandatory attribute that should exist in an attribute declaration. Both global
and local attribute declarations should have a "name" attribute.

Global attribute declarations can have the following additional attributes: id,
type, default and fixed. Local attribute declarations can have all the
attributes of global attribute declarations, plus three additional attributes,
namely: ref, use and form.

The name of an attribute must start with a letter or underscore. An attribute
name can contain (except for the first character) letters, digits,
underscores, hyphens and periods.

"id" is an optional attribute which uniquely identifies an attribute. The value
of the "id" attribute should be unique within the schema document. The
"type" attribute associates an XSD data type with an attribute. This
provides better validation of the attribute value. The schema processor will
make sure that the value of the attribute is valid for the data type declared
in the schema.

The "default" attribute assigns a default value to the attribute. If the
attribute is missing in the XML instance, the default value will be assigned
to the attribute. However, if the attribute is present and holds an empty
value, the default value is not assigned.

169

6 — Understanding attribute declarations

The "fixed" attribute restricts the value of the attribute to a predefined
value. If the attribute is missing in the XML instance, the value declared
with fixed is assumed. If the attribute is present, it should contain the same
value declared with the fixed attribute.

“ref" can be used to refer to a global attribute declaration within a
complexType. Attributes are optional by default. An attribute can be set to
mandatory by declaring the "use” attribute with value:” required.”

Attributes can be grouped into Attribute Groups and can be reused in one
or more complexType declarations. This provides a greater level of
reusability. Attribute group declarations can be nested.

170

CHAPTER 7
XSD PRIMITIVE DATA TYPES

XSD supports almost fifty built-in data types. While declaring an element or
attribute, you can associate it with a data type to make sure that SQL
Server will only accept a value which conforms to that data type. The same
applies if you want to update the value — the new value will have to respect
the associated data type.

In the previous chapters, we have seen several examples that use data
types. By using data types, you perform an extra level of validation on the
value stored in an element or attribute. One of the examples that we
discussed several times is the Employee data where the age attribute is
declared as nonNegativelnteger. This declaration makes sure that the age
attribute does not accept negative values. Then we applied a minimum and
maximum restriction to make sure that the values are always within the
accepted range.

In this chapter, we will examine the Primitive data types of XSD. We will
discuss the following.

° Importance of Data Types
. Characteristics of Data Types
o Primitive Data Types

After discussing the Primitive Data Types, we will do a hands-on lab which
is a continuation of the lab we did in the previous chapter.

Importance of Data Types

| am pretty sure that the importance of data types is clear enough from
many of the examples we saw in the previous chapters. Almost all
programming languages use data types to make sure that correct values
are stored to variables and correct operations are done using those
variables. When we create a table we always create columns with specific
data types based on the storage requirements.

Generally speaking, when you associate a variable or column to a data
type you are basically restricting the values that the variable or column can
store and restricting the permissible operations on them. For example,

171

7 — XSD Primitive Data Types

numbers cannot be concatenated (they can be added) and strings cannot
be added (they can be concatenated only).

At the minimum, most programming languages support strings, numbers
and date data types. XSD supports a number of different data types to
describe and validate almost all values that we might need to work with.
Further, it supports deriving new data types from the built-in data types, in
case a built-in data type does not adequately suit a specific validation
requirement.

Data types help describe a certain piece of data more accurately and help
validate them more efficiently. In the absence of a date data type, you
might need to apply a very complex pattern restriction on a string value to
make sure that the value follows "yyyy-mm-dd" format. Further, you'd need
to add validations to make sure that the month is not more than 12 and the
day is not over 30 when the month is 04, and so on. The existence of a
Date data type simplifies this. When you associate a piece of data to a
Date data types, all these validations are automatically applied on it.

This means that the more data types you have, the easier it is for you to
write the schemas. Many of the validations that you need might already be
part of an existing data type and, as a result, you can readily use them. As
shown in the sample application we discussed in Chapter 3, we need to
validate zip codes (only five digits allowed) and phone numbers (should
follow the format: (999) 999 9999). If there were data types available for
zipCode and phoneNumber it would have been easier for us to write
those validations.

XSD supports almost fifty data types. They can be divided into the following
categories.

. Primitive Data Types
Primitive Data Types are the base data types of XSD. This means
that they themselves have not been derived from another type.

° Derived Data Types
These are Data Types derived directly or indirectly from Primitive
Data Types.

This chapter will discuss the Primitive Data Types. We will discuss the
Derived Data Types in Chapter 9.

172

7 — XSD Primitive Data Types

Characteristics of XSD Data Types

There are a few characteristics of an XSD data type that | would like to
discuss here to make sure that you understand them correctly. You will
hear these characteristics frequently discussed when people talk about
XSD data types.

Note: You may skip this topic at the first reading. If it sounds too confusing,
jump to the section facets below.

Value Space

The value space of a data type is the set of values for that data type. Let us
look at an example to understand this.

The value space of boolean data type is a two valued logic (true/false). The
value space of a date data type specifies what values are acceptable as
the year, month and day part of a Date data type.

The value space of a Date data type restricts the maximum value of the
Month part to be 12. Further, it will validate the day part to make sure that
only certain months are allowed to have 31, 30 and 29 days.

Lexical Space

The lexical space of a data type is the set of valid literals for that data type.
To understand this, let us take the same example we took for
understanding the value space of a data type.

The lexical space of a boolean data type (in XSD) is "1," "0," "true" and
"false.” These are the four different literals that a boolean data type can
accept. While true and false are in the lexical space of boolean, yes and no
are not. Hence, a boolean data type cannot accept the literal yes or no.

The Lexical space of a date data type is "yearpart-mothpart-daypart” where
"vearpart" can take an optional negative sign along with a four-digit year,
"monthpart" can take a value between 1 and 12 and "daypart" can take a
value between 1 and 31.

Another example is the lexical space of float data type. "100" and "1.0E2"
are two different literals from the lexical space of float data type. Both
literals refer to the same value and they are accepted as valid float values.

173

7 — XSD Primitive Data Types

Lexical Representation

Each literal in the lexical space of a data type is its lexical representation.
The members of the lexical space of boolean are "true,” "false,” "1" and "0."
We could say that "true,” "false,” "1" and "0" are lexical representations of
boolean.

Canonical Lexical Representation

In the previous section, we saw the lexical space of a data type. "true” and
"1" are valid literals from the lexical space of boolean. Both "1" and "true”
refer to the same value. Similarly, in the previous section we saw two
different literals from the value space of float. "700" and "1.0E2" both are
from the lexical space of float, referring to the same value.

Thus, sometimes, a value in the value space of a data type may be
represented by more than one lexical representation. A Canonical Lexical
Representation is a set of literals among the valid set of literals for a data
type such that there is a one-to-one mapping between literals in the
canonical lexical representation and values in the value space

Primitive Data Types

Primitive Data Types are base data types from which other data types are
derived. XSD has nineteen primitive data types and SQL Server supports
eighteen of them. SQL Server does not support XSD data type
"NOTATION." The following is the list of primitive data types of XSD.

string boolean decimal
float double duration
dateTime time date
gYearMonth gYear gMonthDay
gDay gMonth hexBinary
base64Binary anyURI QName
NOTATION

Some of these data types must be familiar to you. You might find them
in other programming languages as well. String, boolean, decimal,
float, double, dateTime, time, date, etc., are present in almost all
programming languages.

However, many of you will be new to data types like duration, gYearMonth,
QName, NOTATION, anyURI, gYear, gMonthDay, gDay, gMonth, etc. In
this chapter we will go over all the XSD primitive data types in detail.

174

7 — XSD Primitive Data Types

Data Type: string

| am pretty sure that the string data type does not need any explanation at
all. Let me simply say that it is used to store a sequence of characters.
Almost all programming languages support the string datatype.

Let us declare the schema of a simple XML element having string
data type.

--Create XML SCHEMA collection

CREATE XML SCHEMA COLLECTION Stri ngbemo AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="myString" type="xsd:string" />

</xsd:schema>"'

GO

-- Declare a variable bound to the schema
DECLARE @x XML (StringDemo)]]
SET @x = '<myString>this is a string</myString>"'

Listing 7.1: An example using "string” data type.

The above example is very elementary and explains the usage of a string
data type. Now let us have a look at a few interesting points related to the
string data type.

There are certain characters that are not allowed in the value of an element
or attribute. These are some control characters having some specific
meaning and cannot be mixed up with values of elements and attributes.
The following characters have special meaning in XML; therefore, you
cannot use them in the value of an attribute or element.

(&) — Ampersand

(<) — Less Than

(>) — Greater Than
(') — Apostrophe

(") — Quotation Mark

Most XML processors will generate an error if they find any of these
characters present in the value of an element or attribute.

When you work with XML in SQL Server, you need to encode only two
characters from the above list: "&" and "<."

SQL Server will generate an error if you attempt to run the following code.

175

7 — XSD Primitive Data Types

DECLARE @x XML (StringDemo))
SET @x = '<myString>Jacob & John</myString>'

Listing 7.2: This XML instance is invalid because "&" is a restricted
character.

The problem is the "&" character. It is an illegal character and should not
be present as the value of an element or attribute. If you want to represent
this character, you should use the named entity &.

The following code will execute successfully.

DECLARE @x XML (StringbDemo)
SET @x = '<myString>Jacob & John</myString>"'

Listing 7.3: Use the named entity instead of "&" to represent an ampersand.

When you read the value from the XML variable, the entity name will be
correctly decoded and you will get an "&" back.

DECLARE @x XML (StringDemo)]
SET @x = '<myString>Jacob & John</myString>"'

-- read value from the XML variable
SELECT @x.value('myString[1]"', 'VARCHAR(20)') AS Name

E?COb & John

Listing 7.4: SQL Server will do a decoding of named entities.

The same rules are applicable to "<" character. If the value of an element
or attribute contains this character, SQL Server will raise an error. The "<"
character has to be encoded using the entity name <.

-- the following code will generate an error because
-- of the "<" character in the value of <myElement>
DECLARE @x XML (StringDemo)

SET @x = '<myString>if x < y then g to end</myString>'

-- However, the code will execute correctly if we encode it
-- using < literal.

DECLARE @x XML (StringDemo)

SET @x = '<myString>1f x < y then g to end</myString>'

Listing 7.5: Encoding is required for "<" as well.

176

7 — XSD Primitive Data Types

Interestingly, SQL Server accepts certain characters that are not usually
accepted by other XML parsers without encoding. All three examples given
in the following snippet will execute correctly in SQL Server.

-- Tets try ">" first. It works without encoding.
DECLARE @x1 XML (StringDemo)

SET @x1 = '<myString>if x > y then go to end</myString>'
-- well, next is " (double quotes)
DECLARE @x2 XML (StringDemo)

SET @x2 = '<myString>He shouted: "Stop There!"</myString>'

-- let us try ' (single quotes) too. (Note that I used two

-- quotes. The second quote is used to escape the character
-- because the whole XML value is enclosed by single quotes.)
DECLARE @x3 XML (Stringbemo)

SET @x3 = '<myString>That is Robert''s hat</myString>'

Listing 7.6: No encoding is required for ">," double quotes ("), and
single quotes ().

The behavior of the string data type is almost identical for elements and
attributes, with the exception of handling double quotes ("). Elements can
accept double quotes without encoding, but attributes need double quotes
to be encoded.

The following code declares the schema of an XML document which has a
string type attribute.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'StringDemo'
) BEGIN
DROP XML SCHEMA COLLECTION StringDemo
END
GO

--Create XML SCHEMA collection
CREATE XML SCHEMA COLLECTION Stri ngbemo AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="myString" >
<xsd:complexType>
<xsd:attribute name="stringData" type="xsd:string" />
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Declare a variable bound to the schema
DECLARE @x XML (StringDemo))
SET @x = '<myString stringbata="My String Data" />'

Listing 7.7: Example of a schema showing an attribute with string data type.
177

7 — XSD Primitive Data Types

The following is illegal. SQL Server will throw an error while processing the
following code.

-- Here 1is the correct code
DECLARE @x XML (StringDemo)]
SET @x = '<myString stringData="He shouted: "Hi There!" " />'

Listing 7.8: Attributes cannot take double quotes without encoding.

Use entity name " to represent a double quote in the value of
an attribute.

-- Here 1is the correct code

DECLARE @x XML (StringDemo))

SET @x = '<myString stringData="He shouted: "Hi There!"
mn />l

Listing 7.9: Named entity " represents a double quote.

Data Type: boolean

SQL Server's implementation of boolean data type accepts "frue,” "false,”
"1"and "0" as valid boolean values.

The following example shows the usage of the boolean data type.

--Create an XML SCHEMA collection

CREATE XML SCHEMA COLLECTION BooleanDemo AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="1isAlive" type="xsd:boolean" />

</xsd:schema>"'

GO

-- supports true
DECLARE @x1 XML(BooleanDemo)
SET @x1 = '<isAlive>true</isAlive>'

-- supports false
DECLARE @x2 XML (BooTleanDemo)]
SET @x2 = '<isAlive>false</isAlive>'

-- supports 1
DECLARE @x3 XML (BooTleanDemo)
SET @x3 = '<isAlive>l</isAlive>'

-- supports 0
DECLARE @x4 XML (BooleanDemo)
SET @x4 = '<isAlive>0</isAlive>'

Listing 7.10: An example showing the usage of boolean data type.

178

7 — XSD Primitive Data Types

When you create an XML instance, you can use literal "1" to represent
“true” and "0" to represent “false.” SQL Server stores the value internally as
"true” or "false” only. There is no way you can get the "1" or "0" back from a
boolean attribute or element.

DECLARE @x1 XML (BooleanDemo)
SET @x1 = '<isAlive>true</isAlive>'
SELECT @x1l.value('isAlive[l]', 'varchar(10)') AS IsAlive

IsAlive

true

::/

DECLARE @x2 XML (BooleanDemo)
SET @x2 = '<isAlive>l</isAlive>'

SELECT @x2.value('isAlive[l]', 'varchar(10)') AS IsAlive

IsAlive

<isAlive>true</isAlive>

Listing 7.11: SQL Server's internal representation of boolean data type uses
"true" and "false." It does not use "1" or "0."

If you attempt to cast a boolean value to a number, you will get an error.
Here is an example.

DECLARE @x2 XML (BooleanDemo)
SET @x2 = '<isAlive>l</isAlive>'

SELECT @x2.value('isAlive[l]',"int') AS IsAlive

IsAlive

JAC\SQL2005(JAC\JACOB) : Msg 245, Level 16, State 1, Line 4
Conversion failed when converting the nvarchar value 'true' to
q?ta type int.

Listing 7.12: Since SQL Server stores a boolean value as "true" or "false,”
and not as "1" or "0," the casting of a boolean value to integer will fail.

179

7 — XSD Primitive Data Types

Also, note that the values true and false are case sensitive. The following
code will generate an error.

DECLARE @x2 XML(BooleanDemo)
SET @x2 = '<isAlive>True</isAlive>'

/:‘:

JAC\SQL2005(CJAC\JACOB) : Msg 6926, Level 16, State 1, Line 2
XML Vvalidation: Invalid simple type value: 'True'. Location:
/*isAlive[1l]

Listing 7.13: Literals "true" and "false" are case sensitive.

Data Type: decimal

XSD decimal data type represents a subset of real numbers. It takes a
negative or positive value, with or without decimal fraction.

The following example shows an XSD schema which declares a decimal
element and assigns different values to it.

--Create an XML SCHEMA collection for "decimal" type

CREATE XML SCHEMA COLLECTION DecimalDemo AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="wealth" type="xsd:decimal" />

</xsd:schema>"

GO

-- declare variables bound to the schema
DECLARE

@x1 XML (DecimalbDemo),

@x2 XML(DecimalbDemo),

@x3 XML (DecimalbDemo) ,

@x4 XML (DecimalbDemo)

-- assign values to each XML variable

SELECT
@x1l = '<wealth>0012</wealth>",
@x2 = '<wealth>+12</wealth>"',
@x3 = '<wWealth>-12</wealth>"',
@x4 = '<wealth>123456789.98765432100</wealth>"

Listing 7.14: example showing decimal data type.

Data Type: float

XSD float data type is single precision 32-bit floating point type. Unlike
decimal, float can store special values like Positive infinity, Negative Infinity
and NaN (Not a Number).

180

7 — XSD Primitive Data Types

Let us create the schema of an XML document that has a float data type.

--Create an XML SCHEMA collection for "float" type

CREATE XML SCHEMA COLLECTION FloatDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="AFloatvalue" type="xsd:float" />

‘ </xsd:schema>"
GO

Listing 7.15: An example showing the "float" data type.

Let us look at an example that shows how the above schema behaves with
different float values.

-- declare variables bound to the schema

DECLARE
@x1 XML(Floatbemo),
@x2 XML(Floatbemo) ,
@x3 XML(FloatDemo) ,
@x4 XML(Floatbemo) ,
@x5 XML(FloatDemo) ,
@x6 XML(Floatbemo) ,
@x7 XML(Floatbemo),
@x8 XML(Floatbemo) ,
@x9 XML(FloatDemo)

-- assign values to each XML variable

SELECT
@x1l = '<AFloatvalue>0</AFloatvalue>',
@x2 = '<AFloatvalue>-0</AFloatvalue>"',
@x3 = '<AFloatvalue>INF</AFloatvalue>',
@x4 = '<AFloatvalue>-INF</AFloatvalue>"',
@x5 = '<AFloatvalue>10e-2</AFloatvalue>"',
@x6 = '<AFloatvalue>-1le3</AFloatvalue>',
@x7 = '<AFloatvalue>1234.5678e9</AFloatvalue>",
@x8 = '<AFloatvalue>16.3e-2</AFloatvalue>"',
@x9 = '<AFloatvalue>125</AFloatvalue>'

Listing 7.16: A TSQL example demonstrating the different values that a float
data type can store.

Note the usage of -INF, INF and -0. Though the XSD specification supports
a special value: NaN (Not a Number), the XSD implementation of SQL
Server does not support it. Hence, the following code will fail.

DECLARE @x1 XML (FloatDemo)
SET @x1 = '<AFloatvalue>NaN</AFloatvalue>'

|/

JAC\SQL2005(JAC\JACOB) : Msg 6926, Level 16, State 1, Line 2

181

7 — XSD Primitive Data Types

XML Validation: Invalid simple type value: 'NaN'. Location:
/*:AFloatvalue[1]
'.':/

Listing 7.17: SQL Server does not support "NaN."

Data Type: double

XSD double data type shares the same characteristics as float except that
double data type is double precision 64-bit floating point type. Other than
that, double shares the same characteristics as float data type.

--Create an XML SCHEMA collection for "double" type

CREATE XML SCHEMA COLLECTION DoubleDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ADoublevalue" type="xsd:double" />

</xsd:schema>"

GO

-- declare variables bound to the schema

DECLARE
@x1 XML (DoubleDemo) ,
@x2 XML (DoubleDemo),
@x3 XML (DoubleDemo) ,
@x4 XML (DoubleDemo),
@x5 XML (DoubleDemo) ,
@x6 XML (DoubleDemo),
@x7 XML (DoubleDemo) ,
@x8 XML (DoubleDemo),
@x9 XML (DoubleDemo)

-- assign values to each XML variable

SELECT
@x1 = '<ADoublevalue>0</ADoublevalue>"',
@x2 = '<ADoublevalue>-0</ADoublevalue>',
@x3 = '<ADoublevalue>INF</ADoublevalue>"',
@x4 = '<ADboublevalue>-INF</ADoublevalue>"',
@x5 = '<ADoublevalue>10e-2</ADoublevalue>"',
@x6 = '<ADoublevalue>-1le3</ADoublevalue>',
@x7 = '<ADoublevalue>1234.5678e9</ADoublevalue>',
@x8 = '<ADoublevalue>16.3e-2</ADoublevalue>"',
@x9 = '<ADoublevalue>125</ADoublevalue>'

Listing 7.18: An example demonstrating the different values accepted by
"double" data type.

Just like float, SQL Server's XSD implementation of double data type does
not support NaN.

182

7 — XSD Primitive Data Types

Data Type: duration

XSD duration data type represents duration of time. Duration of time is
represented by number of years, number of months, number of days,
number of hours, number of minutes and number of seconds.

--Create an XML SCHEMA collection for "duration" type

CREATE XML SCHEMA COLLECTION DurationDemo AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ElapsedTime" type="xsd:duration" />

</xsd:schema>'

GO

Listing 7.19: A schema with an element of "duration” type.

A duration value should always start with the letter "P" in upper case. Then
each value should be separated by indicators Y (Years), M (Months), D
(Days), H (Hours), M (Minutes) and S (Seconds). Letter "T" should appear
as a separator between Year-Month-Day and Hour-Minute-Second.

The following snippet shows a few examples.

DECLARE @x XML (DurationbDemo)

-- 20 seconds
SET @x = '<ElapsedTime>PT20S</ElapsedTime>"'

-- 3 minutes))
SET @x = '<ElapsedTime>PT3M</ElapsedTime>"'

-- 3 minutes and 15 seconds
SET @x = '<ElapsedTime>PT3M15S</ElapsedTime>"

-- 6 hours
SET @x = '<ElapsedTime>PT6H</ElapsedTime>"

-- 2 days
SET @x = '<ElapsedTime>P2D</ElapsedTime>'

-- 2 days and 5 hours
SET @x = '<ElapsedTime>P2DT5H</ElapsedTime>"'

-- 3 months
SET @x = '<ElapsedTime>P3M</ElapsedTime>'

-- 1 year
SET @x = '<ElapsedTime>PlY</ElapsedTime>'

-- 2 years and 3 days
SET @x = '<ElapsedTime>P2Y3D</ElapsedTime>"'

Listing 7.20: "duration” data type example.
183

7 — XSD Primitive Data Types

Duration can take a negative value, too. In the case of a negative value,
the negative sign should occur at the beginning of the value, on the left of
"P'"

DECLARE @x XML(DurationDemo)

-- 2 years back))
SET @x = '<ElapsedTime>-P2Y</ElapsedTime>"

Listing 7.21: "duration” data type can take a negative value too.

Data Type: dateTime

XSD dateTime data type represents a value that contains date and time
information. It is very close to the DATETIME data type of SQL Server.

The format of XSD dateTime is -yyyy-mm-ddThh:mm:ss.sZ. The format
is self explanatory, except for the part marked in yellow. Note that there is a
"T" which separates the date part and the time part.

Part of the format marked in yellow needs some attention. The year value
can take a negative sign which indicates date in BC. So -0002-01-
01T712:00:00 represents BC 2, January 1 midnight.

The time part can store the fraction of seconds after the "ss” part. The
separator between seconds and fraction of seconds is a period. Finally,
time zone representation should follow the dateTime value.

Time zone information is optional in XSD. However, SQL Server 2005's
implementation of dateTime data type requires time zone information
along with the date value. This requirement has been removed in SQL
Server 2008.

Let us look at a few examples now.

--Create an XML SCHEMA collection for "dateTime" type

CREATE XML SCHEMA COLLECTION dateTimeDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MeetingSchedule" type="xsd:dateTime" />

</xsd:schema>"

GO

Listing 7.22: A schema having a "dateTime" element.

DECLARE @x XML(dateTimeDemo)

-- We do not have a fraction of second in this example

184

7 — XSD Primitive Data Types

SET @x = '<MeetingSchedule>2007-11-01T14:15:00z</MeetingSchedule>"'

-- here we have added the fraction of seconds
SET @x = '<MeetingSchedule>2007-11-
01T14:15:00.00z</MeetingSchedule>'

-- You can make the 'fraction of second' incredibly long :-)
SET @x = '<MeetingSchedule>
2007-11-01T14:15:00.0000000000000000000000000000Z
</MeetingSchedule>"'

-- this date falls in BC

SET @x = '<MeetingSchedule>-0002-11-
01T14:15:00z</MeetingSchedule>'

-- but this one is illegal. You can't have a '+' sign.
--SET @x = '<MeetingSchedule>+0002-11-
017T14:15:00z</MeetingSchedule>'

Listing 7.23: "dateTime" data type example.

Note the usage of Z' at the end of the time value to represent the time
zone information. Z’ indicates that the time value is in UTC (GMT). You
can also express time in your local time zone by specifying the time
difference. The following example shows this.

-- the following two dates are equal

-- representation in UTC

SET @x = '<MeetingSchedule>2007-11-01T13:30:00z</MeetingSchedule>"
| -- representation in local time zone (IST)

SET @x =

'<MeetingSchedule>2007-11-01T19:00:00+05:30</MeetingSchedule>"'

Listing 7.24: Time zone can be specified either in UTC or by the time
difference

The hour part can take a value of 24 if the minute and seconds are 0. In
this case, it represents the first second of the next day.

DECLARE @x XML (dateTimeDemo)

-- hour can be 24 if the minutes and seconds are 0
-- it represents the first second of the next day
SET @x = '<MeetingSchedule>2007-11-01T24:00:00z</MeetingSchedule>"

-- the following is illegal
--SET @x = '<MeetingSchedule>2007-11-
01T24:00:00.01z</MeetingSchedule>'

Listing 7.25: The "hour" part of a dateTime value can accept 24, if "minutes”
and "seconds" are zero.

185

7 — XSD Primitive Data Types

Enhancements in SQL Server 2008

SQL Server 2008 added two enhancements to the date/time data types
(date, time and dateTime). Time zone information was mandatory in SQL
Server 2005, though the XSD specification states that time zone is optional
for date, time and dateTime data types. In SQL Server 2008, time zone
information is optional for date, time and dateTime data types.

The XML instance given in the following example will not validate in
SQL Server 2005, because time zone information is missing in the
dateTime value.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create schema collection

CREATE XML SCHEMA COLLECTION Examp1eSchema AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MeetingSchedule" type="xsd:dateTime" />

</xsd:schema>'

GO

DECLARE @x XML (ExampleSchema)
SET @x = '<MeetingSchedule>2007-11-01T10:30:00</MeetingSchedule>"'

Listing 7.26: Time zone information is mandatory in SQL Server 2005.
However, this will run without an error in SQL Server 2008.

The second enhancement is about preserving the time zone information. In
SQL Server 2005 time zone information is mandatory, but SQL Server does
not preserve the time zone information. The date, time or dateTime value is
normalized to UTC time.

To understand this, run the following code in SQL Server 2005.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create schema collection

186

7 — XSD Primitive Data Types

CREATE XML SCHEMA COLLECTION Examp1eSchema AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Meeting" type="xsd:dateTime" />

</xsd:schema>"

GO

DECLARE @x XML (ExampleSchema)
SET @x = '<Meeting>2007-11-01710:30:00+05:30</Meeting>"

SELECT @x
/7‘:

output:
;veeting>2007—11—01T05:OO:OOZ</Meeting>

Listing 7.27: Time zone information is not preserved in SQL Server 2005.

Note that we assigned a date/time value with time zone information, but
SQL Server 2005 normalized it to UTC date/time and did not store the time
zone information we provided. There is no way to identify the original time
zone value we used while assigning the value.

SQL Server 2008 has fixed this limitation. Let us run the same code in SQL
Server 2008.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create schema collection

CREATE XML SCHEMA COLLECTION ExampleSchema AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Meeting" type="xsd:dateTime" />

</xsd:schema>"'

GO

DECLARE @x XML (ExampleSchema)
SET @x = '<Meeting>2007-11-01T710:30:00+05:30</Meeting>"

SELECT @x

output:
gyeeting>2007—ll—01TlO:30:00+05:30</Meet1ng>

Listing 7.28: SQL Server 2008 preserves time zone information.

Note that the time zone information is preserved in the XML value. This is
an important enhancement added in SQL Server 2008.

187

7 — XSD Primitive Data Types

Data Type: time

XSD time data type represents a time value which contains hour, minute,
second, fraction and time zone. It would be easier to say that the time data
type represents everything after the 'T* of a dateTime data type.

‘ --Create an XML SCHEMA collection for "time" type
CREATE XML SCHEMA COLLECTION timeDemo AS
| '<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ArrivalTime" type="xsd:time" />
</xsd:schema>"
GO

Listing 7.29: A schema with a "time" element.

DECLARE @x XML (timeDemo)

-- We do not have a fraction of second in this example
SET @x = '<ArrivalTime>14:15:00z</ArrivalTime>"

-- here we have added the fraction of seconds
SET @x = '"<ArrivalTime>14:15:00.00z</ArrivalTime>"

-- You can make the 'fraction of second' incredibly long :-)
SET @x = '<ArrivalTime>
14:15:00.0000000000000000000000000000Z
</ArrivalTime>"'

Listing 7.30: "time" data type example.

The time zone rules of dateTime data type are applicable for time data
type, too.

DECLARE @x XML (timeDemo)
| -- the following two values are equal
-- representation in UTC
SET @x = '<ArrivalTime>13:30:00z</ArrivalTime>"
-- representation in local time zone (IST)
‘ SET @x = '<ArrivalTime>19:00:00+05:30</ArrivalTime>"

Listing 7.31: Time zone information is mandatory in SQL Server 2005.

Hour can be 24 if minutes and seconds are 0. When hour is 24, it
represents the first second of the next day.

DECLARE @x XML (timeDemo)

-- hour can be 24 if the minutes and seconds are 0
| -- it represents the first second of the_next day
SET @x = '<ArrivalTime>24:00:00z</ArrivalTime>"'

188

7 — XSD Primitive Data Types

-- the following is illegal
--SET @x = '<ArrivalTime>24:00:00.001z</ArrivalTime>"'

Listing 7.32: "hour" part of a "time" data type can accept 24 if "minute” and
"second"” part are zero.

Enhancements in SQL Server 2008

The enhancements we discussed for the dateTime data type are applicable
to the time data type, too. SQL Server 2008 has made time zone
information optional. If time zone information is present, it is preserved. We
have seen details of these enhancements and examples when we
discussed dateTime data type.

Data Type: date

XSD date data type represents a date value which contains year, month,
date and optional time zone information.

Time Zone information is optional per the XSD specification. However, SQL
Server 2005's implementation of XSD date data type requires the time
zone information along with the date value. The validation will fail if the time
zone information is not present in the given date value. SQL Server 2008
has made time zone information optional.

The date data type is very close to the dateTime data type that we
examined earlier. If you strip it of the time part from the dateTime data type,
it will result in the date data type.

--Create an XML SCHEMA collection for "date" type

CREATE XML SCHEMA COLLECTION dateDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="DueDate" type="xsd:date" />

</xsd:schema>"

GO

Listing 7.33: A schema with a "date" element.

DECLARE @x XML (dateDemo)

-- 1in UTC format
SET @x = '<DueDate>2007-11-01z</DueDate>"

189

-- using time difference
SET @x = '<DueDate>2007-11-01+05:30</DueDate>"

Listing 7.34: "date" data type example.

Enhancements in SQL Server 2008

The enhancements we discussed for the dateTime data type are applicable
to the date data type, too. SQL Server 2008 has made time zone
information optional. If time zone information is present, it is preserved. We
have seen details of these enhancements and examples when we
discussed dateTime data types.

Data Type: gYearMonth

XSD gYearMonth data type represents a specific month in a specific year
in the Gregorian calendar. It includes a year value and a month value.

--Create an XML SCHEMA collection for "gYvearMonth" type

CREATE XML SCHEMA COLLECTION gYearMonthDemo AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="SalesPeriod" type="xsd:gYearMonth" />

</xsd:schema>"'

GO

Listing 7.35: A schema with a "gYearMonth" element.

DECLARE @x XML (gYearMonthDemo)

-- time zone information is optional

SET @x = '<SalesPeriod>2007-11</SalesPeriod>"
SET @x = '<SalesPeriod>2007-11z</SalesPeriod>"
SET @x = '<SalesPeriod>2007-11+05:30</SalesPeriod>"

-- Refer to BC by making the year negative
SET @x = '<SalesPeriod>-2007-11</SalesPeriod>"

Listing 7.36: "gYearMonth" data type example.

190

7 — XSD Primitive Data Types

Data Type: gYear

XSD gYear data type represents a Gregorian calendar year.

--Create an XML SCHEMA collection for "gYvear" type

CREATE XML SCHEMA COLLECTION gYearbDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="YearofBirth" type="xsd:gvyear" />

‘ </xsd:schema>"'
GO

Listing 7.37: A schema with a "gYear" element.

DECLARE @x XML (gYearDemo)

-- Year of birth
SET @x = '<YearofBirth>1975</YearofBirth>"'

-- accepts time zone too
SET @x = '<YearOfBirth>1975zZ</YearofBirth>"'
SET @x = '<YearofBirth>1975+05:30</YearofBirth>"

-- negative values are accepted too.
SET @x = '<YearofBirth>-0002</YearofBirth>"'

-- maximum and minumum years
SET @x '<YearofBirth>-9999</YearofBirth>"
SET @x '<YearofBirth>9999</YearofBirth>"'

Listing 7.38: "gYear” data type example.

Data Type: gMonthDay

XSD gMonthDay data type represents a month-day pair in a Gregorian
calendar year. This data type is good for storing dates which occur every
year, a Birthday or Anniversary, for example.

--Create an XML SCHEMA collection for "gMonthDay" type

CREATE XML SCHEMA COLLECTION gMonthDayDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Anniversary" type="xsd:gMonthbDay" />

</xsd:schema>"

GO

Listing 7.39: A schema with a "gMonthDay" element.

A gMonthDay value starts with two "-" signs followed by two digit month,
another "-" sign and two digit day of the month. (--MM-DD)

191

7 — XSD Primitive Data Types

DECLARE @x XML (gMonthDayDemo)

-- November 25

SET @x = '<Anniversary>--11-25</Anniversary>"'

-- Takes a time zone too

SET @ = '<Anniversary>--11-25Z</Anniversary>"

SET @x = '<Anniversary>--11-25+05:30</Anniversary>"

Listing 7.40: "gMonthDay" data type example.

Data Type: gDay

XSD gDay data type represents a specific day of the Gregorian calendar
year that recurs every month.

--Create an XML SCHEMA collection for "gDay" type
\ CREATE XML SCHEMA COLLECTION gbDayDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
\ <xsd:element name="writePayCheck" type="xsd:gbay" />
‘ </xsd:schema>"'

GO

Listing 7.41: A schema with a "gDay" element.

A gDay value starts with three "-" signs followed by two digit
day-of-the month.

DECLARE @x XML (gDayDemo)

-- 10th of Every Month
SET @x = '<WritePayCheck>---10</writePayCheck>"

-- Takes a time zone too]
SET @x = '<writePayCheck>---10z</WritePayCheck>"
SET @x = '<WritePayCheck>---10+05:30</writePayCheck>"

Listing 7.42: "gDay" data type example.

Data Type: gMonth

XSD gMonth data type represents a specific month of the Gregorian
calendar year.

192

7 — XSD Primitive Data Types

--Create an XML SCHEMA collection for "gMonth" type

CREATE XML SCHEMA COLLECTION gMonthDemo AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ProfitSharing" type="xsd:gMonth" />

</xsd:schema>"

GO

Listing 7.43: A schema with a "gMonth" element.

A gMonth value starts with two "-" signs followed by two-digit
month number.

DECLARE @x XML (gMonthbDemo)

-- Month of october _ _
SET @x = '<ProfitSharing>--10</ProfitSharing>"'

-- Takes a time zone too
= '<ProfitSharing>--10z</ProfitSharing>"'
= '<ProfitSharing>--10+05:30</ProfitSharing>"'

Listing 7.44: "gMonth"” data type example.

Data Type: hexBinary

XSD hexBinary data type represents HEX encoded data. An XML
document cannot store binary data. In order to store binary data into an
XML document, it has to be encoded to a set of characters that XML
supports. The most popular encoding are hexBinary encoding and base64
Encoding.

The most common usage of hexBinary data type is to store binary data.
However, for the purpose of learning, | am presenting an example which
encodes a plain ASCII text string to hexBinary.

‘ --Create an XML SCHEMA collection for "hexBinary" type
CREATE XML SCHEMA COLLECTION hexBinaryDemo AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="SecretMessage" type="xsd:hexBinary" />
</xsd:schema>"
GO

Listing 7.45: A schema with a "hexBinary" element.

| encoded the string "This is a secret message" using the online Text-to-
Hex tool available at http://tools.elitehackers.info/Hex.php.

193

7 — XSD Primitive Data Types

DECLARE @x XML (ChexBinarybDemo)

SET @x = '

<SecretMessage>

54 68 69 73 20 69 73 20 61 20 73 65 63 72 65 74 20 6d 65 73 73 61
67 65

</SecretMessage>'

Listing 7.46: "hexBinary" data type example.

Data Type: base64Binary

XSD baseb4Binary data type represents base64 encoded data. The most
common usage of base64Binary data type is to store binary data.

--Create an XML SCHEMA collection for "base64Binary" type

CREATE XML SCHEMA COLLECTION base64BinaryDemo AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="SecretMessage" type='xsd:base64Binary" />

</xsd:schema>"

GO

Listing 7.47: A schema with a "base64Binary" element.

Let us encode the previous message "This is a secret message" to base64
using the online conversion tool available at
http://www.motobit.com/util/base64-decoder-encoder.asp

DECLARE @x XML (base64BinarybDemo)

SET @x = '

<SecretMessage>
VGhpcyBpcyBhIHNTY331dCBtZzZXNzYWd]
</SecretMessage>"

Listing 7.48: "base64Binary" data type example.

Data Type: anyURI

XSD anyURI data type an absolute or relative URI

--Create an XML SCHEMA collection for "anyURI" type
CREATE XML SCHEMA COLLECTION anyURIDemo AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

194

7 — XSD Primitive Data Types

<xsd:element name="SalesURL" type="xsd:anyURI" />
</xsd:schema>"
GO

Listing 7.49: A schema with an "anyURI" element.

DECLARE @x XML (anyURIDemo)

-- A fully qualified URL
SET @x = '<SalesURL>http://www.mysite.com/sales.html</SalesURL>"

-- A relative URL
SET @x = '<SalesURL>sales.html</SalesUrRL>"

-- Not a URL at all, but still accepted
SET @x = '<SalesURL>do you think this is a URL?</SalesURL>'

-- It is a good practice to encode spaces with "%20"
SET @x = '<SalesURL>sales%20centre.html</SalesURL>"

Listing 7.50: "anyURI" data type example.

Note that there is no strict validation on the format of the URI. The schema
processor will accept even strings that are not valid URI values.

Data Type: QName

XSD QName data type stands for a Qualified Name per the XML
specification. A Qualified Name usually takes the format of prefix + ":' +
name. "xsd:element” is such a qualified name. It is also valid to ignore
the prefix and just use the name part. An example of such a Qualified
Name is "attribute.”

Assume that we need to write the schema for an XML document which
refers to the elements of another XML document. Now we need to make
sure that values should be Qualified XML names. Here is an example.

‘ --Create an XML SCHEMA collection for "QName" type
CREATE XML SCHEMA COLLECTION QNameDemo AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="XmINodeName" type="xsd:QName" />
</xsd:schema>"
GO

Listing 7.51: A schema with a "QName" element.

195

7 — XSD Primitive Data Types

DECLARE @x XML (QNameDemo)

-- valid QName
SET @x = '<XmINodeName>CustomerName</XmlNodeName>"

-- Double Quotes are not allowed
--SET @x = '<XmlNodeName>Customer'"Name</XmINodeName>"'

-- + sign is not allowed
--SET @x = '<XmlNodeName>Customer+Name</XmINodeName>"

-- spaces are not allowed
--SET @x = '<XmlNodeName>Customer Name</XmINodeName>'

-- digits are allowed

SET @x = '<XmINodeName>Customer2Customer</XmlNodeName>"
-- underscores are allowed

SET @x = '<XmINodeName>Customer_Name</XmlNodeName>'

-- can not start with a number
--SET @x = '<XmlNodeName>lCustomerName</XmINodeName>"

Listing 7.52: "QName" data type example.

QName data type can accept a colonized value (a namespace prefix and a
string value separated by a colon) only if there is a valid namespace
declaration within the scope where the value is used. For example, the
following is invalid.

DECLARE @x XML (QNameDemo)
SELECT @x = '<XmlNodeName>cust:CustomerName</XmINodeName>'

Listing 7.52.a

Validation of the above XML instance fails because the namespace prefix
“cust" is not defined. The following works:

DECLARE @x XML (QNameDemo)

SELECT @x = '

<XmINodeName xmlIns:cust="http://www.customer.com">
\ cust:CustomerName

</XmINodeName>"'

Listing 7.52.b

196

7 — XSD Primitive Data Types

Data Type: NOTATION

SQL Server does not support the XSD NOTATION data type.

LAB2: Write Schema for the Order
Processing Application -
The Order Element

In the previous chapter we did the first lab where we created the schema
for the root element. In this lab, let us write the schema for the
Order element.

The Order Element

The definition of the root element, Orderinfo, says that it should
contain one or more Order elements. Each Order element should contain
complete information about a particular order and should look like the
example given below.

<0order orderNumber="20002">
<Orderbate>2008-01-01z</0OrderDate>
<Deliverybate>2008-01-16T09:00:00-08:00</DeliverybDate>
<Customer />
<Items />
<orderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>

Adjust the previous credit note with this 1invoice

</InvoiceNote>
<Discount />

</order>

Listing 7.53: Example of an Order element.

The Order element should comply with the following rules:

° The "Order" element should have a mandatory attribute named
OrderNumber. This attribute should not be empty and cannot have

more than twenty characters. It can hold any combination of alphas
and numerics in any case (lower, upper or mixed case).

197

7 — XSD Primitive Data Types

° Order element can have the following child elements. The child
elements should follow the same order as given below.

OrderDate
DeliveryDate
Customer
ltems
OrderNote
InvoiceNote
Discount

O 0O O O O O O

. OrderDate, DeliveryDate, Customer and ltems are mandatory
elements. OrderNote, InvoiceNote and Discount are optional
elements. None of the elements can appear more than once under
an Order element.

° OrderDate should be a date value and should not contain time
information. DeliveryDate should be a datetime value which should
contain date as well as time information.

. OrderNote and InvoiceNote are optional and if present they can store
a text note as long as 500 characters.

Let us first review our understanding of XSD and make sure that we have
learned everything required to write the schema needed for this lab.
To write the schema needed in this lab, we need to have the
following understanding.

o Declaring elements with mandatory attributes (Rule #1)

. Validating the length and format of attribute values (Rule #1)

. Declaring child elements under a given element and controlling the
order and occurrence of the child elements (Rule #2)

. Declaring optional and mandatory elements (Rule #3)

. Using date and dateTime data types (Rule #4)

. Validating the length of the text stored in an element (Rule #5)

Let us see each of the requirements in detail. Some of the learning
requirements listed above are already discussed in the previous chapters.

Declaring elements with mandatory attributes
We have seen attribute declarations in Chapter 6. An attribute can be

declared as mandatory by setting the "use” attribute to "required.” Refer to
Chapter 6 for an explanation of the "use” attribute.

198

7 — XSD Primitive Data Types

Validating the length and format of attribute
values

The length of the attribute values can be validated by declaring restrictions.
A restriction is declared using "xsd:restriction” element. We have seen this
in the previous lab, where we restricted the length of the AgencyCode
element.

Declaring child elements under a given element
and controlling the order and occurrence of the
child elements

Only a complexType can have child elements. We have seen this in the
previous lab. Chapter 10 covers Complex Types in detail. In the previous
lab we created a Complex Type, Orderinfo, which holds one or more Order
elements. The order of elements is significant in XML. A Schema can
define the order of the elements using order indicators. We have seen an
example in the previous lab. Order indicators are explained in Chapter 10.

The occurrence of child elements can be controlled by using minOccurs
and maxOccurs occurrence indicators. We have seen an example in the
previous lab. A more detailed explanation can be found in Chapter 10.

Declaring optional and mandatory elements

Elements are mandatory by default. An element can be set to mandatory
by setting the minOccurs attribute to 1 or a higher value. An element can
be declared as optional by setting the minOccurs attribute to 0. Occurrence
indicators are explained in Chapter 5.

Using date and dateTime data types

XSD has a number of built-in data types that store date and time
information. SQL Server does not have an equivalent data type to
represent many of those data types. For example, SQL Server does not
have a data type that can represent XSD duration, gDay, gMonthDay,
gYear, efc.

XSD date, time and dateTime data types map to the DATETIME data type
in SQL Server 2005. SQL Server 2008 introduced DATE and TIME data
types that can map to XSD time and date data types.

199

7 — XSD Primitive Data Types

There are a few points to note while using the following XSD date/time data
types:

. date
° time
. dateTime

The date data type stores a date value which contains year, month, day
and time zone information. The time data type represents a time value
which contains hour, minute, second and time zone information. The
dateTime data type contains the information stored by both date and time
data types. We have examined these data types earlier in this chapter.

Note that under SQL Server 2005, all three data types mentioned above
take time zone information along with the values. SQL Server 2005's
implementation of XSD date, time and dateTime data types requires time
zone information along with the value. If the time zone information is
missing, the validation will fail. SQL Server 2008 has relaxed this
requirement. In SQL Server 2008, time zone information is optional.

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'DataTypeTest'
) BEGIN
DROP XML SCHEMA COLLECTION DataTypeTest
END
GO

CREATE XML SCHEMA COLLECTION DataTypeTest AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:all>
<xsd:element name="DateOfBirth" type="xsd:date"/>
<xsd:element name="ReportingTime" type='"xsd:time"/>
<xsd:element name="Arrival" type="xsd:dateTime"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

Listing 7.54

Here is a valid XML instance which passes the validations rules defined by
the above schema.

DECLARE @x XML (DataTypeTest)

SET @x = '

<Employee>
<DateOfBirth>1980-01-01Z</Date0fBirth>

200

7 — XSD Primitive Data Types

<ReportingTime>10:00:00Z</ReportingTime>
<Arrival>2008-03-19713:10:00zZ</Arrival>
</EmpTloyee>"

Listing 7.55: date, time and dateTime values should contain time zone
information.

As mentioned earlier, in SQL Server 2005 a date, time or dateTime value
should contain the time zone information, also. The usage of “z" at the end
of the value indicates a UTC date/time. It is also possible to specify the
time zone by means of the time difference from GMT. Here is an example:

DECLARE @x XML (DataTypeTest)

SET @x = '

<Employee>
<DateOfBirth>1980-01-01+05:30</Date0fBirth>
<ReportingTime>10:00:00+05:30</ReportingTime>
<Arrival>2008-03-19713:10:00+05:30</Arrival>

</Employee>'

Listing 7.56: time zone can be stored as the time difference from GMT, too.

The value "+05:30" stands for Indian Standard Time. We have seen a
detailed explanation of date/time data types earlier in this chapter.

The following XML instance will be invalid in SQL Server 2005, but will
validate successfully under SQL Server 2008.

DECLARE @x XML (DataTypeTest)

SET @x = '

<Employee>
<DateOfBirth>1980-01-01</Date0fB1irth>
<ReportingTime>10:00:00</ReportingTime>
<Arrival>2008-03-19T13:10:00</Arrival>

</Employee>"'

Listing 7.57

Validating the length of text stored in an element
The length of a string value can be restricted using the length, minLength,

maxLength facets. We have seen an example in the previous lab. A more
detailed explanation of the facets of data types is given in Chapter 8.

201

7 — XSD Primitive Data Types

Start writing the schema

We have learned enough to write the schema needed for this lab. Let us
start writing each rule needed for this lab. In each lab, we will focus on a
specific element and will create it as a stand-along schema. Once the
schema declaration for all the elements is created, we can assemble them
and build the final schema that contains the declaration for all the
elements.

Rule 1:

The "Order" element should have a mandatory attribute named
"OrderNumber."

This attribute should not be empty and cannot have more than
twenty characters.

It can hold any combination of digits and alphabets in any case
(lower, upper or mixed case).

Let us declare the "Order” element and then enhance it with the rest of the
validation rules. Here is the basic declaration of the "Order" element. We
have learned element declarations in Chapter 5.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="order"/>
</xsd:schema>

Listing 7.58

Let us add the "OrderNumber" attribute to the "Order" element. Only a
complexType can have an attribute; therefore, we will declare the Order
element as complexType.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:attribute name="0OrderNumber"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.59

202

7 — XSD Primitive Data Types

Next, let us make the OrderNumber attribute mandatory. This can be done
by setting the "use"” attribute to “required.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order'">
<xsd:compTlexType>
<xsd:attribute name="OrderNumber" use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 7.60

Next we need to add a restriction to make sure that the OrderNumber
attribute is never left empty. Let us add a validation using the minLength
facet. Before we could apply a restriction on an attribute value, we should
declare it as simpleType.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:compTlexType>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.61

The next step is to add an xsd:restriction element to the simpleType
declaration. Since OrderNumber is a string value, the "base" attribute of the
restriction element points to "xsd.:string."

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.62

203

7 — XSD Primitive Data Types

Now let us restrict the length of the string by using minLength and
maxLength facets.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:compTlexType>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.63

Next we should restrict the format of the value. We should allow only letters
and digits. We will do this by using a pattern restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrder">
<xsd:compTlexType>
<xsd:attribute name="oOrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
<xsd:pattern value="[a-zA-z0-9]"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.64

The above pattern restricts the values to lower case alphabets a to z, upper
case alphabets A to Z and digits 0 to 9. An alternate way of writing this
pattern is as follows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>

204

7 — XSD Primitive Data Types

</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 7.65

Note that in this version we don't have the minLength and maxLength
elements anymore. The length restriction is specified along with the
pattern.

The regular expression language of XSD is explained in
Chapter 12.

Rule 2

Order element can have the following child elements and should
appear in the same order as given below: OrderDate,
DeliveryDate, Customer, Items, OrderNote, InvoiceNote and
Discount.

Next, let us declare the child elements of the "Order” node. Rule two says
that the elements should appear in a specific order. Hence, we need to
define the child elements using sequence indicator.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate"/>
<xsd:element name="DeliveryDate"/>
<xsd:element name="Customer" />
<xsd:element name="Items"/>
<xsd:element name="OrderNote"/>
<xsd:element name="InvoiceNote"/>
<xsd:element name="Discount"/>
</xsd:sequence>
<xsd:attribute name="oOrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

205

7 — XSD Primitive Data Types

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.66

Note that any attribute declaration should appear after the declaration of
elements.

Rule 3

OrderDate, DeliveryDate, Customer and Items are mandatory
elements. OrderNote, InvoiceNote and Discount are optional
elements. None of the elements can appear more than once
under an Order element.

The next rule defines certain elements as mandatory and certain other
elements as optional. All elements are mandatory by default. (This is the
opposite with the default behavior of attributes. Attributes are optional
by default.)

An element can be declared optional by setting the minOccurs attribute to
0. The default value of minOccurs for element declarations is 1; thus,
elements are mandatory by default.

The last part of the rule says that none of the elements can appear more
than once in the XML instance. By using minOccurs and maxOccurs
attributes, the number of occurrences of elements can be controlled. By
setting maxQOccurs to 1, we can make sure that the element is not allowed
to appear more than once in the XML instance.

The default value of both maxOccurs and maxOccurs is 1, which indicates
that the element should appear EXACTLY once within the parent element.
So, if you do not specify maxOccurs or minOccurs, the schema processor
will use the default value of these attributes while validating the element.
Therefore, the following two schema definitions are equivalent.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="oOrderDate"/>
<xsd:element name="DeliveryDate"/>
<xsd:element name="Customer"/>
<xsd:element name="Items"/>

</xsd:sequence>

206

7 — XSD Primitive Data Types

</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 7.67

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate"
minoccurs="1" maxOoccurs="1"/>
<xsd:element name="DeliveryDate"
minoccurs="1" maxoccurs="1"/>
<xsd:element name="Customer"
minoccurs="1" maxoccurs="1"/>
<xsd:element name="Items"
minoccurs="1" maxoccurs="1"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 7.68

Since the default value of minOccurs and maxOccurs is 1, both schema
definitions given below are equivalent.

Rule 4

OrderDate should be a date value and should not contain time
information. DeliveryDate should be a datetime value which
should contain date as well as time information.

This rule can be implemented by using "xsd:date” and "xsd:dateTime" data
types. We have seen these data types earlier in this chapter.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type="xsd:dateTime"/>
<xsd:element name="Customer" />
<xsd:element name="Items"/>
<xsd:element name="OrderNote" minoccurs="0"/>
<xsd:element name="InvoiceNote" minoccurs="0"/>
<xsd:element name="Discount" minoccurs="0"/>

</xsd:sequence>

207

7 — XSD Primitive Data Types

<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 7.69

Now it is the responsibility of the schema processor to make sure that the
value in the XML instance is valid for the given data type.

Rule 5

OrderNote and InvoiceNote are optional and if present they can
store a text note as long as 500 characters.

This rule is pretty simple and can be easily written using the restriction
code we wrote to validate the length of the OrderNumber.

Here is the final version of the schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="oOrder">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type="xsd:dateTime"/>
<xsd:element name="Customer"/>
<xsd:element name="Items"/>
<xsd:element name="OrderNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="InvoiceNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Discount" minOoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>

208

7 — XSD Primitive Data Types

</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
| </xsd:element>
</xsd:schema>

Listing 7.70

Note that we have declared OrderNote and InvoiceNote as simpleTypes.
We are trying to apply a restriction on the value; thus, those elements
should be defined as simpleTypes.

Now, let us create a Schema Collection and validate the XML instance we
saw earlier in this lab with the schema.

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'Lab2'

) BEGIN
DROP XML SCHEMA COLLECTION Lab2

END

GO

CREATE XML SCHEMA COLLECTION Lab2 AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type="xsd:dateTime"/>
<xsd:element name="Customer"/>
<xsd:element name="Items"/>
<xsd:element name="OrderNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="InvoiceNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Discount" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>

209

7 — XSD Primitive Data Types

</xsd:element>
</xsd:schema>"

Listing 7.71

Here is the XML instance that validates with the above schema.

DECLARE @x XML (Lab2)

SELECT @x = '

<Order orderNumber="20002">
<Orderbate>2008-01-01z</0OrderbDate>
<Deliverybate>2008-01-10T09:00:00-08:00</DeliveryDate>
<Customer />
<Items />
<OrderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>

Adjust the previous credit note with this invoice

</InvoiceNote>
<Discount />

</order>"

Listing 7.72

Try running different variations of the above XML instance and you will
realize that SQL Server will accept only those values that pass all the
validations we have defined in the schema so far.

We are done with the Order element. We will write schema for the other
elements in the coming labs. We will assemble these declarations and
build the final schema when we are done with the labs.

Chapter Summary

We examined XSD Primitive data types in this chapter. We discussed
some theoretical stuff like value spaces, lexical spaces, lexical
representation, lexical mapping, canonical mapping, canonical
representation, canonical lexical representation, etc. If they look too
complicated, you can ignore them in the first reading.

We saw that data types are very important in XSD. Having a richer set of
data types will help make writing schemas better and more efficiently, as
well. XSD supports a rich set of data types that can be classified as
Primitive data types and Derived data types. Primitive data types are the
base data types of XSD. Derived data type derives from the Primitive data
types directly or indirectly. XSD allows you to create custom data types for
cases where a built-in data type does not help perform a given validation.

210

7 — XSD Primitive Data Types

We have examined all the primitive data types of XSD, namely: string,
boolean, decimal, float, double, duration, dateTime, date, time,
gYearMonth, gYear, gMonthDay, gDay, gMonth, hexBinary, base64Binary,
anyURI, QName and NOTATION. SQL Server supports all the Primitive
data types of XSD except NOTATION.

Finally, we did a hands-on lab, where we wrote the schema needed for the
Order element.

211

CHAPTER 8
SIMPLE TYPES

We have discussed the XSD Primitive Data Types in the previous chapter.
When we discussed Primitive data types, | mentioned that there are
another set of built-in data types called Derived Data types. Those data
types are derived from the Primitive data types, directly or indirectly.

All those data types are Simple Types that derive from the built in
data types. Before we examine the Derived Data types, | would like to go
over Simple Types and type derivation. We have seen simple types
in many of the examples discussed previously, but have never had a
detailed discussion.

In this chapter we will discuss the following:

Simple Types and Complex Types

Simple Types — Local and global

Simple Types — Named and anonymous

Deriving from simple types

Enhancements to List and Union types added in SQL Server 2008
Inheritance and restrictions

Restricting type derivation

After discussing the above we will do a hands-on lab, which is a
continuation of the labs we did in the previous chapters.

Simple Types and Complex Types

We have discussed simple types and complex types several times in the
previous chapters. The basic distinction between simple types and complex
types is that only a complex type can contain child elements and attributes.
Simple types can't do it. We will discuss Complex Types in Chapter 10.

Simple types can only store a value. They cannot have child elements.
They cannot have attributes. An element or attribute can have a simple
type. They are simple, as the name indicates.

212

8 — Simple types

Simple Types - Global and Local

Simple Types can be declared globally or locally. When a Simple Type is
declared right under the xsd:schema element, it is a global declaration.
When a simple type is declared globally, it must always have a name.

When a Simple Type is declared within the scope of an element or attribute
it is a local declaration. Local declaration of simple types cannot take a
name. The following code snippet shows examples of simple types, both
global and local.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="zipType" />
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.1: Example of Simple Type (Global Declaration).

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ZzipCode">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 8.2: Example of Simple Type (Local Declaration).

Globally declared simple types provide a good example of reusability.
These simple types can be used just like other built in types. Global simple
types help reuse the definitions as well as help organize and maintain
the schema.

This is particularly helpful when the same set of validations is to be
performed on more than one element or attribute. For example, think of the
case where we need to validate the zip code of Shipping and Billing
location. Here is an example.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
| <!-- sales invoice element-->
<xsd:element name="SalesInvoice">
‘ <xsd:compTlexType>

213

8 — Simple types

<xsd:attribute name="Billingzip" type="zipType"/>
<xsd:attribute name="Shippingzip" type="zipType"/>
</xsd:complexType>
</xsd:element>

<l-- zipType -->
<xsd:simpleType name="zipType'>
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.3: An example showing a global simple type declaration.

The above schema would have been more complex if we had declared the
Simple Type locally. If we need to go with a local declaration, we need to
write the same validation rules twice. Here is the version of the schema
that uses local simple type declarations to validate zip codes.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- sales 1invoice element-->
<xsd:element name="SalesInvoice">
<xsd:compTlexType>
<xsd:attribute name="Billingzip">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="shippingzip">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.4: An example showing a local simple type declaration.

Simple Types - Named and Anonymous

When Simple Types are declared globally, they must be named. Such a
named simple type can be reused at other parts of the schema. When
simple types are declared locally, they cannot have a name; hence, they
are called Anonymous.

214

8 — Simple types

All global declarations of simple types are named and all local declarations
of Simple types are anonymous.

Deriving from Simple Types

You can derive a new Simple Type from one of the built-in data types or
from another simple type which is already derived from a built-in type. A
new Simple Type can be derived from a base type in one of the following
ways.

° Derive by restriction
. Derive by list
. Derive by Union

Let us see each of these methods in detail.

Deriving by Restriction

Usually new Simple Types are created to perform additional validations or
restrictions that an existing type does not do. This involves identifying a
base type (built-in or user-defined) that is close to what we are looking for,
and adding the additional restrictions or validation rules.

For example, assume that we need to create a new Simple Type to validate
the Age of employees. We need to make sure that the age should be
between 18 and 65 and no decimals allowed. We could use xsd:integer
and add a restriction on the minimum and maximum allowed values. We
could also use xsd:decimal and then add restrictions on min/max values
and set decimals to 0. In this example, a better option is to go with
xsd:integer because it already has a restriction on the decimals.

Let us now understand the restrictions in detail.

Assume that we need to create the schema for a sales invoice. One of the
values that we need to store is the zip code. Zip code should be a number
and should have exactly five digits. Let us create a Simple Type to describe
and validate a zip code.

A basic declaration of a Simple Type would look like this:

<xsd:simpleType/>

Listing 8.5: Basic declaration of a simple type (empty).
215

8 — Simple types

However, this declaration is incomplete. A global declaration of a Simple
Type should always have a name. Let us name the type "zipType.”

<xsd:simpleType name="zipType"/>

Listing 8.6: A global simple type declaration should always be named.

A restriction is defined by adding xsd:restriction to the Simple
Type declaration.

<xsd:simpleType name="zipType'">
<xsd:restriction />
</xsd:simpleType>

Listing 8.7: Adding a restriction to a simple type.

The next step is to specify the parent type from which we need to derive
our new Type. We could either go with xsd:string or xsd:integer. If we go
with xsd:string, we need to add restrictions so that only digits are accepted.
On the other hand, if we go with xsd:infeger we don't need this validation.
So let us go with xsd:integer.

<xsd:simpleType name="zipType'>
<xsd:restriction base="xsd:integer"/>
</xsd:simpleType>

Listing 8.8: Deriving from a base type.

Next, we need to restrict the length of the value to five digits. Each data
type has a number of properties that restricts the set of values it can
accept. These properties are called facets. While writing a schema, we
could use these facets to restrict the values an element or attribute can
accept. When you derive a new data type by restriction, you restrict one or
more facets.

; The facets of XSD built-in data types are explained in
Chapter 9.

All numeric data types have a facet called totalDigits. Let us use the
totalDigits facet to restrict the number of digits to five. Here is the schema
that applies this restriction.

216

8 — Simple types

<xsd:simpleType name="zipType'">
<xsd:restriction base="xsd:integer">
<xsd:totalbigits value="5"/>
</xsd:restriction>
</xsd:simpleType>

Listing 8.9: Restricting the number of digits with "totalDigits" facet.

Well, the totalDigits facet will make sure that the Simple Type does not
allow more than five digits. In our case, we need one more validation to
make sure that the values have at least five digits.

This can be achieved in a number of ways. Two examples are given below.

<xsd:simpleType name="zipType'">
<xsd:restriction base="xsd:integer">
<xsd:totalDigits value="5"/>
\ <xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>

Listing 8.10: "totalDigits" restricts the number of digits in the value and
"mininclusive” defines the smallest value accepted by the type.

<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
\ </xsd:restriction>
</xsd:simpleType>

Listing 8.11: "mininclusive” and "maxinclusive” can be used together to
restrict the values to a given range.

Both examples given above restrict the zip code to exactly five digits.

we need to accept leading zeroes, the above validation will
not work. In such a case, we need to use a pattern
restriction. Pattern restriction uses a Regular Expression
pattern to validate the value. The Regular Expression
language supported by XSD is explained in Chapter 12.

Iﬁ In the case of Zip codes we do not accept leading zeroes. If

We have created a Simple Type named zipType. Now let us declare an
element that is bound to zipType.

217

8 — Simple types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="zipType" />
<xsd:simpleType name="zipType'>
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.12: Declaring an element of simple type: zipType.

Note that we have set the type attribute to "zipType” to indicate that the
element ZipCode should be validated using the rules defined for zipType.

Now let us create a schema collection and see if SQL Server validates the
new data type correctly.

CREATE XML SCHEMA COLLECTION RestrictionDemo
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="zipType" />
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>'

Listing 8.13: Schema collection that validates a zip code.

DECLARE @x XML (RestrictionbDemo)
SET @x = '<ZipCode>12345</zipCode>"

-- the following will fail
-- SET @x '<Z1pCode>1234</zipCode>"

-- SET @x - '<ZipCode>123456</zipCode>"
-- SET @x = '<ZipCode>00001</zipCode>"'
-- SET @x = '<ZipCode>abcde</zipCode>'

Listing 8.14: TSQL code validating a zip code.

Deriving by List

Another way of creating a new Simple Type is by deriving by List. When
deriving by list, the new data type can store a SPACE separated list of
values accepted by the base type. You can define additional restrictions if
needed. Space is the only delimiter allowed in a list. Hence, if a value
contains spaces as part of it, it will be interpreted as two separate values.

218

8 — Simple types

list cannot be a List type. In other words, a list of list is

% Note that the base type of a Simple Type derived by
not supported.

Here is an example of a Simple Type that derives by list from xsd:integer.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCodes" type="ZipCodeList" />
<xsd:simpleType name="ZzipCodeList">
<xsd:1ist itemType="xsd:integer" />
</xsd:simpleType>
</xsd:schema>

Listing 8.15: Deriving by list.

The above schema defines an element named ZipCodes. The data type of
the element is ZipCodelist. ZipCodeList is a Simple Type that derives from
xsd:integer by list.

<xsd:simpleType name="zipCodeList">
<xsd:1list itemType="xsd:integer" />
‘ </xsd:simpleType>

Listing 8.16: A list type that derives from "integer.”

The above example shows the definition of a Simple Type that derives from
xsd:integer by list. When deriving by list, the itemType attribute of xsd.:list
should is set to the base type.

We have not seen xsd:integer when we discussed Primitive
Data Types. This is because xsd:integer is a Simple Type that
derives from xsd:decimal by restriction. We will examine the
XSD Derived Data Types in Chapter 9.

Let us create a Schema Collection with this definition and see how it works
in SQL Server.

219

8 — Simple types

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCodes" type="zipCodeList" />
<xsd:simpleType name="ZipCodeList">

<xsd:1ist itemType="xsd:integer" />

</xsd:simpleType>

f/xsd:schema>

GO

Listing 8.17: Creating schema collection to validate zip codes.

-- Validate
DECLARE @x XML (ExampleSchema)

SET @x = '<ZipCodes>10001 10002 10003 1 205 409</zipCodes>'
SET @x = '<ZipCodes></zipCodes>'

SET @x = '<ZipCodes />'

-- The following will fail because the Tist is of integer
-- data type.

--SET @x '<ZipCodes>1001 100A</ZipCodes>'

'<ZipCodes>10001 1001.0</zipCodes>"

Listing 8.18: Validating zip codes.

Note that SQL Server allows empty elements as well as a list of integer
values. However, it will not allow anything other than digits. It does not
allow decimals because the list is defined as integer type.

Note also that we are still able to store values like 1, 205, etc., which are
not valid ZIP codes. This is because SQL Server does not know what a zip
code is and, thus, will accept values as long as they are integers. One way
to get this fixed is by deriving a new type from integer by restriction and
adding validations so that it will accept only integer values with five digits.

Let us assume that we need to write the schema for an element that
accepts a list of zip codes in Washington State. The zip codes in
Washington State range from 98000 to 99499. Let us do it in a two-step
process. First, let us create a simple type that validates the zip code. Then
we will create another type that derives by list from it.

220

8 — Simple types

Here is the definition of the new type that validates zip codes in
Washington State.

<!-- pefinition of washingtonzipCode -->
<xsd:simpleType name="washingtonzipCode">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499"/>
</xsd:restriction>
</xsd:simpleType>

Listing 8.19: Simple Type that validates the zip codes in Washington State.

Note that we have applied a restriction on the accepted range of values
using mininclusive and maxinclusive. Now let us create the list type.

<!-- pefine the Tist type -->
<xsd:simpleType name="ZipCodeList">

<xsd:1ist itemType="washingtonzipCode" />
</xsd:simpleType>

Listing 8.20: Creating a list type from "WashingtonZipCode."

Now let us create a schema collection and test it.

CREATE XML SCHEMA COLLECTION Zi pCodeDemo

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- element declaration -->))
<xsd:element name="ZzipCodes" type="zipCodeList" />

<!-- Define the 1list type -->
<xsd:simpleType name="ZipCodeList">

<xsd:1ist itemType="washingtonzipCode" />
</xsd:simpleType>

<!-- pefinition of zipCode -->
<xsd:simpleType name="washingtonzipCode">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="98000"/>

<xsd:maxInclusive value="99499" />
</Xsd:restriction>
</xsd:simpleType>
</xsd:schema>"

Listing 8.21: A schema collection that validates the zip codes of Washington
State.

The new definition does not allow the list to store those incorrect values
that the previous example allowed. SQL Server will accept values only
within the range of 98000 to 99499.

221

8 — Simple types

DECLARE @x XML (ZipCodeDemo)

-- the following will fail, because the zip codes
-- are out-of-range
-- SET @x = '<ZipCodes>10001 10002 10003</zipCodes>'

-- this is the correct version
SET @x = '<ZipCodes>98000 98001 98002</zipCodes>"

Listing 8.22: Validating zip codes with schema collection: "ZipCodeDemo."

Support for creating list of union types is added in SQL

Iﬁ SQL Server 2005 does not allow creating a list of union types.
Server 2008 and is explained later in this chapter.

Deriving by Union

We have just seen derivation by restriction and by list. A third method of
deriving a simple type is by union. As the name indicates, you can derive a
new type from the union of one or more base types. The derived type can
store the values acceptable to any of the base types from which the new
type is derived.

Assume that we need to write a schema for the XML instance given below.

<Locations>
<Location>NY</Location>
<Location>90002</Location>
<Location>NJ</Location>
</Locations>

Listing 8.23: An XML instance storing location data.

The Location element in the above example accepts a zip code or a two-
letter city code. If the value is a zip code, then a set of validations defined
for zip codes should be performed on the value. If the value is a city code,
then another set of validations need to be performed on the value.

Let us start writing this schema. First of all let us create two simple types;
one to validate city codes and the other to validate zip codes. Here is the
schema that validates city codes.

<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="NY"/>

<xsd:enumeration value="NJ"/>

222

8 — Simple types

<xsd:enumeration value="wA"/>
<!-- other cities here -->
</xsd:restriction>
</xsd:simpleType>

Listing 8.24: A simple type using enumeration to restrict values.

Let us now create another simple type to validate zip codes.

<xsd:simpleType name="zZipType">
<xsd:restriction base="xsd:integer">
\ <xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
\ </xsd:restriction>
</xsd:simpleType>

Listing 8.25: A simple type using range restrictions to validate zip codes.

Now, let us create another simple type that derives from ZipType and
CityType by union.

<!-- Define the zipCityunion -->
<xsd:simpleType name="ZzipCityUnion">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="zipType"/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="CityType"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

Listing 8.26: A union type that derives from CityType and ZipType.

We have created the components to build a schema that validates the XML
instance we discussed earlier. Let us now build the schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- element declaration -->
<xsd:element name="Locations">

223

8 — Simple types

<xsd:complexType>
<xsd:sequence>
<xsd:element name="Location" maxOccurs="unbounded"
type="zipCityUnion"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>

<!-- pefine the zipCityUnion -->
<xsd:simpleType name="ZzipCityUnion">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="ZzipType"/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="CityType"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

<l-- CityType -->
<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NY"/>
<xsd:enumeration value="NJ"/>
<xsd:enumeration value="wA"/>
<!-- other cities here -->
</xsd:restriction>
</xsd:simpleType>

<l-- ZipType -->
<xsd:simpleType name="ZipType">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>"
GO

Listing 8.27: Creating a schema collection to validate locations.

-- Validate

DECLARE @x XML (ExampleSchema)

SET @Gx = '

<Locations>
<Location>NY</Location>
<Location>90002</Location>
<Location>NJ</Location>

</Locations>"'

Listing 8.28: The schema processor accepts zip codes as well as city codes.

Note that the schema allows the element to store either a zip code or a city
code. Each value will be validated against the rules defined in the base
types until it passes the validation of one of the base types. The value will
be accepted only if it validates successfully with one of the base types.

224

8 — Simple types

' ﬁ It is legal to have a union of unions or a union of union
of unions.

: ﬂ SQL Server 2005 does not allow creating a union of list
types. Support for creating union of list types is added in
SQL Server 2008 and is explained later in this chapter.

Enhancements to List and Union
Types added in SQL Server 2008

SQL Server 2008 added a few enhancements to some of the XSD data
types. We saw some of those new enhancements when we discussed the
date/time data types. SQL Server 2008 adds the following features to List
and Union types.

° You can create List types that contain Union types
° You can create Union types that contain List types

Creating a List of Union Types

Earlier in this chapter we saw examples of Union types. We saw an
example schema which defined a ZipCityUnion type that accepted either a
Zip Code or a two letter city code.

Let us have a look at another XML document.

<Search>
<Find what="Apartment" where="NY"/>
<Find what="Hotel" where="98000"/>
</Search>

Listing 8.29: XML document containing input value for a search application.

This is the input that a search application takes. The search application
tries to find the information requested by the "what" attribute in the location
specified by the "where" attribute. The "where” attribute can take either a
Zip code or a two letter city code.

We could easily write a schema for this XML document based on what we
learned earlier in this chapter. Here is the schema.

225

8 — Simple types

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- element declaration -->
<xsd:element name="Search">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="Find">
<xsd:complexType>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="where" type="zipCityuUnion"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>

<!-- pefine the union type -->
<xsd:simpleType name="ZipCityuUnion">
<xsd:union>
<!-- pefinition of zip Code -->
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499"/>
</xsd:restriction>
</xsd:simpleType>
<!-- definition of City Code-->
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Search>
<Find what="Apartment" where="NY"/>
<Find what="Hotel" where="98000"/>
</Search>'

Listing 8.30: A schema with a union type that accepts a zip code or city
code.

226

8 — Simple types

In the example we saw above, the "where" attribute could take either a zip
code or a two-letter city code. However, you can specify only one location
at a time. Assume that the requirement changes and we need to
allow multiple locations in the "where" attribute, such as the example
given below.

<Search>
<Find what="Hotel" where=""NY NJ 98003"/>
</Search>

Listing 8.31: A new version of the XML document that takes a list of zip
codes and city codes.

We learned that we can use a list type to store a list of values. In this
specific case we need to create a list of a union type, because we should
allow zip codes as well as city codes.

Let us first create a type that validates zip codes.

<l-- Zip Type -->
<xsd:simpleType name="ZzZipType'">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

Listing 8.32: A simple type to validate zip codes.

Now let us create another type to validate city codes.

<l-- City Type -->
<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NY"/>
<xsd:enumeration value="N3"/>
<xsd:enumeration value="wA"/>
<!-- other cities here -->
</xsd:restriction>
</xsd:simpleType>

Listing 8.33: A simple type to validate city codes.

Next, we write a union type that accepts either a ZipType or a CityType.

<!-- pefine the union type -->
<xsd:simpleType name="zipCityUnion">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="zipType"/>

227

8 — Simple types

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="CityType"/>
</xsd:simpleType>
| </xsd:union>
</xsd:simpleType>

Listing 8.34: A type that derives from ZipType and CityType by union.

Now, let us create a list from ZipCityUnion type we just created.

<!-- DpDefine 1list of zipCityunion -->
<xsd:simpleType name="ZzipCityUnionList">

| <xsd:list 1temType="ZzipCityunion"/>
</xsd:simpleType>

Listing 8.35: A list type that derives from a union type.

Now let us write the element declaration.

<!-- element declaration -->
<xsd:element name="Search">
<xsd:complexType>
<xsd:sequence maxoccurs="unbounded">
<xsd:element name="Find">
<xsd:complexType>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="where" type="zipCityUnionList"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>

Listing 8.36: A schema that uses a list of union type.

Let us try to create a Schema Collection in SQL Server 2005 and see
what happens.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1e5chema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- element declaration -->
<xsd:element name="Search">

P24

8 — Simple types

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="Find">
<xsd:complexType>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="where" type="ZzipCityUnionList"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<!-- pefine Tist of zipCityUnion -->
<xsd:simpleType name="zipCityuUnionList">

<xsd:Tlist itemType="ZipCityUnion"/>
</xsd:simpleType>

<!-- pefine the union type -->
<xsd:simpleType name="ZipCityUnion">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="zipType"/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="CityType"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

<l-- Zip Type -->
<xsd:simpleType name="ZipType">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

<l-- City Type -->
<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NY"/>
<xsd:enumeration value="NJ"/>
<xsd:enumeration value="wA"/>
<!-- other cities here -->
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Search>
<Find what="Hotel" where="NY NJ 98003"/>
</Search>'

Listing 8.37: SQL Server 2005 does not support lists of union types.

229

8 — Simple types

Unfortunately, this will not run in SQL Server 2005. The XSD
implementation of SQL Server 2005 does not support lists of union types. If
you run this code, SQL Server 2005 will generate the following error.

‘ Msg 6978, Level 16, State 1, Line 2
Invalid item type for Tist type 'zipCityUnionList'. The item type
of a 1ist may not itself be a list, and union types and types
derived from ID may not be used as item types in this release.

This restriction has been removed in SQL Server 2008. You can
successfully run this code in SQL Server 2008.

Creating a Union of List Types

We just saw an example that creates a list of union types. Now let us see
another example that creates a union of list types. To understand this, let
us take a slightly different version of the XML document we
examined earlier.

Assume that there is a change in the way the search application processes
input parameters. This change requires that the XML document should
contain either a list of zip codes or a list of city codes in the where attribute.

<Search>
<Find what="Hotel" where="NY NJ WA"/>
\ <Find what="Apartment" where="98000 98002 98010"/>
</Search>

Listing 8.38: A new version of the XML document that requires a union of list
types.

Let us re-write the schema for this XML structure. The where attribute
should accept either a list of city codes or a list of zip codes. To achieve
this we should create a union type that accepts a list of zip codes as well
as a list of city codes.

In the previous section, we have created types to validate zip codes as well
as city codes. Now let us create a union type that contains lists of ZipType
and CityType.

<!-- pefine the union type -->
<xsd:simpleType name="zipCityListUnion">
<xsd:union>
<!-- Dpefinition of zip Code List -->
<xsd:simpleType>
<xsd:1ist itemType="ZipType"/>
</xsd:simpleType>

230

8 — Simple types

<!-- definition of City Code List-->
<xsd:simpleType>
<xsd:1ist itemType="CityType"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

Listing 8.39: A union of list types.

Now, let us write the element declaration using the ZipCityListUnion type
we just created.

<!-- element declaration -->
<xsd:element name="Search">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="Find">
<xsd:complexType>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="where" type="ZzipCityListUnion"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Listing 8.40: element declaration using a union of list types.

The schema is ready! Let us test it in SQL Server 2005.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- element declaration -->
<xsd:element name="Search">
<xsd:complexType>
<xsd:sequence maxoccurs="unbounded">
<xsd:element name="Find">
<xsd:complexType>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="where" type="ZzipCityListUnion"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>

231

8 — Simple types

<!-- pefine the union type -->
<xsd:simpleType name="ZzipCityListUnion">
<xsd:union>
<!-- pefinition of zip Code List -->
<xsd:simpleType>
<xsd:1ist itemType="zipType"/>
</xsd:simpleType>
<!-- definition of City Code List-->
<xsd:simpleType>
<xsd:1ist itemType="CityType"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

<l-- Zip Type -->
<xsd:simpleType name="ZipType">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

<l-- City Type -->
<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NY"/>
<xsd:enumeration value="NJ"/>
<xsd:enumeration value="wA"/>
<!-- other cities here -->
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>"
GO

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Search>
<Find what="Hotel" where="NY NJ WA"/>
<Find what="Apartment" where="98000 98002 98010"/>
</Search>"

Listing 8.41: SQL Server 2005 does not support union of list types.

This will not run in SQL Server 2005. If you try to run it, SQL Server 2005
will generate the following error.

‘ Msg 6977, Level 16, State 1, Line 3
Invalid member type 'xs-
nun(/simpleType(zZipCityListuUnion)/simpleType()[1])"' in union type
'ZipCityListUnion'. Unions may not have complex member types.

The XSD implementation of SQL Server 2005 does not allow union of list
types. The restriction has been removed in SQL Server 2008. You can run
this code successfully in SQL Server 2008.

232

8 — Simple types

Inheritance and restrictions

We have seen how to inherit new Simple Types from existing ones. When
you derive a new type from an existing one, you can only apply a
restriction which is equal to or more restrictive than the base type.

For example, xsd:integer derives from xsd:decimal by applying a restriction
on the fraction digits. xsd:integer sets fractionDigits facet to 0. If you derive
a new Simple Type from xsd:integer, you cannot set the fractionDigits facet
to a value greater than 0.

Let us look at an example. Let us go back to the zipType we defined earlier
in this chapter.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType'">
<xsd:restriction base="xsd:integer">
<Xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.42: A simple type that validates zip codes.

We defined the above Simple Type to validate zip codes. It will accept any
value between 10000 and 99999. Now assume that we are writing this
schema to validate the sales invoice of a company that ships only to the
state of Washington. So the Zip code in the shipping address should be
between 98000 and 99499.

Let us define one more Simple Type to validate the Zip codes of
Washington. We will derive a new type from zip Type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType'">
<xsd:restriction base="xsd:integer">
<Xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>

<!-- Zip codes of washington-->
<xsd:simpleType name="washingtonzipType">
<xsd:restriction base="zipType">
<Xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499"/>
</xsd:restriction>

233

8 — Simple types

</xsd:simpleType>
</xsd:schema>

Listing 8.43: A simple type that validates the zip codes of Washington.

The above example tries to derive a new Simple Type named
washingtonZipType from zipType. The derived type makes the value space
of the base type more restrictive.

It is not allowed to make the value space of a derived type less restrictive
than the base type. The following is illegal.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Zip codes of washington-->
<xsd:simpleType name="washingtonzipType">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499"/>
</xsd:restriction>
</xsd:simpleType>

<!l-- any zip type -->
<xsd:simpleType name="anyzipType">
<xsd:restriction base="washingtonzipType">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.44: It is illegal to have the derived type less restrictive than the
base type

The above example derives a new type from washingtonZipCode.
However, it tries to make the value space less restrictive than the base
type. This is not allowed and SQL Server will generate an error if you
attempt to create a schema collection with such a definition.

Locking facets with "fixed"
attribute

We have discussed earlier that each XSD data type has a certain number
of facets that control its value space. When we derive a new Simple Type
from another, the new type will inherit all the facets of the base type. The
derived type can then make one or more facets more restrictive.

234

8 — Simple types

There may be times when you do not want the derived types to modify a
certain facet. In such cases, you can set the "fixed" attribute of the
given facets to "frue” to make sure that the derived types do not modify
those facets.

Let us go back to the example of ZipType that we saw earlier. In the
previous example — the derived type — washingtonZipType was able to
modify mininclusive and maxinclusive facets. Now let us try to mark
maxinclusive as a fixed facet and see what happens.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="washingtonzipType"/>

<l-- zipType -->
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>

<!-- Zip codes of washington-->
<xsd:simpleType name="washingtonzipType">
<xsd:restriction base="zipType">
<xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499" />
</xsd:restriction> </xsd:simpleType>
</xsd:schema>

Listing 8.45: When a facet is marked as "fixed," it cannot be modified in the
derived type.

Note that the facet maxinclusive is marked as "fixed," and as a result you
cannot modify its value in the derived type. If you modify this and try to
create a schema collection, SQL Server will generate the following error.

Invalid type definition, fixed facets can not be redefined

However, you can modify the mininclusive facet because it is not a fixed
facet in the base type. The following will run successfully.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema

235

8 — Simple types

AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="washingtonzipType"/>

<!l-- zipType -->
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xXsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>

<!-- Zip codes of washington-->
<xsd:simpleType name="washingtonzipType'>
<xsd:restriction base="zipType'>
<xsd:minInclusive value="98000"/>
</xsd:restriction>
</xsd:simpleType>
f/xsd:schema>

GO
-- validate

DECLARE @x XML (ExampleSchema)
SET @x = '<ZipCode>98000</zipCode>"

Listing 8.46

Restricting derivation with "final"

Inheritance is a great feature. However, there are times when you want to
protect a Simple Type from being inherited. XSD provides a way to protect
your Simple Type so that no other Types can inherit from it. This is

achieved by using the "final” attribute.

The "final" attribute can take the following values:

restriction
list

union
extension
#all

We will examine each of these values in the next few paragraphs.

236

8 — Simple types

Preventing derivation by
restriction

When the "final" attribute is set to "restriction,"” the Simple Type is protected
from being inherited by restriction. Look at the following example:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="washingtonzipType"/>

<l-- zipType -->
<xsd:simpleType name="zipType" final="restriction">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" />
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>

<!-- Zip codes of washington-->
<xsd:simpleType name="washingtonzipType">
<xsd:restriction base="zipType">
<Xsd:minInclusive value="98000"/>
<xsd:maxInclusive value="99499"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.47: When "final" is set to "restriction," the type cannot be inherited
by restriction.

This will generate the following error:

Invalid type definition for type 'washingtonzipType', the
derivation was illegal because 'final' attribute was specified on
the base type

When the "final" attribute is set to "restriction,” you can still derive new
Simple Types by list or by union.

Preventing derivation by list

When "final" is set to "list," you cannot derive a new type by list. However,
you can still derive by restriction or by union from the given base type.

The following is illegal.

237

8 — Simple types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="ZzipTypeList"/>

<l-- zipType -->
<xsd:simpleType name="zipType" final="Tist">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ZzipTypeList">
<xsd:1list itemType="zipType"/>
</xsd:simpleType>
</xsd:schema>

Listing 8.48: When "final" is set to "list," the type cannot be used as the base
of a list.

If you try to create a schema collection with the above code, SQL Server
will generate the following error.

Invalid type definition for type 'ZipTypeList', the derivation was
illegal because 'final' attribute was specified on the base type

Preventing derivation by union

When "final" is set to "union,” the type cannot be used as one of the base
types in a union. You can still derive from it by restriction or by list.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="zipCode" type="ZzipCityUnion"/>

<l-- zipType -->
<xsd:simpleType name="zipType" final="union">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>

<l-- City Type -->
<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NY"/>
<Xsd:enumeration value="N3J"/>
<xsd:enumeration value="wA"/>
<!-- other cities here -->
</Xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="zipCityunion">
<xsd:union memberTypes="CityType zipType"/>

238

8 — Simple types

</xsd:simpleType>
</xsd:schema>

Listing 8.49: Types having "final” set to "union" cannot be used as one of
the base types in a union.

If you try to create a schema collection with the above schema, SQL Server
will generate the following error.

Invalid type definition for type 'zipCityuUnion', the derivation
was illegal because 'final' attribute was specified on the base

type

Preventing derivation by extension

Earlier in this chapter we saw how to derive new Simple Types by list,
union and restriction. But | have not mentioned derivation by extension yet.

Extension refers to deriving a new type from a Simple Type that results in a
Complex Type. When you extend a simple type, the result will always be a
complex type. That is the reason why | have not mentioned it when we
discussed deriving Simple Types.

Setting the "final" attribute to "extension" protects the Simple Type from
being extended. We will see extension in Chapter 11 when we discuss
derivation of complex types.

Preventing more than one type of
derivation

The "final" attribute can take more than one value at a time to prevent the
Simple Type from being inherited by any of the specified derivation
methods. For example, the following code prevents the Simple Type from
being inherited by list and by union.

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType" final="1ist union">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>

239

8 — Simple types

</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.50

The next example shows a Simple Type that cannot be inherited by union
or by restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType" final="restriction union">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.51

The final attribute can take a list that contains any combination of
restriction, union, list and extension. However, you cannot specify a
derivation method more than once.

Preventing derivation completely

When the "final" attribute is set to "#all," the Simple Type cannot be
inherited at all. We have seen how to protect a Simple Type from being
inherited by list, restriction, union or by extension. When "final" is set to
"#all" the Simple Type cannot be inherited at all.

Having "final" set to "#all" is equivalent to setting it to list, union, restriction
and extension. For example, the following two are equivalent.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType"
final="restriction union list extension">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<Xsd:minInclusive value="10000"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.52

240

8 — Simple types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<l-- zipType -->
<xsd:simpleType name="zipType" final="#all">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.53

The following is illegal because "#all" cannot be used with any other
derivation method.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!l-- zipType -->
<xsd:simpleType name="zipType" final="restriction #all">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999" fixed="true"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 8.54

LAB3: Write schema for the Order
Processing Application -
The Customer element.

It is time for another Lab. In the previous labs we have developed the
schema for the Orderinfo and Order elements. In this lab we will write the
schema for the customer element.

The Customer Element

This is how the Customer element should look.

<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing />
<Shipping />

241

8 — Simple types

<Terms>30 Days Credit</Terms>
<Contact />
</Customer>

Listing 8.55: Example of a Customer element.
The Customer element should follow the rules given below:

. Each Customer element should contain an attribute named
CustomerNumber. It is mandatory and should be EXACTLY five
characters long. It should contain only upper case letters (A-Z).

o A Customer element can have five child elements EXACTLY in the
order given below.

CustomerName
Billing

Shipping

Terms

Contact

. CustomerName is optional, and if present should not be more than
fifty characters long. The element can appear only once.

. Billing and Contact are mandatory and can appear only once.

. Shipping is optional. If not present, the address given in Billing is
assumed to be the shipping location. There should be only one
shipping element.

. Terms is mandatory and cannot appear more than once. The value
should be one of the following:

o 30 Days Credit
o 60 Days Credit
o 90 Days Credit
o Against Delivery

O O O O O

Before we jump into writing the schema, let us see if we have learned
enough to translate all the above rules to XSD declarations. Writing the
above schema requires the following XSD skills.

. Declaring mandatory elements and validating the length and format
of attribute values.

. Declaring the children of an element and controlling the order of the
child elements.

. Declaring optional and mandatory elements.
Controlling occurrences of elements.

. Defining an enumeration.

242

8 — Simple types

We have developed most of these skills in the previous chapters and have
used them in the previous labs. The only skill that is new to you must be
the enumeration that we need to define for the Terms element.

Defining Enumerations

Sometimes we will come across requirements where we need to apply a
certain restriction to an element or attribute so that only a set of predefined
values can be stored. For example, the PaymentMethod element of Invoice
may allow only Cash, Check or Credit Card. This can be achieved by either
using a Regular Expression or by using an enumeration.

Let us see an example. First of all, the element or attribute should be
declared as simpleType.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
| <xsd:element name="PaymentMethod">
<xsd:simpleType />
\ </xsd:element>
</xsd:schema>

Listing 8.56

The next step is to add a restriction element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentMethod">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 8.57

Since the element stores string values, let us define a restriction based on
xsd:string. Within the restriction element, we could declare a few
enumeration elements.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentMethod">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Cash"/>
<xsd:enumeration value="cCheck"/>
<xsd:enumeration value="cCredit card"/>

</xsd:restriction>

243

8 — Simple types

</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 8.58

The above schema declares an element named PaymentMethod and
associates it with an enumeration that accepts only the following values:
Cash, Check or Credit Card. Let us create a Schema Collection and see
the validation in action.

CREATE XML SCHEMA COLLECTION EnumerationTest AS
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentMethod">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="cCash"/>
<xsd:enumeration value="Check"/>
<xsd:enumeration value="Credit Card"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 8.59

DECLARE @x XML(EnumerationTest)

-- cash
SET @x = '<PaymentMethod>Cash</PaymentMethod>"'

-- check
SET @x = '<PaymentMethod>Check</PaymentMethod>"

-- Credit Card)
SET @x = '<PaymentMethod>Credit Card</PaymentMethod>'

/7':

Success!!!

Listing 8.60

DECLARE @x XML(EnumerationTest)
| SET @x = '<PaymentMethod>cash</PaymentMethod>"'

| error: "cash" is invalid. First letter should be capitalized

Listing 8.61

244

8 — Simple types

DECLARE @x XML(EnumerationTest)
SET @x = '<PaymentMethod>Paypal</PaymentMethod>"
/7‘:

error: "Paypal" is not a valid value

Listing 8.62

The above can be achieved with a pattern restriction as well.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentMethod">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern va1ue—"(Check|Cash|Cred1t card)"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 8.63

Let us create an XML schema collection and see whether it performs the
same set of validation or not.

CREATE XML SCHEMA COLLECTION PatternTest AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="PaymentMethod">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(Check|cCash|Credit card)"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 8.64

DECLARE @x XML(PatternTest)

-- cash
SET @x = '<PaymentMethod>Cash</PaymentMethod>"'

-- check
SET @x = '<PaymentMethod>Check</PaymentMethod>"

-- Credit Card)
SET @x = '<PaymentMethod>Credit Card</PaymentMethod>'

245

8 — Simple types

/:‘:

Success!!!

Listing 8.65

The schema collection does not accept any values other than the ones
defined in the pattern.

‘ DECLARE @x XML(PatternTest)
SET @x = '<PaymentMethod>cash</PaymentMethod>"'

/

error: "cash" is invalid. First letter should be capitalized

Listing 8.66

DECLARE @x XML (PatternTest)
SET @x = '<PaymentMethod>Paypal</PaymentMethod>"

/

error: "Paypal" is not a valid value

Listing 8.67
Though we could write a schema to perform the same validation with a
pattern restriction as well as an enumeration, it might be a better choice to

go with enumerations as it will make the schema simpler to manage and
understand.

Start Writing the Schema

Let us start writing the schema. We have seen the rules earlier and
examined ourselves to make sure that we have enough skills to write the
Customer schema.

Rule 1

Each Customer element should contain an attribute named
CustomerNumber. It is mandatory and should be EXACTLY five
characters long. It should contain only upper case letters.

Let us start with a basic element declaration for the Customer element.

246

8 — Simple types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer"/>
</xsd:schema>

Listing 8.68

Now, let us add the CustomerNumber attribute.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>
<xsd:attribute name="CustomerNumber"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 8.69

An attribute can be set as mandatory by using the use attribute.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>
<xsd:attribute name="CustomerNumber" use="required"/>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 8.70

To apply a restriction on the value of the attribute, the attribute should be
declared as a simpleType. After the attribute is declared as a simple type, a
restriction element can be added to define a restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.71

247

8 — Simple types

The length of the attribute value can be restricted either by restricting the
length facet or by a pattern restriction. The format of the attribute value can
be restricted only by a pattern restriction.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{5}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.72

The above pattern restricts the value of the attribute to be five characters
long and would allow only alphabets 'A' to 'Z' in upper case. The pattern
restriction uses a Regular Expression to specify the format of the value.
This Regular Expression language is explained in Chapter 12.

Rule 2

A Customer element can have five child elements EXACTLY in the
order given below: CustomerName, Billing, Shipping, Terms and
Contact.

At this step, let us declare the child elements of Customer element. The
rule says that the elements should appear in a specific order. Hence, the
child elements of Customer element should be placed within a sequence
element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"/>
<xsd:element name="Billing"/>
<xsd:element name="Shipping"/>
<xsd:element name ="Terms"/>
<xsd:element name="Contact"/>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{5}"/>
</xsd:restriction>

2438

8 — Simple types

</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.73

If an element has child elements as well as attributes, the attributes should
appear after the declaration of the elements.

Rule 3

CustomerName is optional, and if present should not be more
than fifty characters long. The element can appear only once.

By default, elements are mandatory. An element can be marked as optional
by setting minOccurs to 0. To indicate that the element cannot appear more
than once, we should set the maxOccurs attribute to 1. The default value of
maxOccursis 1.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="CustomerName"/>
minOccurs="0" maxOccurs="1"/>

<xsd:element name="Billing"/>
<xsd:element name="Shipping"/>
<xsd:element name ="Terms"/>
<xsd:element name="Contact"/>

</xsd:sequence>

<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>

<xsd:restriction base="xsd:string'">
<xsd:pattern value="[a-zA-Z]{5}"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.74

The length of the value that an element can store is restricted by applying a
restriction on the maxLength facet. The element should be declared as a
simpleType and a restriction element needs to be added within the
simpleType declaration.

249

8 — Simple types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<!-- other declarations here -->
</xsd:sequence>)
<!-- attribute declaration here -->

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 8.75

Rule 4

Billing and Contact are mandatory and can appear only once.

As mentioned earlier, all elements are mandatory by default. An element
can be marked as mandatory by setting minOccurs attribute to 1.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minoccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing"
minoccurs="1" maxoccurs="1"/>
<xsd:element name="sShipping"/>
<xsd:element name ="Terms"/>
<xsd:element name="Contact"
minoccurs="1" maxoccurs="1"/>
</xsd:sequence>
<!-- attribute declaration here -->
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 8.76

250

8 — Simple types
Rule 5

Shipping is optional. If not present, the address given in Billing is
assumed to be the shipping location. There should be only one
shipping element.

An element can be marked as optional by setting minOccurs to 0.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing"
minoccurs="1" maxoccurs="1"/>
<xsd:element name="Shipping"
minOccurs="0" maxOccurs="1"/>
<xsd:element name ="Terms"/>
<xsd:element name="Contact"
minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<!-- attribute declaration here -->
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.77

Rule 6

Terms is mandatory and cannot appear more than once. The value
should be one of the following: 30 Days Credit, 60 Days Credit, 90
Days Credit and Against Delivery.

We will use an enumeration restriction to implement this rule. We have
seen an example a little earlier. Here is how the declaration would look.

<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>

251

8 — Simple types

</xsd:restriction>
</xsd:simpleType>
</xsd:element>

Listing 8.78

Here is the final version of the schema we developed at this lab. The
following schema describes the Customer element and validates it against
all the rules we discussed.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minoccurs="0" maxoccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing"
minoccurs="1" maxoccurs="1"/>
<xsd:element name="Shipping"
minOccurs="0" maxOccurs="1"/>
<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Contact"
minoccurs="1" maxoccurs="1"/>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{5}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 8.79

Let us create a Schema Collection and see the validation in action.

252

8 — Simple types

CREATE XML SCHEMA COLLECTION CustomerSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minoccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Bi111ng"
minOccurs="1" maxoccurs="1"/>
<xsd:element name="Shipping"
minOccurs="0" maxoccurs="1"/>
<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Contact"
minOccurs="1" maxoccurs="1"/>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{5}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>"

Listing 8.80

Here is a correct XML instance that validates with the schema we
defined above.

DECLARE @x XML (CustomerSchema)

SELECT @x = '

<Customer customerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing />
<Shipping />
<Terms>30 Days Credit</Terms>
<Contact />

</Customer>"'

Listing 8.81

253

8 — Simple types

It is time for you to play with different XML instances and see how well SQL
Server 2005 validates your XML documents, based on the Schema
Collection we just defined.

Let us merge this version of the schema with the one we developed in the
previous lab.

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'OrderiInfo'

) BEGIN
DROP XML SCHEMA COLLECTION OrderInfo

END

GO

Listing 8.82

CREATE XML SCHEMA COLLECTION OrderInfo AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type="xsd:dateTime"/>
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing"
minoccurs="1" maxOccurs="1"/>
<xsd:element name="Shipping"
minoccurs="0" maxOccurs="1"/>
<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Contact"
minoccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-Z]{5}"/>
</xsd:restriction>
</xsd:simpleType>

254

8 — Simple types

</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="Items"/>
<xsd:element name="oOrderNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="InvoiceNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Discount" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>"

Listing 8.83

The following is a correct XML instance that validates with the above
schema.

DECLARE @x XML(orderInfo)
SELECT @x = '
<Oorder oOrderNumber="20002">
<Orderbate>2008-01-01z</0OrderbDate>
<Deliverybate>2008-01-10T09:00:00-08:00</Del1iverybate>
<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing />
<Shipping />
<Terms>30 Days Credit</Terms>
<Contact />
</Customer>
<Items />
<OrderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount />
</order>"

Listing 8.84

255

8 — Simple types

Try a few different XML instances and make sure that all the validation
rules we have discussed so far are correctly defined with the schema
collection and that SQL Server validates the XML instances as expected.

Chapter Summary

We have had a good look into Simple Types and learned how to derive
new types from existing ones. Simple Types can be local or global. When
declared globally they are always named, and when declared locally they
are anonymous. When a Simple Type is declared globally, it can be re-
used in the declaration of other elements and attributes.

A Simple Type can be derived by List, Union or by restriction. SQL Server
2005 does not allow union of list types and lists of union types. SQL Server
2008 removed this restriction. With SQL Server 2008, you can create union
of list types as well as list of union types.

When you derive a new type, you can only set the facets to be more
restrictive than the base type.

You can freeze a given facet of a Simple Type so that a derived type
cannot change the value of that facet. This is done by setting the fixed
attribute to "frue.” You can restrict a Simple Type from being inherited by
setting the final attribute to list, union, restriction or extension. The final
attribute can also take a list of different derivation methods to restrict more
than one method of derivation. You can also set it to "#all" to restrict all
derivation methods.

256

CHAPTERS 9

XSD BUILT-IN DERIVED DATA
TYPES

We have seen XSD Primitive data types in Chapter 7. XSD supports
eighteen Primitive data types and SQL Server supports seventeen of them.
(SQL Server does not support NOTATION data type.)

In this chapter we will examine the Built-in Derived Data Types of XSD. We
will discuss the following:

. XSD Built-in Data Types: Primitive and Derived Data Types
. Facets of built-in data types
XSD Built-in Derived data types

XSD Built-in Data Types: Primitive
and Derived Data Types

We have seen several XSD data types in the topics we covered so far. One
of the data types that | mentioned often in the previous discussions is
xsd:integer. In Chapter 7 we examined XSD Primitive Data Types, but
xsd:integer was not discussed there.

The reason is that xsd:integer is a simple type that derives from one of the
primitive data types: xsd:decimal. XSD has twenty-five such data types that
derive directly or indirectly from one of the Primitive Data types we
examined earlier. | will cover all those data types later in this chapter.

In Chapter 8 we learned how to derive new types from existing ones. All
the built-in Derived Data Types of XSD are derived in the same manner.
For example, xsd:integer is derived from xsd:decimal by restriction with the
following definition.

<xs:simpleType name="integer" id="1integer">
<XS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#integer"/>
\ </Xs:annotation>
<Xs:restriction base="xs:decimal">

257

9 — XSD built-in derived data types

<xs:fractionbigits fixed="true" value="0"
id="1integer.fractionDigits"/>
<xs:pattern value="[\-+]7[0-9]+"/>
</xs:restriction>
</xs:simpleType>

Listing 9.1: Definition of built-in simple type "integer.”

Let us try to understand this.

<xs:simpleType name="integer" id="integer">

Listing 9.2: A basic simple type declaration

This statement defines a new type named integer. We have used similar
statements to define simple types in the previous topics. In none of our
examples, we used the id attribute. The id attribute does not add anything
to the validation of the XML instance. This attribute is used only to identify
each schema component unique within a given schema. We discussed the
id attribute when we examined Element Declarations and Aftribute
Declarations in Chapter 5 and 6, respectively.

<XS:annotation>
<Xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#integer" />
</Xs:annotation>

Listing 9.3: Annotations are used to add documentation to
schema components.

We discussed annotations briefly in Chapter 4. | will give a little more
detailed explanation in Chapter 13. Annotations are used to add
documentation to schema components.

<xs:restriction base="xs:decimal">

Listing 9.4: "integer” data type derives from "decimal” by restriction.

This statement indicates that integer type is derived from XSD Primitive
Data Type, decimal.

<xs:fractionDigits fixed="true" value="0"
id="integer.fractionbigits"/>

Listing 9.5: "integer” data type does not support decimals.

258

9 — XSD built-in derived data types

There is something new in this declaration. We have not seen fractionDigits
previously. This is a facet exposed by all numeric data types and it restricts
the number of decimal places in the value. Note that integer data type sets
fractionDigits to 0, to indicate that it should not accept decimals.

The attribute fixed indicates that any type that derives from integer is not
allowed to modify the value of fractionDigits facet. The fixed attribute is
explained later in this chapter.

<xs:pattern value="[\-+]7[0-9]+"/>

Listing 9.6: A pattern is used to restrict the value space of the "integer” data
type.

And finally, it applies a pattern restriction to validate the format of the value.
We have seen pattern restrictions a few times in the previous chapters. It
uses a Regular Expression language which is explained in Chapter 12.

We just saw the definition of the integer data type. Just as with integer,
each of the XSD built-in derived data types derives from one of the
Primitive Types directly or indirectly. We will examine XSD Built-in Derived
Data Types later in this chapter.

Facets of Data Types

Each data type has a certain set of characteristics that can be used to
perform additional validations on the value. For example, by setting the
data type of an attribute to infeger you can make sure that only numbers
are accepted. However, sometimes we might need to restrict a type to
allow only numbers within a given range (e.g., age of an employee). This
could be possible if the data type has a min and max property. Each of the
XSD data types has a certain number of such properties that add additional
restrictions on the value. These properties are called facets in XSD.

Not all data types support the same facets. Facets of string are different
from the facets of float, for example. Facets like length, minLength, and
maxLength are meaningful for string data type, but they are not meaningful
with a float value. Facets like fractionDigits and totalDigits are meaningful
for float values, but not for date values.

259

9 — XSD built-in derived data types

We will see the facets supported by each data type later in this chapter.
Here is a list of all the facets supported by the different data types of XSD.

length
minLength
maxLength
pattern
enumeration
whitespace
totalDigits
fractionDigits
maxlInclusive
mininclusive
maxExclusive
minExclusive

Let us examine each of these facets in detail.

Facet: length

This facet restricts the number of characters a value can accept. It should
always be a non-negative value. 0 is accepted but negative values are not.

When length is specified the value being assigned to the given element or
attribute should be exactly as long as the value specified in the length
attribute.

CREATE XML SCHEMA COLLECTION StringLength AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ProductCode">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:Tength value="5"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.7: A string type with "length"” restriction.

260

9 — XSD built-in derived data types

DECLARE @x XML(StringLength)
SET @x = '<ProductCode>ABCDE</ProductCode>"

/

success!!!

Listing 9.8: A "length” restriction makes sure that the value contains the
specified number of characters.

DECLARE @x XML(StringLength)
SET @x = '<ProductCode>ABCD</ProductCode>"
/:‘:

error!!!
XML Vvalidation: Invalid simple type value: "'ABCD'. Location:
/*:ProductCode[1]

SET @x = '<ProductCode>ABCDEF</ProductCode>"

error!!!
XML Vvalidation: Invalid simple type value: 'ABCD'. Location:
/*:ProductCode[1]

Listing 9.9: The "length" validation will fail if the value does not contain the
specified number of characters.

If length is specified, minLength and maxLength cannot be used. They are
mutually exclusive. The following definition will give an error. (minLength
and maxLength facets are explained later in this chapter)

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:simpleType name="test">
<xsd:restriction base="xsd:string">
<xsd:length value="5"/>
<xsd:maxLength value="2" />
</Xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 9.10: "length" and "maxLength” are mutually exclusive.

‘ Invalid type definition for type 'test', 'Length' can not be
greater than 'maxLength'

Let us try to set the length and maxLength to five and see if it fixes the
error.

261

9 — XSD built-in derived data types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:simpleType name="test">
<xsd:restriction base="xsd:string">
<xsd:length value="5"/>
<xsd:maxLength value="5" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 9.11: "length" and "maxLength" are mutually exclusive, too.

Invalid type definition for type 'test', 'maxLength' facet is not
restricting the value space

When length is used, facets minLength or maxLength cannot be used.

Facet: minLength

minLength defines the minimum length of the value. The value of
minLength facet should be 0 or a positive integer. minLength cannot be
used with "length" facet.

The following schema defines a non-empty string element.

CREATE XML SCHEMA COLLECTION StringMinLength AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Notes'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.12: "minLength"” can be set to 1 to define a non-empty string.

DECLARE @x XML(StringMinLength)
SET @x = '<Notes>Urgent!!!</Notes>'

success!!!

Listing 9.13: When "minLength"” is set to 1, the value should be non empty.

DECLARE @x XML(StringMinLength)
| SET @x = '<Notes></Notes>'

‘error!!!

262

9 — XSD built-in derived data types

XML Vvalidation: Invalid simple type value: Location:

/*:Notes[1]

Listing 9.14: When "minLength" is set to 1, empty values will be rejected.

The following schema declares an element that allows an empty string.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'StringMinLength'
) BEGIN
DROP XML SCHEMA COLLECTION StringMinLength
END
GO

CREATE XML SCHEMA COLLECTION StringMinLength AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Notes'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'

Listing 9.15: A schema showing a string type with "minLength" set to 0.

DECLARE @x XML(StringMinLength)
SET @x = '<Notes>Urgent!!!</Notes>'

success!!!

::/

SET @x = '<Notes></Notes>'
success!!!

::/

SET @x = '<Notes />'

success!!!

Listing 9.16: When "minLength" is set to 0, empty values are accepted.

Facet: maxLength
maxLength defines the maximum length of the value. maxLength cannot

be used with the length facet. The value of maxLength restriction should be
0 or a positive integer.

263

9 — XSD built-in derived data types

If maxLength is set to 0, the element or attribute cannot take a value. It
always has to be empty. The following schema declares an element that
cannot store a value.

CREATE XML SCHEMA COLLECTION StringMaxLength AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Notes">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="0"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.17: A schema showing a string type with "maxLength"” set to 0.

DECLARE @x XML(StringMaxLength)

SET @x = '<Notes>Urgent!!!</Notes>'

error!!!)]))
XML Vvalidation: Invalid simple type value: 'Urgent!!!'. Location:
/*:Notes[1]

Listing 9.18: When "maxLength” is set to 0, validation will fail if the element
or attribute contains a value.

DECLARE @x XML(StringMaxLength)
SET @x = '<Notes></Notes>'

/

success!!!

SET @x = '<Notes />'
/7‘:

success!!!

Listing 9.19

maxLength and minLength can be used together to generate the same
effect as the length restriction.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'StringLength'
) BEGIN
DROP XML SCHEMA COLLECTION StringLength
END
GO

CREATE XML SCHEMA COLLECTION StringLength AS '

264

9 — XSD built-in derived data types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ProductCode">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="5"/>
<xsd:minLength value="5"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
Listing 9.20 - "minLength"and "maxLength'can be used to restrict
the length of the value
DECLARE @x XML(StringLength)
;ET @x = '<ProductCode>ABCDE</ProductCode>"

success!!!

Listing 9.21

DECLARE @x XML(StringLength)
SET @x = '<ProductCode>ABCD</ProductCode>"
/:‘:

error!!!
XML Vvalidation: Invalid simple type value: "'ABCD'. Location:
/*:ProductCode[1]

SET @x = '<ProductCode>ABCDEF</ProductCode>"

error!!!
XML Vvalidation: Invalid simple type value: 'ABCD'. Location:
/*:ProductCode[1]

Listing 9.22

When minLength and maxLength are both used, maxLength should be
greater than or equal to minLength.

Facet: pattern

By using pattern restriction, you can specify a Regular Expression to
validate the value. If you are new to Regular Expressions, you can find
some tutorials in the web URLs given below.

° http://www.regular-expressions.info/tutorial.html
° http://www.codeproject.com/dotnet/RegexTutorial.asp
° http://www.amk.ca/python/howto/regex/

Regular Expressions are very popular in programming languages like Perl,
Microsoft .NET, Python, etc. While the Regular Expression language of

265

9 — XSD built-in derived data types

XSD is slightly different than the Regular Expression languages used in
those programming languages, the core syntax and techniques are
common to them all.

The Regular Expression language supported by XSD is
described in Chapter 12

The following code snippet shows a simple example using a regular
expression pattern.

CREATE XML SCHEMA COLLECTION StringPattern AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="CustomerNumber'">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-z]{3}[0-9]1{2}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.23: A schema using "pattern” restriction.

The above schema defines a simple type element named
CustomerNumber. The format of the customer number is defined by using
a pattern restriction. The pattern specifies that the first three characters
should be upper case alphas (A to Z), and the next two should be digits (0
to 9). It also ensures that the length of Customer Number is always
five characters.

The following example shows an XML instance that successfully validates
against the above schema collection.

DECLARE @x XML(StringPattern)
SET @x = '<CustomerNumber>JACOl</CustomerNumber>"

/

success!!!

Listing 9.24

None of the XML instances given below will validate successfully.

DECLARE @x XML(StringPattern)

| SET @x = '<CustomerNumber>JAC001</CustomerNumber>"'
SET @x = '<CustomerNumber>jacO0l</CustomerNumber>"
| SET @x = '<CustomerNumber>10001</CustomerNumber>"

4200

9 — XSD built-in derived data types

error!!!
XML Vvalidation: Invalid simple type value: Location:
/*:customerNumber[1]

Listing 9.25
We will examine Regular Expression patterns in Chapter 12.

Pattern restrictions are usually applied with string data types. However,
they can be applied on any data type. Depending on the specific
requirement, a pattern restriction may be applied to a numeric, date or
boolean data type.

Let us see an example. Boolean types accept string literals: "true,” "false,"”
"1"or "0." If you only want to allow "true” or "false" you can define a pattern
restriction to achieve this.

The following example shows a schema which restricts a boolean type to
accept only "true” or "false.”

CREATE XML SCHEMA COLLECTION BooleanPattern
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="IsActive'>
<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
<xsd:pattern value="true|false" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'

Listing 9.26: A schema showing a pattern restriction.

You will get the following warning when you try to create this schema.

warning: Type 'xs-nun(/IsActive/simpleType())' is restricted by a
| facet "pattern' that may impede full round-tripping of instances
of this type

You can ignore this warning for the time being. | have explained this in
Chapter 14.

declare @x xml(BooleanPattern)
set @x '<IsActive>true</IsActive>'
set @x '<IsActive>false</IsActive>'

267

9 — XSD built-in derived data types

/7‘:

success!!!

Listing 9.27

declare @x xml(BooleanPattern)

set @x = '<IsActive>l</IsActive>'
set @x = '<IsActive>0</IsActive>'
error!!!

XML validation: Invalid simple type value: 'l'. Location:
/*:IsActive[l]

Listing 9.28

A pattern restriction does not make much sense to a numeric data type as
it does to a string data type. However, there may be times when you might
need to use a pattern restriction on a numeric type to restrict the format of
the values to match a specific business requirement.

The following schema defines a decimal type that allows only odd digits (1,
3,5, 7 and 9). If you try to use an even digit (2, 4, 6, 8 and 0), SQL Server
will generate an error.

CREATE XML SCHEMA COLLECTION DecimalPattern
AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity'">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:pattern value="[1]3|5]7]9]1{1,5}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.29: Definition of a "decimal” type that does not accept even
numbers.

Just as in the case with boolean, you will receive the following warning
when you try to create this schema collection. | have explained this in
Chapter 14.

warning: Type 'xs-nun(/Quantity/simpleType())' is restricted by a
facet "pattern' that may impede full round-tripping of instances
of this type

declare @x xml(DecimalPattern)

set @x '<Quantity>1</Quantity>'

set @x '<Quantity>13</Quantity>"'

268

9 — XSD built-in derived data types

set @x = '<Quantity>135</Quantity>'
set @x = '<Quantity>57</Quantity>'

| set @x = '<Quantity>77777</Quantity>"'
/7‘:
§uccess!!!

Listing 9.30

Facet: enumeration

enumeration facet is used to restrict the values to a set of predefined
choices. The following example defines a schema which accepts only USA,
Canada, England and India in the list of countries.

CREATE XML SCHEMA COLLECTION StringEnumeration AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ShipToCountry">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="USA"/>
<xsd:enumeration value="Canada"/>
<xsd:enumeration value="England"/>
<xsd:enumeration value="1India"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.31: A schema showing enumeration facet.

DECLARE @x XML (StringEnumeration)

SET @x = '<ShipToCountry>Canada</ShipToCountry>"
SET @x = '<ShipToCountry>India</shipToCountry>'
| success!!!
Listing 9.32

DECLARE @x XML(StringEnumeration)]
SET @x = '<ShipToCountry>Australia</ShipToCountry>"'
/:‘:

error!!!

XML validation: Invalid simple type value: 'Australia'. Location:
/*:ShipToCountry[1]

:’:/

Listing 9.33

269

9 — XSD built-in derived data types

An enumeration restriction can be applied on any data type. Most of the
time this may be applied on string data types. However, based on the
specific validation requirements it may be applied on other data types as
well. The following example shows an enumeration restriction applied on a
numeric type. It restricts the value of ShipToZip element to a given set of
Zip codes.

CREATE XML SCHEMA COLLECTION DecimalEnumeration AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ShipTozip">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="10001"/>
<xsd:enumeration value="10002"/>
<xsd:enumeration value="10003"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.34: A schema showing enumeration restriction applied on decimal
type.

DECLARE @x XML (DecimalEnumeration)
SET @x = '<ShipTozip>10003</ShipTozip>"'
/7‘:

success!!!

Listing 9.35

DECLARE @x XML(DecimalEnumeration)
SET @x = '<ShipTozip>10004</ShipTozip>"'

error!!!
XML Validation: Invalid simple type value: '10004'. Location:
/j:shipTozip[l]

Listing 9.36

Facet: whiteSpace
whiteSpace restriction defines the way whitespaces is processed by the

schema processor. It instructs the XSD processor what needs to be done
when it encounters a white space.

270

9 — XSD built-in derived data types
SPACES, TABs, Carriage Returns (CR) and Line Feeds (LF) come into the

category of whitespaces in XSD parlance. There are three white-space
processing modes, namely: preserve, replace and collapse.

Preserve

When the mode is set to preserve, no change is made to the value.

CREATE XML SCHEMA COLLECTION WhiteSpacePreserve
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:whiteSpace value="preserve" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'

Listing 9.37: Example showing "preserve"” whitespace processing mode.

DECLARE @x XML (whiteSpacePreserve)
-- Note that we have plenty of spaces, TAB characters
-- and CR + LF in the following address.

SET @x = '<Address>
401 ,
Time square </Address>"

-- Since we have set the whiteSpace restriction to "preserve"
-- the schema processor will not modify the value.

SELECT @x
/7‘:
OUTPUT :
<Address>
401 ,
Time square </Address>

g} row(s) affected)

Listing 9.38: When whitespace processing is set to "preserve,” the schema
processor preserves all TABS, SPACES, Carriage Returns and Line Feeds.

Replace

When replace mode is set, all instances of TAB, CR and LF are replaced
by SPACES.

271

9 — XSD built-in derived data types

CREATE XML SCHEMA COLLECTION WhiteSpaceReplace
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:whiteSpace value="replace" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"

Listing 9.39: An example showing "replace"” processing mode.

DECLARE @x XML (whiteSpaceReplace)
-- Note that we have plenty of spaces, TAB characters
-- and CR + LF in the following address.
SET @x = '<Address>
401 ,
Time square </Address>"

-- Note that TABS, Carriage Returns and Line Feeds are replaced
-- with spaces because the restriction mode is "replace"

SELECT @x

<Address> 401 , Time square </Address>

S} row(s) affected)

Listing 9.40: When whitespace processing mode is set to "replace,” all
Spaces, Tabs, Carriage Returns and Line Feeds are replaced by spaces.

Collapse

When collapse mode is specified, the schema processor will first apply a
replace operation. Then it will remove contiguous sequences of SPACES
with a single SPACE character. It will then remove leading and trailing
spaces from the value.

CREATE XML SCHEMA COLLECTION WhiteSpaceCollapse
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:whiteSpace value="collapse" />
</xsd:restriction>

272

9 — XSD built-in derived data types

</xsd:simpleType>
</xsd:element>
</xsd:schema>"

Listing 9.41: Example showing "collapse" processing mode.

DECLARE @x XML (whiteSpacecCollapse)
-- Note that we have plenty of spaces, TAB characters
-- and CR + LF in the following address.
SET @x = '<Address>
401 ,
Time square </Address>"

-- Note that TABS, Carriage Returns and Line Feeds are replaced
-- with spaces, contiguous spaces are then replaced with a single
-- space and leading and trailing spaces are removed from the
value.

SELECT @x

<Address>401 , Time square</Address>

g} row(s) affected)

Listing 9.42: When "collapse” mode is specified, all whitespace characters
are first replaced with spaces, then contiguous sequences of spaces are
replaced with a single space, and leading and trailing spaces are removed.

Each data type has a default white space processing mode. For example,
the default white space processing mode of string type is preserve. The
default mode of boolean is collapse.

When you derive a new simple type from a base type, you can alter the
white space processing to a more restrictive mode. For example, you can
change preserve to collapse or replace. But you cannot change replace
to preserve.

The following table explains the white space restriction allowed on the
derived type.

273

9 — XSD built-in derived data types

Base Type Derived Type

Preserve Preserve Replace Collapse
Replace Not allowed Replace Collapse
Collapse Not allowed Not Allowed Collapse

If you try to change the whiteSpace processing mode to a less restrictive
one, SQL Server will generate an error as given below.

Invalid facet value for facet 'whiteSpace' in type definition 'xs-
‘ nun(/typename/simpleType())"'

Facet: totalDigits

totalDigits restricts the number of digits the type can hold. It includes the
number of digits in the integer part as well as in the decimal fraction part.

CREATE XML SCHEMA COLLECTION decimalDemo
AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity'">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="5" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.43: An example showing "fraction Digits" restriction.

declare @x xml(decimalbemo)

set @x = '<Quantity>1l</Quantity>'

set @x = '<Quantity>12</Quantity>'
set @x = '<Quantity>123</Quantity>'
set @x = '<Quantity>1234</Quantity>"'
set @x = '<Quantity>12345</Quantity>'
set @x = '<Quantity>12.34</Quantity>'

274

9 — XSD built-in derived data types

S(EiE @x = '<Quantity>12.341</Quantity>"'

success!!!

Listing 9.44

declare @x xml(decimalbemo)

set @x = '<Quantity></Quantity>'

XML Validation: Invalid simple type value: . Location:

/:Quantity[1]
-.':/
set @x = '<Quantity>123456</Quantity>"'

XML Validation: Invalid simple type value: '123456'. Location:
/}Quantity[lj

set @x = '<Quantity>12.3412</Quantity>"'

XML Validation: Invalid simple type value: '12.3412'. Location:
[}Quantity[lj

Listing 9.45

Note that the decimal point is not counted when validating the number
of digits.

Facet: fractionDigits

fractionDigits restricts the number of digits in the decimal part of the value
(on the right of the decimal point). fractionDigits facet defines the maximum
number of digits allowed. Validation will fail if there are more digits than the
value specified with fractionDigits. It is acceptable to have a lesser number
of digits after the decimal point than the value specified in the restriction.

CREATE XML SCHEMA COLLECTION DecimalFraction
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalbigits value="5" />
<xsd:fractionDigits value="2" />
</Xsd:restriction>

275

9 — XSD built-in derived data types

</xsd:simpleType>
</xsd:element>
</xsd:schema>"

Listing 9.46: An example showing "fractionDigits "restriction.

declare @x xml(DecimalFraction)

set @x = '<Quantity>l</Quantity>'
set @x = '<Quantity>12</Quantity>'
set @x = '<Quantity>123</Quantity>'
set @x = '<Quantity>1234</Quantity>'
set @x = '<Quantity>12345</Quantity>'
set @x = '<Quantity>12.34</Quantity>'
§uccess!!!

Listing 9.47

declare @x xml(DecimalFraction)
set @ = '<Quantity>12.341</Quantity>'
error!!!

XML Validation: Invalid simple type value: '12.341'. Location:
/*:Quantity[l]

Listing 9.48

Facet: maxinclusive

maxinclusive specifies the highest value the type can accept. The highest
acceptable value is inclusive of the value specified with the restriction.

CREATE XML SCHEMA COLLECTION DecimalMaxInclusive
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity'">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:maxInclusive value="1000" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"

Listing 9.49: An example showing "maxinclusive”restriction.

276

9 — XSD built-in derived data types

declare @x xml(DecimalMaxInclusive)
;gt @x = '<Quantity>1000</Quantity>'

success!!!

Listing 9.50

declare @x xml(DecimalMaxInclusive)
;gt @x = '<Quantity>100l1</Quantity>'

error!!!
XML Vvalidation: Invalid simple type value: '1001'. Location:
/j:Quantity[l]

Listing 9.51

Facet: maxExclusive

maxExclusive specifies the highest numeric value the type can accept,
excluding the value specified in the restriction.

CREATE XML SCHEMA COLLECTION DecimalMaxExclusive
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:maxExclusive value="1000" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'

Listing 9.52: An example showing "maxExclusive"restriction.

‘ declare @x xml(DecimalMaxExclusive)
| ;gt @x = '<Quantity>999</Quantity>"

success!!!

Listing 9.53

‘ declare @x xml(DecimalMaxExclusive)
S(EiE @x = '<Quantity>1000</Quantity>"'

error!!!

277

9 — XSD built-in derived data types

XML Validation: Invalid simple type value: '1000'. Location:
/*:Quantity[1]

Listing 9.54

Facet: mininclusive

mininclusive defines the lowest value that the type can accept. The lowest
acceptable value is inclusive of the value specified in the restriction.

CREATE XML SCHEMA COLLECTION DecimalMinInclusive
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity'">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="12" />
</xsd:restriction>\
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 9.55: An example using "mininclusive"restriction.

declare @x xml(DecimalMinInclusive)
set @x = '<Quantity>12</Quantity>'
/7‘:

success!!!

Listing 9.56

declare @x xml(DecimalMinInclusive)
set @x = '<Quantity>1l</Quantity>'
error!!!

XML Validation: Invalid simple type value: '1ll'. Location:
/j:Quantity[l]

Listing 9.57

278

9 — XSD built-in derived data types

Facet: minExclusive

minExclusive defines the minimum value that the type can accept,
excluding the value specified in the restriction.

CREATE XML SCHEMA COLLECTION DecimalMinExclusive
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:mineExclusive value="12" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'
GO

Listing 9.58: An example showing "minExclusive"restriction.

declare @x xml(DecimalMinExclusive)
set @x = '<Quantity>12</Quantity>'
/7‘:

error!!!

XML Validation: Invalid simple type value: '12'. Location:
/*:Quantity[1]
7':/

Listing 9.59

‘ declare @x xml(DecimalMinExclusive)
;gt @x = '<Quantity>13</Quantity>'

success!!!

Listing 9.60

Facets of Primitive Data Types

As mentioned earlier, each data type supports a certain set of facets. We
have examined each facet in detail. The following table summarizes the
facets supported by each Primitive Data Type.

279

9 — XSD built-in derived data types

o
o = = é @ % -g % % 2
3 © < o = ()] g = = 5
= % < <1C> o Q 2 S © 8 2 =
Q E=] | IS o = = = L
12 |2|2 |53 |2 |5 |8 | |8 |5 |5
8 |s |® |E |e |6 |2 |8 |E | |E |€E
string ViV IV I iv I v |V
boolean v | v
decimal v | vV Vi v I|IvI|iIv I Iv I v | Qv
float v | v v v | vV | Vv |V
double v | v v vViIiv | v |V
duration v | v v v | vV | Vv |V
dateTime v | v v vVIiv | v |V
time v | v v vV IV | Vv |V
date v | v v v I v | Vv |V
gYear v | vV v v IV |V |V
gMonthDay v | v v v I vV |V |V
gDay v | vV v vViIiv | v |V
gMonth v | Vv v v I vV |V |V
haxBinary viIiv | IV I iv i v |V
base64 viviviv|v]|v
Binary
anyURI viIiv |V I iv i v |V
QName vV i IV I|IVv |V |v |V

Listing 9.61: Facets supported by each primitive data type.

XSD Built-in Derived Data Types

In Chapter 7 we examined the Primitive Data Types of XSD. In Chapter 8
we saw how to derive new types from existing ones. We saw three
derivation methods: By restriction, By List and By Union.

XSD Built-in Derived Data Types are Simple Types that derive directly or

indirectly from one of the Primitive Data Types. XSD has twenty-five such
types and SQL Server supports twenty-two of them.

7 SQL Server does not support XSD data types: ID, IDREF and
IDREFS.

280

9 — XSD built-in derived data types

Out of the twenty-two derived data types, only two types derive directly
from one of the Primitive Data Types. The following are the types that

directly derive from the Primitive Data Types.

Derived Type Base Type
normalizedString string
Integer decimal

The following eight data types derive
its derived types.

either from normalizedString or one of

Derived Type Base Type
Token normalizedString
NMTOKEN token

Name token

Language token
NMTOKENS NMTOKEN
NCName Name

ENTITY NCName
ENTITIES ENTITY

The following diagram shows the types that derive from "string" along with
the derivation types, as well as the restrictions added to the facets:

281

9 — XSD built-in derived data types

[siring

normalizedSiring

taken

Derives by restriction
e S e ~[NMTOKEN] [

Derives by resfriction
whiteSpace = “replace”

Derives by resfriction
whiteSpace = “collapse”

Derivas by restriction
Language pattemn="[a-zA-Z}{1,8}-
[a-zA-Z0-9]{1,8})"

Derives by list
minLength = 1 ~[NMTOKENS]

MCMame

Derives by restriction
patterm = "™
Derives by restriction
pattern = (e)"

]

ENTITY

__—‘:Derivea by restriction

!

EMTITIES

282

Derives by list
minLength = 1

9 — XSD built-in derived data types

The following twelve data types derive either from integer or one of its
derived types.

Derived Type Base Type
nonPositivelnteger integer
nonNegativelnteger integer

Long integer
negativelnteger nonPositivelnteger
int Long

short int

byte short

unsignedLong nonNegativelnteger
positivelnteger nonNegativelnteger
unsignedint unsignedLong
unsignedShort unsignedIint
unsignedByte unsignedShort

The following diagram shows the inheritance chain of XSD built-in data
types that derive from "decimal."

283

9 — XSD built-in derived data types

decimal
Derives by restriction
integer fractionDigits = 0
pattern = "Ti-+]?[0-8]+
Derivas by restriction - -
mininclusive = Derives b irictio
-8273372036854775808 — long nonNagativelntagar e”‘i"els l" ’_‘35 5 0 "
miaxinclusive = UL Ll b
2233720368547 75807 s I c
Derives by restriction - -
minlnclushe =
2147483648 —_— int positivelnteger
maxlnclusive =
2147483647 ¥ 2
¢ Deri!_fels bly rlestrir.gon
| minlnclugive =
—_— r - - ~

Derivas by restriction

mininclusive = -32768 — short unsignedLong Derives by restriction

maxinclusive = 32767 max|nclusive =

— . I s . I s 18446744073709551615
= s 3 IS -

Derives by restriction Darives by restriction
mininclusive = -128 —] byte unsignedint maxinclusive =
maxinclusive = 127 I 4254967295

: Derives by restricton
Dalohmlene | maxInclusive = 65535
r I 3
: | Derives by restriction
unsignedByte maxinclusive = 285
h 4

Derives by rastriction
maxinclusiva = 0

nonPositivelnteger]

Darives by rastriction

maxlnclusive = -1 negativelnteger

Let us examine each of these data types in detail.

284

9 — XSD built-in derived data types

normalizedString

XSD data type normalizedString stores a string that does not contain TABs,
Carriage Returns or Line Feeds. It is derived by restriction from string by
setting the whitespace processing mode to “replace.”

<xs:simpleType name="normalizedString" id="normalizedString">
<Xs:annotation>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#normalizedstring"/>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:whiteSpace value="replace"
id="normalizedstring.whiteSpace"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.62: Definition of XSD normalizedString type.

In Chapter 8 we saw how to derive new types by applying restrictions to
one or more facets of a base type. XSD data type normalizedString is
created by applying a restriction on the whitespace processing mode of the
string data type.

The default whitespace processing mode of string data type is
"preserve."This processing mode does not modify the value being assigned
to a string element or attribute. normalizedString changes the white space
processing mode to "replace, "which replaces TAB, CR and LF characters
with SPACES. Thus, a normalizedString cannot store TAB, CR or LF
characters. But it can contain leading or trailing spaces as well as
contiguous blocks of spaces within the value.

CREATE XML SCHEMA COLLECTION normalizedString

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MyString" type="xsd:normalizedString" />

</xsd:schema>'

GO

DECLARE @x XML (normalizedString)

-- add a string which contains tabs and carriage return/LF
SET @x = '

<MyString>this

is a

sales

order</MyString>"

SELECT @x

/:‘:
OUTPUT :

285

9 — XSD built-in derived data types

<MyString>this 1is a sales order</MyString>

(} row(s) affected)

Listing 9.63: An example using normalizedString data type.

Note that the string that we assigned to the XML variable had TABS,
Carriage Returns and Line Feeds. But the schema processor removed
them before assigning the value to the XML element. When we query the
variable, we do not find those characters anymore.

This shows that the whitespace restriction works little differently from other
restrictions. It is more of a processing instruction rather than a validation
rule. In the case of other restrictions, if the XML value does not follow the
rules an error will be raised. But in the case of white space processing, the
Schema processor performs whitespace handling in the way we defined
in the restriction. | prefer to call this a processing instruction rather than
a restriction.

normalizedString data type has the following facets.

length minLength maxLength

pattern enumeration whiteSpace

All the restrictions, except whiteSpace processing, work exactly the same
way they work with the base data type; string. We saw in the previous
chapter that, when a type is derived, it cannot be less restrictive than the
parent type. Hence, the following is illegal.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MyString">
<xsd:simpleType>
<xsd:restriction base ="xsd:normalizedString">
<xsd:whiteSpace value="preserve" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 9.64: A derived type cannot be less restrictive than the base type.

normalizedString derives from string by setting the white space processing
mode to "replace." "preserve" is less restrictive than "replace" and, as a
result, we cannot set the whitespace processing mode of a
normalizedString derived type to "preserve."

286

9 — XSD built-in derived data types

The following is valid.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MyString">
<xsd:simpleType>
<xsd:restriction base ="xsd:normalizedString">
<xsd:whiteSpace value="collapse" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 9.65: A derived type can set a facet to be more restrictive than the
base type if the facet is not "fixed."

"collapse” is more restrictive than "replace,” hence, the above usage
is valid.

integer

We have seen integer data type in many of the examples we created in the
previous chapters. integer is derived from decimal by restricting the
number of decimal places to 0. Here is the definition of the integer data
type.

<xs:simpleType name="integer" id="integer">
<XS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#integer"/>
</Xs:annotation>
<Xs:restriction base="xs:decimal">
<xs:fractionbigits fixed="true" value="0"
id="1integer.fractionDigits"/>
<xs:pattern value="[\-+]7[0-9]+"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.66: Definition of XSD integer data type.

integer sets fractionDigits to 0 so that no digits will appear after the decimal
point. Further, it sets a pattern value which restricts even the decimal point.
The pattern says that the value may have a + or — sign followed by digits.

Note the usage of the fixed attribute. It instructs the schema processor to
restrict any derived types from modifying the fractionDigits facet. It is
similar to the sealed attribute some of the OOP languages support.

The following is illegal:

287

9 — XSD built-in derived data types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MyInteger">
<xsd:simpleType>
<xsd:restriction base ="xsd:integer">
<xsd:fractionbigits value="2" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 9.67: A derived type cannot modify a "fixed" facet.

However, it is acceptable if you set the value of fractionDigits to 0 because
it does not modify the base type definition.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MyInteger">
<xsd:simpleType>
<xsd:restriction base ="xsd:integer">
<xsd:fractionbigits value="0" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 9.68: A derived type can set the value of a "fixed"facet to the same
value as defined in the base type.

Here is an example that uses integer data type.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Age" type="xsd:integer"/>

</xsd:schema>"

GO

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Age>30</Age>'

Listing 9.69: An example using integer data type.

288

9 — XSD built-in derived data types

integer data type has the following facets.

totalDigits fractionDigits pattern

whiteSpace enumeration maxInclusive

mininclusive maxExclusive minExclusive
token

token is derived from normalizedString by setting the whitespace
processing mode to "collapse.” Here is the definition of token data type.

<xs:simpleType name="token" id="token">
<Xs:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#token" />
</xs:annotation>
<xs:restriction base="xs:normalizedString">
<xs:whiteSpace value="collapse" id="token.whiteSpace"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.70: Definition of XSD token data type.

When white space processing is set to "collapse,” all TAB, Carriage Return
and Line Feed characters will be replaced with spaces. Then leading and
trailing spaces are removed from the values. Further, contiguous
occurrences of more than one space will be replaced with a single space.

token has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

All token facets, except whiteSpace processing, work exactly the same way
as with string or normalizedString. Any type that derives from token cannot
modify the whitespace processing mode because "collapse'is the most
restrictive whitespace processing mode.

-- DROP the previous SCHEMA COLLECTION

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'

) BEGIN

DROP XML SCHEMA COLLECTION ExampleSchema

END

289

9 — XSD built-in derived data types

GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Message" type="xsd:token"/>

</xsd:schema>"

GO

-- validate

DECLARE @x XML (ExampleSchema)
SELECT @x = '<Message>

Hi Jacob

bye </Message>'

-- read the value
SELECT @x
/7‘:

<Message>Hi Jacob bye</Message>

Listing 9.71: An example using token data type.
Note that the schema processor removed leading and trailing spaces. It

also replaced TAB, CR and LF characters with spaces and replaced
contiguous sequences of spaces with a single space.

language

language derives from token by applying the following restriction.

<xs:simpleType name="Tanguage" id="language">
<XS:annotation>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#1anguage" />
</Xs:annotation>
<Xs:restriction base="xs:token">
<xs:pattern value="[a-zA-Z]{1,8}(-[a-zA-z0-9]{1,8})*"
id="Tanguage.pattern">
<xS:annotation>
<xs:documentation
source="http://www.ietf.org/rfc/rfc3066.txt">
pattern specifies the content of section 2.12 of XML
1.0e2 and RFC 3066 (Revised version of RFC 1766).
</xs:documentation>
</Xs:annotation>
</xs:pattern>
</Xs:restriction>
</xs:simpleType>

Listing 9.72: Definition of XSD language data type.

290

9 — XSD built-in derived data types

This data type represents the language identifiers defined in RFC 3066.
The pattern specifies the following:

° language can have two blocks of one to eight character-long values,
separated by a hyphen (-)

The second block is optional

The hyphen should be present only if the second block is not empty
The first part can have letters a-z in upper or lower case.

The second part can have letters a-z in upper or lower case, as well
as digits 0-9.

language has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Lang" type="xsd:language"/>

</xsd:schema>"

GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Lang>EN-US</Lang>'

Listing 9.73: An example using language data type.

NMTOKEN

NMTOKEN (Name Token) is a more restricted version of token that does
not permit white spaces and special characters. It derives from token with
the following restriction.

‘ <xs:simpleType name="NMTOKEN" 1id="NMTOKEN">
<XS:annotation>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#NMTOKEN" />

291

9 — XSD built-in derived data types

</Xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="\c+" id=""NMTOKEN.pattern">
<xS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/REC-xmI1#NT-Nmtoken">
pattern matches production 7 from the XML spec
</Xxs:documentation>
</Xs:annotation>
</xs:pattern>
</Xs:restriction>
</xs:simpleType>

Listing 9.74: Definition of XSD NMTOKEN data type.

The Regular Expression given in the pattern restriction represents one or
more occurrences of normal a character. We will see more about the
Regular Expression language of XSD in Chapter 12.

NMTOKEN has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="TableName" type="xsd:NMTOKEN"/>

</xsd:schema>"

GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

SELECT @x = '<TableName>Customers</TableName>'

Listing 9.75: An example using NMTOKEN data type.

292

9 — XSD built-in derived data types

NMTOKENS

NMTOKENS stores a space separated list of NMTOKEN values. It derives
from NMTOKEN by list.

<xs:simpleType name="NMTOKENS" id=""NMTOKENS">
<Xs:annotation>
<xs:appinfo>
<hfp:hasFacet name="Tlength"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="enumeration"/>
<hfp:hasFacet name="whiteSpace"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality"
value="countably infinite"/>
<hfp:hasProperty name="numeric" value="false"/>
</xs:appinfo>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#NMTOKENS" />
</Xs:annotation>
<xs:restriction>
<xs:simpleType>
<xs:list itemType="xs:NMTOKEN"/>
</Xs:simpleType>
<xs:minLength value="1" id="NMTOKENS.minLength"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.76: Definition of XSD NMTOKENS data type.

In the case of types derived from string by restriction, the length refers to
the count of characters. However, when applied on a type which derives by
list, it refers to the number of items in the list. Each item in the list is
separated by a white space.

NMTOKENS has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

293

9 — XSD built-in derived data types

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Keys" type="xsd:NMTOKENS"/>

</xsd:schema>"

GO

-- validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '<Keys>DivisionID CustmerID</Keys>'

Listing 9.77: An example using NMTOKENS data type.

Name

Name represents a valid XML name value which is very close to
NMTOKEN, except that Name does not allow a digit at the beginning of the
value. It derives from token with the following restriction.

<xs:simpleType name="Name" id=""Name">
<XS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#Name" />
</Xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="\i\c*" id="Name.pattern'>
<xs:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/REC-xmI1#NT-Name">
pattern matches production 5 from the XML spec
</xs:documentation>
</Xs:annotation>
</xs:pattern>
</Xs:restriction>
</xs:simpleType>

Listing 9.78: Definition of XSD Name data type.

Name has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

-- DROP the previous SCHEMA COLLECTION

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'

) BEGIN

DROP XML SCHEMA COLLECTION ExampleSchema
END

294

9 — XSD built-in derived data types

GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Key" type="xsd:Name"/>

</xsd:schema>"

GO

-- Validate
DECLARE @x XML (ExampleSchema)
-- all these are valid values

set @x = '<Key>AAA</Key>'
set @x = '<Key>_abc</Key>'
set @x = '<Key>al24</Key>'
set @x = '<Key>a:b</Key>'

-- the following value is invalid
-- set @x = '<Key>1lAbc</Key>'

Listing 9.79: An example using Name data type.

NCName

NCName stands for Non-colonized Name. A colonized name has
a namespace related prefix. For example, "xsd:string" is a colonized
name. If you take "xsd" and "string" separately, they are both
Non-Colonized Names.

NCName derives from Name with the following restriction.

<xs:simpleType name="NCName" id="NCName">
<XS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#NCName" />
</Xs:annotation>
<Xs:restriction base="xs:Name">
<xs:pattern value="[\i-[:11[\c-[:]1]1*" id="NCName.pattern">
<xS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/REC-xm]-names/#NT-NCName">
pattern matches production 4 from the Namespaces
in XML spec
</Xs:documentation>
</Xs:annotation>
</xs:pattern>
</Xs:restriction>
</xs:simpleType>

Listing 9.80: Definition of XSD NCName data type.

295

9 — XSD built-in derived data types

NCName has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

All the examples we tried for Name will work for NCName, except the
example that takes a colon in its value.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Key" type="xsd:NCName"/>

</xsd:schema>"'

GO

-- Validate
DECLARE @x XML (ExampleSchema)
-- all these are valid values

set @x = '<Key>AAA</Key>'
set @x = '<Key>_abc</Key>'
set @x = '<Key>al24</Key>'

-- this will work for Name, but not for NCName
--set @x = '<Key>a:b</Key>'

Listing 9.81: An example using NCName data type.

ENTITY

ENTITY derives from NCName but does not add any additional restrictions.
So the same validation rules which are applicable to NCName are
applicable to ENTITY, too.

‘ <xs:simpleType name="ENTITY" id="ENTITY">
<XS:annotation>
\ <xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#ENTITY" />

296

9 — XSD built-in derived data types

</xs:annotation>
<xs:restriction base="xs:NCName"/>
</xs:simpleType>

Listing 9.82: Definition of XSD ENTITY data type.

ENTITY has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp'IeSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Key" type="xsd:ENTITY"/>

</xsd:schema>"'

GO

-- Validate
DECLARE @x XML (ExampleSchema)
-- all these are valid values

set @x = '<Key>AAA</Key>'
set @x = '<Key>_abc</Key>'
set @x = '<Key>al24</Key>'

-- this will work for Name, but not for ENTITY
--set @x = '<Key>a:b</Key>'

Listing 9.83: An example using ENTITY data type.

ENTITIES

ENTITIES data type derives from ENTITY by list. It stores a space-
separated list of ENTITY values.

<xs:simpleType name="ENTITIES" id="ENTITIES">
<xs:annotation>
<xs:appinfo>
<hfp:hasFacet name="Tlength"/>
<hfp:hasFacet name="minLength"/>
<hfp:hasFacet name="maxLength"/>
<hfp:hasFacet name="enumeration"/>

29/

9 — XSD built-in derived data types

<hfp:hasFacet name="whiteSpace"/>
<hfp:hasFacet name="pattern"/>
<hfp:hasProperty name="ordered" value="false"/>
<hfp:hasProperty name="bounded" value="false"/>
<hfp:hasProperty name="cardinality"
value="countably infinite"/>
<hfp:hasProperty name="numeric" value="false"/>
</xs:appinfo>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#ENTITIES" />
</xs:annotation>
<xs:restriction>
<xs:simpleType>
<xs:1list itemType="xs:ENTITY"/>
</xs:simpleType>
<xs:minLength value="1" id="ENTITIES.minLength"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.84: Definition of XSD ENTITIES data type.

ENTITIES has the following facets:

length minLength maxLength

pattern enumeration whiteSpace

Note that the facets length, minLength and maxLength refer to the number
of items in the list. They do not refer to the number of characters in an item.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Keys" type="xsd:ENTITIES"/>

</xsd:schema>"

GO

-- validate
DECLARE @x XML (ExampleSchema)
set @x = '<Keys>CustomerID ProductID</Keys>'

Listing 9.85: An example using ENTITIES data type.

298

9 — XSD built-in derived data types

nonPositivelnteger

nonPositivelnteger represents an integer value which is less than or equal
to 0. The highest value allowed is 0. The negative sign (-) is mandatory
except for 0. It derives from integer with the following restriction.

<xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger'">
<XS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-
2/#nonPositiveInteger"/>
</Xs:annotation>
<xs:restriction base="xs:integer">
<xs:maxInclusive value="0"
id="nonPositiveInteger.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.86: Definition of XSD nonPositivelnteger data type.

nonPositivelnteger has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxInclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:nonPositiveInteger"/>

</xsd:schema>"'

GO

-- Validate

DECLARE @x XML (ExampleSchema)

-- all these are valid values

set @x '<Somevalue>0</Somevalue>"'
set @x '<Somevalue>-0</Somevalue>"

299

9 — XSD built-in derived data types

set @x = '<Somevalue>+0</Somevalue>'
set @x = '<Somevalue>-1</Somevalue>'
set @x = '<Somevalue>-1999</Somevalue>'

Listing 9.87: An example using nonPositivelnteger data type.

negativelnteger

negativelnteger derives from nonPositivelnteger. The only difference from

its base type is that negativelnteger does not allow 0 as its value
highest value allowed is -1.

It derives from nonPositivelnteger with the following restriction.

. The

<xs:simpleType name="negativeInteger" id="negativeInteger"'>
<Xs:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-
2/#negativeInteger"/>
</Xs:annotation>
<xs:restriction base="xs:nonPositiveInteger">
<xs:maxInclusive value="-1"
id="negativeInteger.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.88: Definition of XSD negativelnteger data type.

negativelnteger has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:negativeInteger"/>

300

9 — XSD built-in derived data types

</xsd:schema>"
GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>-1</Somevalue>"
set @x '<Somevalue>-1999</Somevalue>"

Listing 9.89: An example using negativelnteger data type.

long

long derives from integer with the following restriction.

<xs:simpleType name="long" id="long">
<Xs:annotation>
<xs:appinfo>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>
</xs:appinfo>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#1ong" />
</Xs:annotation>
<xs:restriction base="xs:integer">
<xs:minInclusive value="-9223372036854775808"
id="long.minInclusive"/>
<xs:maxInclusive value="9223372036854775807"
id="long.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.90: Definition of XSD long data type.

long has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema

301

9 — XSD built-in derived data types

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:long"/>

</xsd:schema>"

GO

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>-9223372036854775808</Somevalue>"
set @x '<Somevalue>9223372036854775807</Somevalue>"'

Listing 9.91: An example using long data type.
int

int derives from Jong and restricts the minimum and maximum values
supported by the base type. Here is the definition of int data type.

<xs:simpleType name="int" id="int">
<XS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#int" />
</Xs:annotation>
<xs:restriction base="xs:long">
<xs:minInclusive value="-2147483648" id="1int.minInclusive"/>
<xs:maxInclusive value="2147483647" id="1int.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.92: Definition of XSD int data type.

int has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxInclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

302

9 — XSD built-in derived data types

<xsd:element name="Somevalue" type="xsd:int"/>
</xsd:schema>"
GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>-2147483648</Somevalue>"
set @x '<Somevalue>2147483647</Somevalue>'

Listing 9.93: An example using int data type.

short

short derives from int and restricts the minimum and maximum values
supported by the base type. Here is the definition of short.

<xs:simpleType name="short" id="short">
<XS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#short" />
</Xs:annotation>
<Xs:restriction base="xs:int">
<xs:minInclusive value="-32768" id="short.minInclusive"/>
<xs:maxInclusive value="32767" id="short.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.94: Definition of XSD short data type.

short has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxInclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:short"/>

303

9 — XSD built-in derived data types

</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>-32768</Somevalue>"
set @x '<Somevalue>32767</Somevalue>"

Listing 9.95: An example using short data type.

byte

byte derives from short and restricts the minimum and maximum values
supported by the base type. Here is the definition of byte.

<xs:simpleType name="byte" id="byte">
<XS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#byte" />
</xs:annotation>
<xs:restriction base="xs:short">
<xs:minInclusive value="-128" id="byte.minInclusive"/>
<xs:maxInclusive value="127" id="byte.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.96: Definition of XSD byte data type.

byte has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:byte"/>

304

9 — XSD built-in derived data types

</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>-128</Somevalue>'
set @x '<Somevalue>127</Somevalue>"

Listing 9.97: An example using byte data type.

nonNegativelnteger

nonNegativelnteger derives from integer with the following restriction on
the minimum and maximum values supported by the base type.

<xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger'">
<Xs:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-
2/#nonNegativeInteger"/>
</Xs:annotation>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"
id="nonNegativeInteger.minInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.98: Definition of XSD nonNegativelnteger data type.

nonNegativelnteger has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxInclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:nonNegativeInteger"/>

</xsd:schema>"'

305

9 — XSD built-in derived data types

GO

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>0</Somevalue>"'
set @x '<Somevalue>127</Somevalue>'

Listing 9.99: An example using nonNegativelnteger.

unsignedLong

unsignedLong derives from nonNegativelnteger with the following
restriction.

<xs:simpleType name="unsignedLong" id="unsignedLong">
<XS:annotation>
<xs:appinfo>
<hfp:hasProperty name="bounded" value="true"/>
<hfp:hasProperty name="cardinality" value="finite"/>
</xs:appinfo>
<xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#unsignedLong" />
</Xs:annotation>
<xs:restriction base="xs:nonNegativeInteger">
<xs:maxInclusive value="18446744073709551615"
id="unsignedLong.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.100: Definition of XSD unsignedLong data type.

unsignedLong has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxInclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

306

9 — XSD built-in derived data types

<xsd:element name="Somevalue" type="xsd:unsignedLong"/>
</xsd:schema>"
GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>0</Somevalue>"'

set @x '<Somevalue>18446744073709551615</Somevalue>"

Listing 9.101: An example using unsignedLong data type.

unsignedint

unsignedint derives from unsignedLong with the following restriction.

<xs:simpleType name="unsignedInt" id="unsignedInt'">
<xS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#unsignedint"/>
</Xs:annotation>
<xs:restriction base="xs:unsignedLong">
<xs:maxInclusive value="4294967295"
id="unsignedInt.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.102: Definition of XSD unsignedint data type.

unsignedint has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:unsignedInt"/>

</xsd:schema>"

GO

307

9 — XSD built-in derived data types

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>0</Somevalue>"'

set @x '<Somevalue>4294967295</Somevalue>'

Listing 9.103: An example using unsignedint data type.

unsignedShort

unsignedShort derives from unsignedint with the following restriction.

<xs:simpleType name="unsignedShort" id="unsignedShort">
<xS:annotation>
<xs:documentation
source="http://www.w3.org/TR/xmlschema-2/#unsignedshort"/>
</Xs:annotation>
<xs:restriction base="xs:unsignedInt">
<xs:maxInclusive value="65535"
id="unsignedShort.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.104: Definition of XSD unsignedShort data type.

unsignedShort has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
<xsd:element name="Somevalue" type="xsd:unsignedShort"/>

</xsd:schema>"

GO

\%

-- Validate

308

9 — XSD built-in derived data types

DECLARE @x XML (ExampleSchema)
set @x '<Somevalue>0</Somevalue>"'
set @x '<Somevalue>65535</Somevalue>"'

Listing 9.105: An example using unsignedShort data type.

unsignedByte

unsignedByte derives from unsignedShort with the following restriction.

<xs:simpleType name="unsignedByte" id="unsignedByte">
<XS:annotation>
<xs:documentation
source="http://www.w3.0org/TR/xmlschema-2/#unsignedByte" />
</Xs:annotation>
<Xs:restriction base="xs:unsignedShort">
<xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.106: Definition of XSD unsignedShort data type.

unsignedByte has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:unsignedByte"/>

</xsd:schema>"

GO

309

9 — XSD built-in derived data types

-- Validate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>0</Somevalue>"'
set @x '<Somevalue>255</Somevalue>'

Listing 9.107: An example using unsignedByte data type.

positivelnteger

positivelnteger derives from nonNegativelnteger with the following
restriction.

<xs:simpleType name="positiveInteger" id="positiveInteger">
<XS:annotation>
<xs:documentation
source="http://www.w3.0rg/TR/xmlschema-2/#positiveInteger"/>
</Xs:annotation>
<xs:restriction base="xs:nonNegativeInteger">
<xs:minInclusive value="1" id="positiveInteger.minInclusive"/>
</Xs:restriction>
</xs:simpleType>

Listing 9.108: Definition of XSD positivelnteger data type.

positivelnteger has the following constraining facets:

totalDigits fractionDigits pattern
whiteSpace enumeration maxinclusive
mininclusive maxExclusive minExclusive

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Somevalue" type="xsd:positiveInteger"/>

</xsd:schema>"'

GO

310

9 — XSD built-in derived data types

-- Vvalidate

DECLARE @x XML (ExampleSchema)

set @x '<Somevalue>1l</Somevalue>"'
set @x '<Somevalue>989</Somevalue>"'

Listing 9.109: An example using positivelnteger data type.

Facets of XSD Built-in Derived
Data Types

Here is a summary of the facets supported by XSD Built-in Derived data
types.

All the string data types that derive from string support the following facets.

length
minLength
maxLength
pattern
enumeration
whiteSpace

All the numeric data types that derive from decimal support the following
facets.

pattern
enumeration
whitespace
totalDigits
fractionDigits
maxInclusive
maxExclusive
mininclusive
minExclusive

Chapter Summary

XSD has defined eighteen Primitive Data Types and twenty-five
Derived data types. Out of the eighteen Primitive Data Types, SQL Server
supports seventeen (it does not support NOTATION). Out of the twenty-five

311

9 — XSD built-in derived data types

Derived data types, SQL Server supports twenty-two (it does not support
ID, IDREF, IDREFS).

The XSD Built-in Derived data types derive from the Primitive types directly
or indirectly. There are only two data types that directly derive from the
primitive data types: integer derives from decimal and normalizedString
derives from string. Eight data types derive from normalizedString and
twelve data types derive from integer.

Each data type has a certain number of facets that can be restricted to
perform additional validations on the value. Data types derive from string
has a different set of facets than the data types that derive from decimal.

312

CHAPTER 10
COMPLEX TYPES

In the previous chapters we covered a few examples of complex types.
However, we have not examined them in detail. In this chapter we will have
a detailed look into complex types. We will discuss the following:

Overview of complex types and simple types
Complex Types — Local and Global

Content Model of complex types

Order Indicators

Occurrence Indicators

Element Groups

Just as we did in the previous chapters, we will do a hands-on lab at the
end of this chapter.

Complex Types vs. Simple Types

We have seen several examples of Simple Types and Complex Types in
the previous chapters. A complex type can have child elements and/or
attributes. When an element has a Simple Type, it cannot have child
elements or attributes. It can store only a text value.

Only element declarations can have Complex Types. Attribute declarations
cannot have Complex Types because an attribute cannot have another
element or attribute as it child.

Named Complex Types

Just as with Simple Types, Complex Types can also be declared globally.
All global declarations should have a name. Global declarations should
appear right under the <xsd:schema> element and the name should be
unique (within other named complex types).

A Named Complex Type can be used within other Complex Types. Here is
an example showing a named complex type.

313

10 — Complex types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Address Type -->
<xsd:complexType name="AddressType">
<xsd:all>
<xsd:element name="Address"/>
<xsd:element name="Street"/>
<xsd:element name="cCity"/>
<xsd:element name="zip"/>
<xsd:element name="State"/>
</xsd:all>
</xsd:complexType>
</xsd:schema>

Listing 10.1: A named complex type.

The above example shows a complex type named "AddressType." This
type can be used within the declaration of other complex types, just as we
did with simple types. Here is an example.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<!-- Address Type -->
<xsd:complexType name="AddressType">
<xsd:all>

<xsd:element name="Address" />
<xsd:element name="Street"/>
<xsd:element name="City"/>
<xsd:element name="zip"/>
<xsd:element name="State"/>
</xsd:all>
</xsd:complexType>
<!-- customer Information -->
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName" />
<xsd:element name="Address" type="AddressType"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>

Listing 10.2

Named Complex Types provide a great deal of reusability. For example,
the AddressType we defined above can be used for validating Billing as
well as Shipping information. Further, they help organize the code better
and make it easier to understand and maintain.

Anonymous Complex Types

Though Named Complex Types provides a great extent of reusability, in
real life you will find many complex types that are used only once. Hence,

314

10 — Complex types

sometimes you will find it easier to define them as anonymous types. The
declaration of anonymous types appears within the complex type that owns
the element.

Let us look at an example.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- customer Information -->
<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"/>
<xsd:element name="Address">
<xsd:complexType>
<xsd:all>
<xsd:element name="Address"/>
<xsd:element name="Street"/>
<xsd:element name="cCity"/>
<xsd:element name="zip"/>
<xsd:element name="State"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 10.3

The above example shows an anonymous complex type. Such
declarations cannot be reused. They are also called Local complex
type declarations.

Content Model

The structure of the child elements of a Complex Type is called its Content
Model. A complex type can have either Simple Content or Complex
Content. The following XML fragment shows an element that has
Simple Content.

<Phone location="0ffice">999 999 9999</Phone>

Listing 10.4: Simple Content Example.

Elements having Simple Content can store a text value and can hold
attributes. However, they cannot have child elements.

315

10 — Complex types

When an element has Complex Content, it can be either empty, element-
only or mixed type. We say an element has empty content when it does
not have child elements and does not have a text value. However, it may
have attributes. The following example shows an XML fragment having
empty content.

Listing 10.5: Empty Content Example.

Another example:

<br someAttribute="somevalue" />

Listing 10.6: Empty Content Example having an attribute.

An element is said to have element-only content when it has child elements
— and optionally attributes, too — but doesn't hold a text value. (lts child
elements may, however, hold a text value.) The following is an example of
an element which has element-only content.

‘ <Name>
<First>Jacob</First>
<Last>Sebastian</Last>

</Name>

Listing 10.7: Element-only content example.

<Name Title="Mr">
| <First>Jacob</First>
<Last>Sebastian</Last>
</Name>

Listing 10.8: Element-only content example having an attribute.

The name element has element-only content model. Note that element-
only content model allows attributes.

When an element has mixed content model it can store child elements,
attributes and text value.

Here is an example:

316

10 — Complex types

<Email Priority="High">
Dear <name>Jacob</name>,
Your order has been
| shipped on <date>2008-01-01</date>
</Email>

Listing 10.9: Mixed content example.

Let us examine each of these content models in detail.

Simple Content

As discussed earlier, when an element has Simple Content it can store a
text value and can have attributes. Complex Types, having Simple Content,
are very similar to Simple Types. The only difference is that Simple Types
cannot have attributes while Complex Types, having simple content, can
have attributes. Here is an example of an element having Simple Content.

<Phone>999 999 9999</Phone>

Listing 10.10: Simple Content Example.

<Phone Tlocation="0ffice">999 999 9999</Phone>

Listing 10.11: Simple Content Example.

Both examples given above show an element having Simple Content. The
first element has a text value and does not have attributes. The second
example shows an element that has a text value, as well as an attribute.

How do we write the schema for an XML instance such as the above
example? This is something new to us. We learned how to declare
complex types that hold attributes. We also learned simple types that can
take a value. But we have not seen complex types that take a value
and attributes.

Well, the example above shows a Complex Type having Simple Content.
Simple Content does not allow child elements. However, such an element
can have attributes. It can store a text value as well. Let us see how to
define a Complex Type having Simple Content.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name='"Phone'>
<xsd:compTlexType>
<xsd:simpleContent/>

317

10 — Complex types

</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 10.12

The first step is to add a simpleContent element to the Complex Type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:compTlexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string"/>
</xsd:simpleContent>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 10.13

We can derive a simpleContent by either extension or restriction. We will
see extensions and restrictions in Chapter 11. For the purpose of this
example, let us derive a Complex Type having Simple Content
from xsd:string.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:compTlexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Tlocation" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 10.14

The above example derives a Complex Type from xsd:string. The derived
type has Simple Content; hence, it can store a text value. It has an
attribute, also, which stores the location of the phone number. Let us create
a Schema Collection to validate this.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

318

10 — Complex types

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:compTlexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="location" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Phone location="home'">999 999 9999</Phone>"

Listing 10.15

New Complex Types can be derived from Complex Types having Simple
Content. The derived type must also have Simple Content. It is not allowed
to derive Complex Content from Simple Content. New Types can be
derived from a Simple Content by either restriction or extension. We will
examine Complex Type derivation in Chapter 12.

Complex Content

We just saw that Simple Content cannot store child elements.
Complex Content can store child elements and attributes as well as text
values. Complex Types having Complex Content can be classified into
three groups.

1. Empty content
2. Element-only content
3. Mixed Content

We have seen an example of each of these content models earlier in this
chapter. Now it is time to examine these content models in detail.

Empty Content
Complex Types having empty content are very close to the ones having
simple content, except that they cannot store a text value. They can store

zero or more attributes, but no text values. The most common example |

319

10 — Complex types

see is the XHTML
 element, which does not have an attribute or a
text value.

Listing 10.16

When a Complex Type has empty content model, it cannot store a text
value or child elements. However, it can have attributes. Here is
an example.

<Phone Office="999 999 9999" Home="888 888 8888"/>

Listing 10.17

The Phone element given above is having empty content model. Let us
look at the schema of it.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION Examp'IeSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone'">
<xsd:complexType>
<xsd:attribute name="Home"/>
<xsd:attribute name="office"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Phone Office="999 999 9999" Home="888 888 8888"/>'

Listing 10.18

320

10 — Complex types

Element-only content

These are Complex Types that hold elements and/or attributes, but no text
values. Such elements cannot store a text value. However, they can hold
child elements or attributes. We have seen several examples of such
Complex Types earlier in this book.

The following example shows an element Contact that has two child
elements, but no attributes. Contact is an element-only complex type.

<Contact>
<Phone>999 999 9999</Phone>
<Fax>888 888 8888</Fax>
</Contact>

Listing 10.19

Here is the schema that describes the above XML instance.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name='"Phone" />
<xsd:element name="Fax"/>
</xsd:sequence>
<xsd:attribute name="Primary"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Contact>
<Phone>999 999 9999</Phone>
<Fax>888 888 8888</Fax>
</Contact>"

Listing 10.20
321

10 — Complex types

In the below example the Contact element has two attributes, but no child
elements.

<Contact Phone="999 999 9999" Fax="888 888 8888" />

Listing 10.21

And here is the schema that describes the above XML instance.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:attribute name="Phone" />
<xsd:attribute name="Fax"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

-- Validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Contact Phone="999 999 9999" Fax='"888 888 8888" />'

Listing 10.22

Here is a third variation that shows an XML element having child elements
and attributes.

<Phone Primary="Home">
<Home>999 999 9999</Home>
<0ffice>888 888 8888</0ffice>
</Phone>

Listing 10.23

322

10 — Complex types

Here is the schema that describes the above XML instance.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION Examp1eSchema
AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Home" />
<xsd:element name="Office"/>
</xsd:sequence>
<xsd:attribute name="Primary"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Phone Primary="Home">
<Home>999 999 9999</Home>
<0ffice>888 888 8888</0ffice>

</Phone>"

Listing 10.24

The three examples we saw above show elements having
element-only content.

Mixed Content

Mixed Content is a combination of Simple Content and Element-only
content. When a Complex Type has Mixed Content, it can store child
elements and attributes as well as text values. Let us look at an example:

<InvoiceNote>
call <name>Steve</name> on <mobile>999 999 9999</mobile> before
| shipping the order.
</InvoiceNote>

Listing 10.25

323

10 — Complex types

Do you find anything special in this XML instance? Yes, this XML instance
is much different than what we have seen so far. The InvoiceNote element
contains text values as well as child nodes.

Mixed content type makes text values more meaningful. For example, the
above XML instance is more meaningful to an XML parser than the one
given below.

<InvoiceNote>
call Steve on 999 999 9999 before
shipping the order.
‘ </InvoiceNote>

Listing 10.26

Though both examples contain the same information, the first example is
more meaningful to an XML parser because the information can be
extracted more accurately from the first example. Name of the contact
person and mobile number can easily be parsed from the first example.
However, it would be too complex to identify and extract the same
information from the second example.

We have seen an example of Mixed Content. Now let us see how to write
the schema for a Complex Type that has Mixed Content.

CREATE XML SCHEMA COLLECTION MixedContentTest AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="InvoiceNote'">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="mobile"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>'
GO

Listing 10.27

You will notice that the only difference from element-only content model is
the presence of the attribute "mixed." By setting this to true we indicate that
the Complex Type has Mixed Content. Here is an XML instance that
validates with the above schema.

DECLARE @x XML (MixedContentTest)
SELECT @x = '
<InvoiceNote>

324

10 — Complex types

call <name>Steve</name> on <mobile>999 999 9999</mobile> before
shipping the order.
</InvoiceNote>"'

Listing 10.28

There are many cases where we would come across mixed types. The
best example is an XHTML document. For example, look at the following.

<p>
This <i>XHTML</1i> document is a good example of a
\ mixed type. Some text may be bold, others
‘ /may be <u>underlined</u> or may be <i>italicised</i>.
</p>

Listing 10.29

This is something very familiar to us. The <p> tag has mixed content; it can
hold other child elements for text formatting.

Let us try to write the schema for the above XML instance.

CREATE XML SCHEMA COLLECTION XhtmlTest AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="p">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:choice minoccurs="0" maxOoccurs="unbounded">
<xsd:element name="u"/>
<xsd:element name="1i"/>
<xsd:element name="b"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

Listing 10.30

DECLARE @x XML(XhtmlTest)
SELECT @x = '
<p>
This <i>XHTML</i> document is a good example of a
mixed type. Some text may be bold, others
/may be <u>underlined</u> or may be <i>italicised</i>.
</p>"

Listing 10.31

325

10 — Complex types

Order of Elements and Attributes

As mentioned several times in the previous chapters, a Complex Type can
have other child elements as well as attributes. When a Complex Type
contains elements and attributes, the attribute declarations should appear
after the element declarations. For example, the following declaration is
invalid.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:compTlexType>
<xsd:attribute name="CustomerNumber"/>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="phone" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 10.32

Here is the correct schema.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="name"/>
<xsd:element name="phone" />
</xsd:sequence>
<xsd:attribute name="CustomerNumber"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 10.33

Note that the attribute declaration is moved towards the bottom of the
Complex Type declaration. Attribute declarations should always appear
after element declarations.

Attributes of an element can appear in any order. The order/position is not
significant for attributes. However, the order/position of elements is
significant in XML. When you define your schema, you can specify for each
Complex Type whether the children should follow a specific order or not.

326

10 — Complex types

Order Indicators

Order indicators are used to define the order or position of child elements
within an XML node. There are times when we need the elements to
appear in a specific order. For example, an order processing application
might require the OrderDate to appear before ShipDate so that it can
perform certain validations without going backward while parsing the XML.
There may be times when you do not need the information in any specific
order. XSD uses order indicators to specify the order in which elements
should appear inside an XML node.

XSD defines the following order indicators:

. sequence
° all
. choice

We will see each of these Order Indicators in detail.

sequence Indicator

"sequence" indicator is used to specify that the elements should appear in
exactly the same order as they are defined in the schema. The following
schema specifies that child elements Name, Phone and Address should be
placed in exactly the same order as they are defined in the schema. The
first element should be Name, followed by Phone, and the last element
should be Address.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Name" />
<xsd:element name="Phone" />
<xsd:element name="Address" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 10.34

327

10 — Complex types

The XML value should follow exactly the same order. Here is a valid XML
instance that passes the above schema validation.

‘ <Customer>
<Name>Jacob</Name>
<Phone>999-999-9999</Phone>
<Address>401, TIME SQUARE</Address>
</Customer>

Listing 10.35
If the XML instance does not follow the correct order, the schema validation
will fail and SQL Server will not accept the XML instance.

all Indicator

"all" indicator is used to specify that the child elements can appear in any
order. Here is the updated version of a previous schema that uses "all”
indicator to specify that the elements can appear in any order.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:all>
<xsd:element name="Name" />
<xsd:element name="Phone" />
<xsd:element name="Address" />
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 10.36

With the new version of the schema that uses "all" indicator, all six of the
XML instances given below are valid.

<Customer>
| <Name>Jacob</Name>
<Phone>999-999-9999</Phone>
\ <Address>401, TIME SQUARE</Address>
</Customer>

Listing 10.37

328

10 — Complex types

<Customer>
<Name>Jacob</Name>
<Address>401, TIME SQUARE</Address>
<Phone>999-999-9999</Phone>
</Customer>

Listing 10.38

<Customer>
<Phone>999-999-9999</Phone>
<Name>Jacob</Name>
<Address>401, TIME SQUARE</Address>
</Customer>

Listing 10.39

<Customer>
<Phone>999-999-9999</Phone>
<Address>401, TIME SQUARE</Address>
<Name>Jacob</Name>

</Customer>

Listing 10.40

‘ <Customer>
<Address>401, TIME SQUARE</Address>
<Phone>999-999-9999</Phone>
<Name>Jacob</Name>
</Customer>

Listing 10.41

<Customer>
<Address>401, TIME SQUARE</Address>
<Name>Jacob</Name>
<Phone>999-999-9999</Phone>
‘ </Customer>

Listing 10.42

once. maxOccurs should always be 1 and minOccurs can be

@ When all is specified, an element cannot appear more than
Oor1.

329

10 — Complex types

choice Indicator

The "choice" indicator is used when only one element from a list of child
elements should appear in the XML instance. The following schema
defines an XML instance that stores payment details.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Payment">
<xsd:compTlexType>
<xsd:choice>
<xsd:element name="cashDetails" />
<xsd:element name="CheckDetails" />
<xsd:element name="CreditCardbetails" />
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 10.43

Out of the three elements declared under Payment node, only one should
be present in the XML instance. All of the following are valid XML
instances.

<Payment> . .
<Cashbetails>details here</CashbDetails>
</Payment>

Listing 10.44

<Payment>
<CheckbDetails>detaile here</CheckbDetails>
</Payment>

Listing 10.45

‘ <Payment>] .])
<CreditCardbetails>detaile here</CreditcCardbDetails>
</Payment>

Listing 10.46

330

10 — Complex types

Occurrence Indicators

One of the basic differences between an element and attribute is that an
element can appear more than once — if the schema allows. Attributes
cannot appear more than once within the parent element.

There are times when you need to control the occurrence of child
elements. Some elements may be mandatory, some optional and some
may appear more than once. You can control the occurrence of elements
by using minOccurs and maxQOccurs attributes of element declaration.

The default value of minOccurs and maxOccurs is 1; hence, every element
should appear EXACTLY once by default. By setting minOccurs to 0, you
can make an element optional. The following table shows a few examples
that demonstrate how to control the occurrences of elements by using
minOccurs and maxOccurs.

minOccurs | maxOccurs | Result

1 1 The element is mandatory and should
appear only once.

0 1 The element is optional. It may appear
once but not more than once.

0 5 The element is optional and can appear up
to 5 times.

1 5 The element is mandatory and can appear
5 times maximum.

0 unbounded | The element is optional and can appear
any number of times.

1 unbounded | The element is mandatory and can appear
any number of times

2 2 The element should appear exactly 2
times.

331

10 — Complex types

Element Groups

Element Groups are reusable groups that contain one or more
elements. These groups can be inserted into other complex types within
the same schema.

Element groups provide reusability to a certain extent. Further, they make a
schema easier to modify and maintain. When modifications are required,
the schema author can change in a single location and the changes will
reflect at all places where the element group is referenced.

-- Drop previous schema collection
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

CREATE XML SCHEMA COLLECTION ExampleSchema AS
'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:group name="ContactInfo">
<xsd:sequence>
<xsd:element name="email" />
<xsd:element name="phone" />
</xsd:sequence>
</xsd:group>

<xsd:element name="Manager">
<xsd:compTlexType>
<xsd:sequence>
<xsd:group ref="ContactInfo"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

DECLARE @x XML (ExampleSchema)

SET @x = '

<Manager>
<email>name@organization.com</email>
<phone>123456789</phone>

</Manager>"'

Listing 10.47: An example showing the usage of element groups.

In the above example, an element group named Contactinfo is created with
email and phone elements. This group is then inserted into the declaration
of the Manager element.

332

10 — Complex types

LAB4: Write schema for the Order
Processing Application - Billing
and Shipping address

In the last three labs we have developed the schema for the Orderinfo,
Order and Customer elements. In this lab we will write the schema for the
Billing and Shipping address.

The Customer element should contain billing and shipping information.
Only the billing address is mandatory. If shipping address is not specified,
the billing address is assumed to be the shipping location.

Billing and Shipping elements have the same structure and they follow the
same validation rules. The following example shows how shipping and
billing addresses should look.

<Bil1Tling City="Eugene" State="OR" Zzip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>

</Billing>

Listing 10.48: Example of a Billing Address.

<Shipping City="Eugene" State="OR" zip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>

</Shipping>

Listing 10.49: Example of a Shipping Address.

As mentioned earlier, Billing and Shipping elements should follow the same
validation rules. Here are the rules that these elements should follow:

. Should have three mandatory attributes: City, State and Zip.

. The value of City should not be empty and should not be longer than
thirty characters.

° The value of State should be exactly two characters long. Only letters
Ato Z in upper case are permitted.

. The length of Zip should be a five-digit number without leading zeros.

o Address is mandatory and should not be more than fifty
characters long.

° Street is optional. If present, it should not be more than twenty
characters long and should appear after the Address element.

333

10 — Complex types

Defining Complex Type: AddressType

Since the Billing and Shipping elements share the same validation rules, let
us create a complex type named AddressType that validates address
information. We can reuse this complex type while declaring Shipping and
Billing elements.

Let us start writing the rules for AddressType. Let us start with a basic
complex type declaration. AddressType should be a named complex type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType"/>
</xsd:schema>

Listing 10.50

Let us now add the validation rules to the complex type definition.

Rule 1

AddressType should have three mandatory attributes: City, State
and Zip.

Let us add the attribute declarations to the complex type. To indicate that
the attributes are mandatory, let us set the "use" attribute to "required.”

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType">
<xsd:attribute name="City" use="required"/>
<xsd:attribute name="State" use="required"/>
<xsd:attribute name="zip" use="required"/>
</xsd:complexType>
</xsd:schema>

Listing 10.51

Rule 2

The value of City should not be empty and should not be longer
than thirty characters.

Let us modify the declaration of the City attribute and add a restriction
based on string. To restrict the length of the value, let us use the minLength
and maxLength facets.

334

10 — Complex types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType">
<xsd:attribute name="City" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="sState" use="required"/>
<xsd:attribute name="zip" use="required"/>
</xsd:complexType>
</xsd:schema>

Listing 10.52

Rule 3

The value of State should be exactly two characters long. Only
letters A to Z in upper case are permitted.

Let us add a restriction to the State attribute. Let us use a pattern
restriction to implement the restriction stipulated by Rule 3.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType">
<xsd:attribute name="City" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="State" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-z]{2}"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="zip" use="required"/>
</xsd:complexType>
</xsd:schema>

Listing 10.53

Rule 4

The length of Zip should be exactly five characters and should
contain only digits O to 9; leading zeros are not allowed.

We created a simple type named ZipType in Chapter 8. Let us use it to

validate the zip code.
335

10 — Complex types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType">
<xsd:attribute name="City" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="state" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="zip" use="required" type="zipType"/>
</xsd:complexType>
</xsd:schema>

Listing 10.54

Rule 5

Address is mandatory and should not be more than fifty
characters long.

Let us add an element declaration for the Address element. Let us add a
sequence indicator and write the declaration of the address element.
Elements are mandatory by default, and we don't need to specify
anything to make it mandatory. Let us use minLength and maxLength
restrictions to validate the length of the value.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType">
<xsd:sequence>
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="City" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="sState" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="zip" use="required" type="zipType"/>
</xsd:complexType>
</xsd:schema>

Listing 10.55

336

10 — Complex types

Rule 6

Street is optional. If present, it should not be more than twenty
characters long and should appear after the Address element.

Let us add the declaration for the Street element. To make it optional, let us
set minOccurs to 0. Then let us add a restriction to specify the maximum
allowed length of the value.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="AddressType'">
<xsd:sequence>
<xsd:element name="Address">
<!-- other declarations here -->
</xsd:element>
<xsd:element name="Street" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="City" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="State" use="required">
<!-- other declarations here -->
</xsd:attribute>
<xsd:attribute name="Zzip" use="required" type="zipType"/>
</xsd:complexType>
</xsd:schema>

Listing 10.56

We have created the complex type to validate Address information. Let us
now build the schema that validates the shipping and billing address
information.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Customer Element -->

337

10 — Complex types

<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Billing" type="AddressType"/>
<xsd:element name="Shipping" type="AddressType"
minOccurs="0"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
<!-- Address Type -->
<xsd:complexType name="AddressType'>
<xsd:sequence>
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Street" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="City" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="State" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="zip" use="required" type="zipType"/>
</xsd:complexType>
<l-- Zip Type -->
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>"
GO

Listing 10.57

DECLARE @x XML (ExampleSchema)
SELECT @x = '
| <Customer>
‘ <Billing City="Eugene" State="OR" ZzZip="97403">

J90

10 — Complex types

<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>

</Billing>

<Shipping City="Eugene" State="OR" Zzip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>

</Shipping>

</Customer>"

Listing 10.58

In the previous lab we had created the schema to validate the Orderinfo,
Order and Customer elements. Let us merge the schema we created in this
lab to the previous version and come up with a combined version that
validates Orderinfo, Order, Customer, Billing and Shipping elements.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type="xsd:dateTime"/>
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minoccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing" type="AddressType"/>
<xsd:element name="Shipping" type="AddressType"
minOccurs="0"/>
<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Contact"

339

10 — Complex types

minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[a-zA- Z]{S}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="Items"/>
<xsd:element name="OrderNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="InvoiceNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Discount" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,203}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:compTlexType>
</xsd:element>
<!-- Address Type -->
<xsd:complexType name="AddressType'>
<xsd:sequence>
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Street" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="City" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>

34U

10 — Complex types

</xsd:attribute>
<xsd:attribute name="State" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Zz]{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="zip" use="required" type="zipType"/>
</xsd:complexType>
<l-- Zip Type -->
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
f/xsd:schema>

GO

Listing 10.59

Here is an XML instance that validates with the above schema.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Oorder oOrderNumber="20002">
<Orderbate>2008-01-01z</0OrderDate>
<Deliverybate>2008-01-10T09:00:00-08:00</Deliverybate>
<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Bi1ling City="Eugene" State="OR" Zip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Billing>
<Shipping City="Eugene" State="OR" Zzip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Shipping>
<Terms>30 Days Credit</Terms>
<Contact />
</Customer>
<Items />
<OrderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount />
</order>"

Listing 10.60

341

10 — Complex types

Chapter Summary

We have taken a closer look at Complex Types in this chapter. Complex
Types are more content-rich than Simple Types because they can have
child elements and attributes.

The data and the structure of an element and its children constitute its
Content Model. Complex Types can have four different content models,
namely Simple, Empty, Element-Only and Mixed.

All of the four content models mentioned above can have attributes.
The only difference is in terms of the ability to hold child elements and
character content.

Elements having Simple Content can store character data as well as child
elements. They are very close to Simple Types but can hold attributes,
which Simple Types cannot. Elements having empty content can have
attributes but no child elements. Elements having element-only content can
hold child elements and attributes, but they cannot store character data.
When an element has Mixed type it can store child elements, attributes and
character data.

Complex Types can be Named or Anonymous. Named Types are defined
globally and can be re-used within other complex types. Anonymous types
are declared inline within the body of other complex types and the
declaration can be used only once.

Sequence indicator is used to control the order of the child elements within
the XML instance. When elements are declared within a sequence
indicator, the XML instance must contain elements in the same order as
declared in the sequence indicator. If a specific order is not required, the all
indicator should be used. When all is used child elements can appear in
any order and none of the elements should appear more than once. Choice
indicator can be used to specify that only one element from a given list of
elements should appear in the XML instance.

Elements are mandatory by default. An element can occur more than once
if the schema permits. The occurrences of elements are controlled by
minOccurs and maxOccurs attributes. The default value of minOccurs and
maxOccurs is 1; hence, all elements should appear exactly once unless
specified differently. By setting minOccurs to 0, you can make an element
optional. By setting maxOccus to "unbounded" you can allow an element to
appear an unlimited number of times.

342

10 — Complex types

When a complex type contains elements and attributes, attribute
declarations should appear after the element declarations. Element groups
can be used to define frequently used elements. A named element group
can be created with such declarations and other complex types can refer to
a named element group.

343

CHAPTER 11
CoMPLEX TYPE DERIVATION

In Chapter 8 we have seen how to derive new types from Simple types. We
discussed the different ways to derive a new type from an existing simple
type. In Chapter 10 we examined complex types and discussed the
different content models supported by complex types. Just as we saw with
simple types, new types can be derived from complex types, too.

New complex types can be derived from existing complex types by
restriction or by extension. In this chapter we will discuss the following:

Deriving complex types from simple types
Deriving from simple content complex types
Deriving from empty content complex types
Deriving from element-only content complex types
Deriving from mixed content complex types
Controlling type derivation of complex types

Deriving Complex Types from
Simple Types

We have examined simple types in many of the previous chapters. When
we examined the final attribute of simple type declaration, | had mentioned
that a complex type can be derived from a simple type by extension. Let us
look at an example in order to understand this.

Let us create a simple type that validates a phone number.

xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<!-- Phone Type -->
<xsd:simpleType name=' PhoneType >
<xsd:restriction base="xsd:string
<xsd:pattern value="[0-9]{3}- [0 9]{3} [0-971{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 11.1: A simple type that validates a phone number.

344

11 — Complex type derivation

We know how to derive other simple types by restriction, by union or by list.
But we have not seen deriving complex types from simple types.

Let us try to derive a new complex type from this. Let us add a new
attribute to PhoneType so that it can take an additional property that
specifies whether the value refers to "work" or "home" phone.

When you derive a complex type from a simple type, it can only have a
simple content. Let us start by adding a simple content element to the
element definition.

‘ <xsd:complexType name="PhoneTypeEx">
<xsd:simpleContent/>
</xsd:complexType>

Listing 11.2

Next, we need to add an extension element that derives from PhoneType.

<xsd:complexType name="PhoneTypeEx">
\ <xsd:simpleContent> \
<xsd:extension base="PhoneType"/>
| </xsd:simpleContent> \
</xsd:complexType>

Listing 11.3

And finally, let us add the Type attribute to it.

<xsd:complexType name="PhoneTypeEx">
<xsd:simpleContent>
<xsd:extension base="PhoneType">
<xsd:attribute name="Type" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.4

Let us create a schema collection with this definition.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

345

11 — Complex type derivation

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone" type="PhoneTypeEx"/>
<!-- Extended Phone Type -->
<xsd:complexType name="PhoneTypeEx">
<xsd:simpleContent>
<xsd:extension base="PhoneType">
<xsd:attribute name="Type" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<!-- Phone Type -->
<xsd:simpleType name=' PhoneType >
<xsd:restriction base="xsd:string
<xsd:pattern value="[0-9]{3}- [0 9]{3} [0-9]{4}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Phone Type="home'">999-999-9999</Phone>"

Listing 11.5

Restricting Extension of Simple
Types

In Chapter 8 we saw the "final" attribute of simple type declaration. This
attribute can be used to restrict the methods by which the type can be
inherited. If "final" is set to "list," derivation by list will not be allowed.
Similarly, by setting "final” to "union” or ‘"restriction” we could prohibit
derivation by union and list, respectively.

When the final attribute is set to "extension," the simple type cannot be
extended. In the previous example we extended PhoneType and created
PhoneTypeEx. Now let us write a different version of PhoneType that
prevents extension.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone" type="PhoneTypeEx"/>
<!-- Extended Phone Type -->
<xsd:complexType name="PhoneTypeEx">
<xsd:simpleContent>
<xsd:extension base="PhoneType'>
<xsd:attribute name="Type" use="required"/>
</xsd:extension>
</xsd:simpleContent>

346

11 — Complex type derivation

</xsd:complexType>

<!-- Phone Type -->

<xsd:simpleType name="PhoneType" final="extension">
<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{3}-[0-9]1{3}-[0-9]1{4}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Listing 11.6: When "final" is set to "extension," the type cannot be derived
by extension.

Since the PhoneType does not allow extension, the definition of
PhoneTypeEx is invalid. If you try to create a schema collection with this
version of the schema, SQL Server will generate the following error.

Invalid type definition for type 'PhoneTypeEx', the derivation was
illegal because 'final' attribute was specified on the base type

Deriving from Complex Types

We just saw how to derive a complex type from a simple type. In Chapter
10 we learned that complex types can have four different content models,
namely simple content, empty content, mixed content and element-only
content. The derivation behavior of each content model is slightly different
from others. Let us examine how to derive new complex types from the
four different content models.

content models supported by complex types often. | will be
using element-only type, element-only content type, and
element only content complex type to refer to a complex
type having element only content type. | will use the same
naming pattern to refer to the other content models, as well.

Iﬁ Throughout this chapter | will be referring to the different

Deriving from Simple Content

We have learned simple content in Chapter 10. An element having simple
content can store a text value as well as attributes. However, it cannot
have child elements. The following example shows an XML element having
simple content.

347

11 — Complex type derivation

<Phone Type="Home" callonweekend="true">999-999-9999</Phone>

Listing 11.7

And here is the schema that describes this XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->
<xsd:element name="Phone" type="PhoneType"/>

<!-- Phone Type -->
<xsd:complexType name="PhoneType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Type" type="xsd:string"/>
<xsd:attribute name="callonweekend" type="xsd:boolean"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:schema>

Listing 11.8

The above example shows a complex type having simple content. There
are two ways to derive a new type from this. We can derive a new type by
restriction or by extension. Let us examine both options in detail.

Deriving from Simple Content by Restriction

When we derive by restriction from a complex type having simple content,
we can apply the following restrictions.

. We can add restrictions to the content/text-value of the element.
. We can add restrictions to the attributes
. We can remove one or more of the attributes.

Let us derive a new type from complex type shown above and try to add
the following restrictions.

. At present there is no validation on the format of the phone number.
Let us add a pattern restriction to restrict values to the format "999-
999-9999."

. The Type attribute does not have any validation. Let us restrict it to
"Home" and "Work" by using an enumeration restriction.

o Let us remove the attribute "CallOnWeekend."

First of all, let us derive a new type from PhoneType by restriction.

348

11 — Complex type derivation

<!-- Restricted Phone Type -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:simpleContent>
\ <xsd:restriction base="PhoneType"/>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.9

Now let us add a pattern restriction to validate the content of the element.

<!-- Restricted Phone Type -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:simpleContent>
<xsd:restriction base="PhoneType">
<xsd:pattern value="[0-9]{3}-[0-9]1{3}-[0-9]1{4}"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.10

Let us add restrictions to the "Type" attribute. Let us use an enumeration
restriction to restrict the values to "Home" and "Work" only.

<!-- Restricted Phone Type -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:simpleContent>
<xsd:restriction base="PhoneType">
<xsd:pattern value="[0-9]1{3}-[0-9]1{3}-[0-9]1{4}"/>
<xsd:attribute name="Type">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Home"/>
<xsd:enumeration value="work"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.11

Finally, let us remove the attribute "CallOnWeekend."

<!-- Restricted Phone Type -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:simpleContent>
<xsd:restriction base="PhoneType'>
<xsd:pattern va1ue—"[0 9]{3} [0-9]1{3}-[0-9]{4}"/>
<xsd:attribute name="Type">
<xsd:simpleType>
<xsd:restriction base="xsd:string">

349

11 — Complex type derivation

<xsd:enumeration value="Home"/>
<xsd:enumeration value="work"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="callonweekend" type="xsd:boolean"
use="prohibited"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.12

Note the usage of "prohibited.” This is the example | mentioned when we
discussed attribute declarations in Chapter 6. When you derive a new
complex type, all the attributes of the base type will pass down to the
derived type. If you want to eliminate one or more attributes, you need to
redefine them in the child type and set the "use” attribute to "prohibited."”

Let us create a schema collection with this code.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->]
<xsd:element name="Phone" type="RestrictedPhoneType"/>

<!-- Restricted Phone Type -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:simpleContent>
<xsd:restriction base="PhoneType'">
<xsd:pattern value="[0-9]{3}-[0-9]1{3}-[0-9]1{4}"/>
<xsd:attribute name="Type">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<Xsd:enumeration value="Home" />
<xsd:enumeration value="work"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="callonweekend" type="xsd:boolean
use="prohibited" />
</Xsd:restriction>
</xsd:simpleContent>
</xsd:compTlexType>

<!-- Phone Type -->
<xsd:complexType name="PhoneType">

J9U

11 — Complex type derivation

<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Type" type="xsd:string"/>
<xsd:attribute name="cCallonweekend" type="xsd:boolean"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:schema>"
GO

Listing 11.13

Since we have marked the attribute "CallOnWeekend" as "prohibited,"” SQL
Server will generate an error if the XML instance contains this attribute. The
following XML instance will not be validated.

DECLARE @x XML (ExampleSchema)
SET @x = '
<Phone Type="Home" cCallonweekend="true">999-999-9999</Phone>"

Listing 11.14

The validation of the above XML instance will fail with the following error.

XML validation: Attribute 'Callonweekend' is not permitted in this
‘ context. Location: /*:Phone[1l]/@*:Callonweekend

Note that when you add restrictions to the content as well as attributes, you
cannot make the values less restrictive. We have discussed this when we
discussed derivation of simple types. Similarly, if an attribute is “required"” in
the base type, you cannot make it "optional” in the derived type. However,
if the attribute is declared with "optional” in base type, you can make it
“required"” in the derived type.

If an attribute is declared as "required” in base type, it should be “required”

in the derived type as well. If an attribute is "required” in base type, the
derived type cannot make it "prohibited.”

351

11 — Complex type derivation

Base Type Derived Type

Attribute Optional Required Prohibited
Optional Yes Yes Yes
Required No Yes No
Prohibited No No Yes

Listing 11.15

Deriving from Simple Content by Extension

When you derive by extension from a complex type with simple content the
result will always be a simple content. You cannot create a new complex
content type from a simple content type. The only operation you can do
when you extend a simple content type is to add new attributes.

Let us take the example of the PhoneType we saw in Listing 11.8 and
derive a new type from it by extension. Let us add a new attribute named
"CallOnHolidays."

First of all, let us create a new type and add an extension element having
base type set to PhoneType.

<!-- Extended Phone Type -->
<xsd:complexType name="ExtendedPhoneType">
<xsd:simpleContent>
<xsd:extension base="PhoneType"/>
</xsd:simpleContent>
</xsd:complexType>

Listing 11.16

Then let us add the new attribute.

<!-- Extended Phone Type -->
<xsd:complexType name="ExtendedPhoneType">
<xsd:simpleContent>
<xsd:extension base="PhoneType'>
<xsd:attribute name="callonHolidays" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:compTlexType>

Listing 11.17

352

11 — Complex type derivation

Let us create a schema collection and validate an XML instance with this
version of the schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->
<xsd:element name="Phone" type="ExtendedPhoneType"/>

<!-- Extended Phone Type -->
<xsd:complexType name="ExtendedPhoneType">
<xsd:simpleContent>
<xsd:extension base="PhoneType">
<xsd:attribute name="CallOnHolidays" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<!-- Phone Type -->
<xsd:complexType name='"PhoneType'">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Type" type="xsd:string"/>
<xsd:attribute name="Callonweekend" type="xsd:boolean"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:schema>"
GO

-- validate

DECLARE @x XML (ExampleSchema)

SET @x = '

<Phone Type="Home" Callonweekend="true" CallOnHolidays="true">
999-999-9999

</Phone>"

Listing 11.18

Deriving from Element-only Content

We have discussed element-only content model in Chapter 10. A complex
type with element-only content model can have child elements and
attributes. However, it cannot store a text value as a simple content
element can.

353

11 — Complex type derivation

The following example shows an xml instance having element-only content.

<Contact Name="Jacob" Title="Manager">
<Phone>999-888-7777</Phone>
\ <Email>jacob@jacob.com</Email>
</Contact>

Listing 11.19

The Contact element given in the above example has element-only content
model. It has an attribute as well as child elements. Phone and Email are
simple content elements. Here is the schema that describes the above
XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->
<xsd:element name="Contact" type="ContactType"/>

<!-- Contact Type -->
<xsd:complexType name="ContactType'">
<xsd:sequence>
<xXsd:element name="Phone" minoccurs="0"/>
<xsd:element name="Email" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" />
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:schema>

Listing 11.20

A complex type with element-only content can be extended or restricted to
create new types.

Deriving from Element-only content by
Restriction

When deriving from an element-only content type, we could create either
an empty content complex type or another element-only content complex

type.

The most common usage of deriving by restriction from an element-only
content type is to remove one or more elements or attributes.

354

11 — Complex type derivation

Deriving an element-only complex type from an
element-only complex type

When deriving by restriction from an element-only complex type, you can
add restrictions to the base type's elements and attributes as well as
remove one or more elements and attributes.

Let us derive a new type from ContactType and remove the "Email”
element and "Title" attribute. Further, let us add a pattern restriction to the
Phone element and add a length restriction to the Name attribute.

First of all, let us create a new complex type that derives from ContactType
by restriction.

‘ <!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType"/>
</xsd:complexContent>
</xsd:complexType>

Listing 11.21

Now let us add the element declarations. We need to remove the Email
element and keep only the Phone element.

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType">
<xsd:sequence>
<xsd:element name="Phone"/>
</xsd:sequence>
</Xsd:restriction>
</xsd:compTlexContent>
</xsd:complexType>

Listing 11.22

Elements from the base type are not passed down to the derived type by
default. The derived type has to explicitly declare the elements it wants to
inherit from the parent (rather than list those to exclude.).

In the above example the derived type has declared only the Phone
element, and as a result its content model will have only one element. This
would result in the elimination of the Email element declared in the
base type.

355

11 — Complex type derivation

Note that Email element is declared in base type as optional. If it were
mandatory, we would not have been able to eliminate it from the derived
type. All mandatory elements in the base type must exist in the derived
type as well.

If the elements in the base type are declared within a sequence group, the
derived type cannot change it to all or choice groups. If the base type has
all, the derived type can change it to sequence. If the base type has
choice, the derived type must also have choice.

Let us now add a format restriction to the Phone element.

<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType">
<xsd:sequence>
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[0-9]{3}- [O 9]{3} [0-9]{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

Listing 11.23

The next step is to remove the "Title" attribute.

<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType">
<xsd:sequence>
<xsd:element name="Phone">
<!-- Removed for brevity -->
</xsd:element>
</xsd:sequence>
<xsd:attribute name="Title" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

Listing 11.24

All attributes of the base type are passed down to the derived type by
default. Hence, if you want to remove an attribute you need to re-declare it
in the derived type as "prohibited.”" A derived type cannot eliminate an
attribute declared as mandatory in the base type. Listing 71.15 explains the
rules to be followed while deriving attributes.

356

11 — Complex type derivation

You need to redefine an attribute in the derived type only if you want to
restrict the value space of the attribute. In the above example, the Name
attribute is not redefined. When not redefined in the derived type, the
attributes of the base type will exist in the derived type with the same
validation rules defined in the base type. We discussed earlier that we
need to add a length restriction to the Name attribute. To achieve this, we
need to redefine the Name attribute in the derived type.

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType'">
<!-- Removed for brevity -->
<xsd:attribute name="Title" use="prohibited"/>
<xsd:attribute name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</Xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

Listing 11.25

Let us build a schema collection with this definition.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->]
<xsd:element name="Contact" type="RestrictedContactType"/>

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType'">
<xsd:complexContent>
<xsd:restriction base="ContactType'">
<xsd:sequence>
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[0-9]{3}- [O 9]{3} [0-97{4}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

397

11 — Complex type derivation

</xsd:sequence>
<xsd:attribute name="Title" use="prohibited"/>
<xsd:attribute name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<!-- Contact Type -->
<xsd:complexType name="ContactType'>
<xsd:sequence>
<xsd:element name="Phone" minOccurs="0"/>
<xsd:element name="Email" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name='"Name" />
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Contact Name="Jacob">
<Phone>999-888-7777</Phone>

</Contact>"'

Listing 11.26

Deriving an empty content complex type from an
element-only complex type

In the above example, we saw how to derive an element-only complex type
from a base type having element-only content model. It is also possible to
derive an empty content complex type from an element-only content type.
An empty content type can hold attributes, but no child elements or
text value. Let us see an example.

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType">
| <xsd:complexContent>
<xsd:restriction base="ContactType"/>
| </xsd:complexContent>
</xsd:complexType>

Listing 11.27

358

11 — Complex type derivation

Note that the restriction element is left empty. This indicates that the
derived type does not want to inherit any of the elements declared in the
base type. We saw earlier that elements from the base type are not passed
down to the derived type. The content model of the derived type is
composed of only the elements redefined in the derived type. By keeping
the restriction element empty, we can derive an empty content type.

This does not affect the attributes. Attributes of the base type are always
passed down to the derived type. If you want to remove one or more
attributes, you need to redefine them in the derived type and set the "use”
attribute to "prohibited.”

only content type only if all the elements in the base type

@ You can derive an empty content type from an element
are optional.

Let us create a schema collection with this version of the schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->]
<xsd:element name="Contact" type="RestrictedContactType"/>

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType'">
<xsd:complexContent>
<xsd:restriction base="ContactType"/>
</xsd:complexContent>
</xsd:complexType>

<!-- Contact Type -->
<xsd:complexType name="ContactType">
<xsd:sequence>
<xsd:element name='"Phone" minOccurs="0"/>
<xsd:element name="Email" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name"/>
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:schema>"
GO

359

11 — Complex type derivation

-- Validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Contact Name="Jacob"/>'

Listing 11.28

Deriving from Element-only content by
Extension

Usually, complex types are extended to add new elements and attributes.
When you derive a new type from an element-only type by extension, you
can add new elements and attributes.

Let us take the example of ContactType we discussed earlier and add a
Fax element to it. Let us also add a new attribute named "Department.”

<!-- Extended Contact Type -->
<xsd:complexType name="ExtendedContactType">
<xsd:complexContent>
<xsd:extension base="ContactType">
<xsd:sequence>
<xsd:element name="Fax"/>
</xsd:sequence>
<xsd:attribute name="Department"/>
</Xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Listing 11.29

When deriving by extension, all elements and attributes in the base type
will be passed down to the derived type by default. You don't need to
redefine them in the derived type. The new elements will be added to the
bottom of the elements in the base type.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->
<xsd:element name="Contact" type="ExtendedContactType'"/>

360

11 — Complex type derivation

<!-- Extended Contact Type -->
<xsd:complexType name="ExtendedContactType">
<xsd:complexContent>
<xsd:extension base="ContactType'">
<xsd:sequence>
<xsd:element name="Fax"/>
</xsd:sequence>
<xsd:attribute name="Department"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Contact Type -->
<xsd:complexType name="ContactType'>
<xsd:sequence>
<xsd:element name="Phone" />
<xsd:element name="Email" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" use="required"/>
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:schema>"
GO

-- validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Contact Name="3Jacob" Title="Manager" Department="IT">
<Phone>999-888-7777</Phone>
<Email>jacob@jacob.com</Email>
<Fax>888-999-3333</Fax>

</Contact>"'

Listing 11.30

The derived type of a complex type with element-only content model will be
another element-only type. You cannot derive a mixed content or empty
content type from an element-only type.

Deriving from Mixed Content
Complex Types

You can derive new complex types from a mixed content complex type by
restriction or by extension. A mixed type or element-only content type can
be derived from a mixed type by restriction. However, when deriving by
extension only a mixed type can be created.

Here is an example of a mixed type. We saw this example in Chapter 10
when we discussed mixed types.

361

11 — Complex type derivation

<InvoiceNote Priority="High">
call <name>Steve</name> on <mobile>999-999-9999</mobile> before
shipping the order.

</InvoiceNote>

Listing 11.31

Here is the schema that describes the above XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->
<xsd:element name="InvoiceNote" type="NoteType"/>

<!-- Invoice Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<xsd:element name="name" minOccurs="0"/>
<xsd:element name="mobile" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>

Listing 11.32

Derivation of complex types with mixed content is very similar to the
derivation of element-only types. You can derive a new type either by
extension or by restriction.

Deriving from Mixed Content Type by
Restriction

We saw earlier that only an element-only content type can be derived from
a complex type having element-only content. However, when deriving by
restriction from a mixed type, you can derive a mixed type, element-only
type or empty content type.

Deriving a mixed content type from a mixed
content complex type
For the purpose of this example, let us derive a new mixed content

complex type from NoteType by restriction. Let us remove the mobile
element from the derived type.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->

362

11 — Complex type derivation

<xsd:element name="InvoiceNote" type="RestrictedNoteType"/>

<!-- Restricted Note Type -->
<xsd:complexType name="RestrictedNoteType" mixed="true">
<xsd:complexContent>
<xsd:restriction base="NoteType">
<xsd:sequence>
<xsd:element name='"name" />
</xsd:sequence>
</Xsd:restriction>
</xsd:compTlexContent>
</xsd:complexType>

<!-- Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<xsd:element name="name" minOccurs="0"/>
<xsd:element name="mobile" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>

Listing 11.33

This is very similar to the example we saw when we discussed element-
only content types. The only difference is the presence of the mixed
attribute, which makes the type a mixed type.

Let us create a schema collection with the above schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->]
<xsd:element name="InvoiceNote" type='"MixedNoteType"/>

<!-- Restricted Note Type -->
<xsd:complexType name="MixedNoteType" mixed="true">
<xsd:complexContent>
<xsd:restriction base="NoteType">
<xsd:sequence>
<xsd:element name='"name"/>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

363

11 — Complex type derivation

<!-- Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<xsd:element name='"name" minoccurs="0"/>
<xsd:element name="mobile" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<InvoiceNote Priority="High">
call <name>Steve</name> on 999-999-9999 before
shipping the order.

</InvoiceNote>'

Listing 11.34

Note that you can eliminate a base type element only if it is declared as
optional in the base type. For example, if you set the mobile attribute as
mandatory in the base type and try to eliminate it in the derived type, SQL
Server will generate the following error.

‘ Invalid restriction for type 'RestrictedNoteType'. Invalid model
group restriction.

The rules of derivation are similar to the rules of element-only content
model that we examined earlier in this chapter. Elements declared in the
parent type do not pass down to the derived type. You need to explicitly
declare the elements you want to include in the derived type.

Deriving an element-only content type from a
mixed-type
When deriving by restriction from a mixed type, you can also create an

element-only type. This could be achieved by simply removing the "mixed”
attribute from the complex type declaration.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

364

11 — Complex type derivation

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->
<xsd:element name="InvoiceNote" type="ElementOnlyNoteType"/>

<!-- Restricted Note Type -->
<xsd:complexType name="ElementOnlyNoteType">
<xsd:complexContent>
<xsd:restriction base="NoteType">
<xsd:sequence>
<xsd:element name="name"/>
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<!-- Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<xsd:element name="name" minOccurs="0"/>
<xsd:element name="mobile" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>"

GO

-- Vvalidate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<InvoiceNote Priority="High">
<name>Steve</name>

</InvoiceNote>"'

Listing 11.35

Note that the only difference is the absence of the mixed attribute. This
schema and XML instance is presented only for understanding how type
derivation works. The actual validation rules and the information stored in
the above XML instances are not very meaningful. They are used only for
the purpose of understanding type derivation.

Deriving an empty-content type from a mixed-type

When deriving from a mixed type by restriction, we could create an empty
content type if all the elements in the base type are optional. To understand
this, let us derive a new empty-content type from NoteType.

<!-- Deriving an Empty Content -->
<xsd:complexType name="EmptyNoteType">
| <xsd:complexContent>
<xsd:restriction base="NoteType"/>
‘ </xsd:complexContent>

365

11 — Complex type derivation

</xsd:complexType>

Listing 11.36

Just as in the case with element-only content types, by keeping the
restriction element empty we could eliminate all the elements declared in
the base type (if those elements are declared optional in the base type). To
eliminate attributes, you need to declare them in the derived type with
prohibited attribute. You can eliminate an attribute only if it is declared as
optional in the base type. The schema in the following example restricts the
priority attribute, also.

<!-- Deriving an Empty Content -->
<xsd:complexType name="EmptyNoteType'">
<xsd:complexContent>
<xsd:restriction base="NoteType">
<xsd:attribute name="Priority" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:compTlexType>

Listing 11.37

Here is a schema collection that validates an XML instance using the
above schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->
<xsd:element name="InvoiceNote" type="EmptyNoteType'"/>

<!-- Deriving an Empty Content -->
<xsd:complexType name="EmptyNoteType'>
<xsd:complexContent>
<xsd:restriction base="NoteType">
<xsd:attribute name="Priority" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<!-- Invoice Note Type -->]
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>

366

11 — Complex type derivation

<xsd:element name="name" minOccurs="0"/>
<xsd:element name="mobile" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>"

GO

-- Validate

DECLARE @x XML (ExampleSchema)
SELECT @x = '<InvoiceNote/>'

Listing 11.38

Deriving simple content from mixed-type

Though the XSD specification allows deriving a simple content from a
mixed-content type, SQL Server does not allow that. The following schema
is valid per XSD specification.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->)
<xsd:element name="InvoiceNote" type="SimpleNoteType"/>

<!-- Simple Content Note Type -->
<xsd:complexType name="SimpleNoteType">
<xsd:simpleContent>
<xsd:restriction base="NoteType">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</Xsd:restriction>
</xsd:simpTleContent>
</xsd:complexType>

<!-- Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<Xsd:element name="name" minoccurs="0"/>
<xsd:element name="mobile" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Priority"/>
</xsd:complexType>
</xsd:schema>

Listing 11.39

The above schema tries to derive a simple content from a mixed type.
Though this is valid per XSD specification, SQL Server will generate an
error if you try to create a schema collection with this definition.

‘ Derivation with both a 'base' attribute and an embedded type
definition is not supported in this release

367

11 — Complex type derivation

Deriving from Mixed Content by Extension

We saw earlier that when deriving from mixed content complex type by
restriction, we could create either a mixed content type or an element-only
content type. However, when deriving by extension, we could create only a
mixed content complex type.

Let us derive a new type from NoteType by extension and add an
email element.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Invoice Note Element -->
<xsd:element name="InvoiceNote" type="ExtendedNoteType"/>

<!-- Extended Note Type -->
<xsd:complexType name="ExtendedNoteType" mixed="true">
<xsd:complexContent>
<xsd:extension base="NoteType">
<xsd:sequence>
<xsd:element name="email"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Note Type -->
<xsd:complexType name="NoteType" mixed="true">
<xsd:sequence>
<xsd:element name="name" />
<xsd:element name="mobile"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<InvoiceNote>
call <name>Steve</name> on <mobile>999 999 9999</mobile> or

368

11 — Complex type derivation

<email>steve@somedomain.com</email> before shipping the order.
</InvoiceNote>"'

Listing 11.40

Deriving from Empty Content

Just as with all other types we discussed in this chapter, you can derive a
new type from an empty content element by restriction or by extension.

Here is an example showing an empty content type.

<Phone work="999 999 9999" Home="888 888 8888"/>

Listing 11.41

Here is the schema that describes the above XML instance.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->
<xsd:element name="Phone" type="PhoneType"/>

<!-- Phone Type -->
<xsd:complexType name="PhoneType">
<xsd:attribute name="Home" />
<xsd:attribute name="work"/>
</xsd:complexType>
</xsd:schema>

Listing 11.42

We will use this example in the sections below to understand how type
derivation works with empty content types.

Deriving from Empty Content by Restriction

Since an empty content complex type can have only attributes, the only
purpose of deriving from an empty content type by restriction is to eliminate
attributes or add additional validations to the attributes.

Let us derive a new type from PhoneType by restriction. Let us remove the
Work attribute from the derived type and add a pattern restriction to the
Home attribute.

369

11 — Complex type derivation

<!-- RestrictedPhoneType -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:complexContent>
<xsd:restriction base="PhoneType">
<xsd:attribute name="work" use="prohibited"/>
<xsd:attribute name="Home">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{3}-[0-9]1{3}-[0-9]1{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

Listing 11.43

You can eliminate an attribute from the derived type only if it is optional in
the base type.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->]
<xsd:element name="Phone" type="RestrictedPhoneType"/>

<!-- RestrictedPhoneType -->
<xsd:complexType name="RestrictedPhoneType">
<xsd:complexContent>
<xsd:restriction base="PhoneType'">
<xsd:attribute name="0ffice" use="prohibited"/>
<xsd:attribute name="Home">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[0-9]{3}- [O 9]{3} [0-9]{4}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<!-- Phone Type -->
<xsd:complexType name="PhoneType">
<xsd:attribute name="Home"/>
<xsd:attribute name="work"/>
</xsd:complexType>
</xsd:schema>"'

370

11 — Complex type derivation

GO

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '<Phone Home='"888-888-8888"/>"

Listing 11.44

Deriving from Empty Content by
Extension

When you derive from an empty content complex type by restriction, you
can create only an empty content type. However, when you derive by
extension you can create an empty type, mixed type or element only
content type.

Deriving from Empty Content by Extension -
Creating an Empty Content type

When deriving new Empty Content by extension, you can add one or more
attributes to the base type. Let us add a new attribute to the PhoneType.

<!-- EmptyPhoneType -->
<xsd:complexType name="EmptyPhoneType'">
<xsd:complexContent>
<xsd:extension base="PhoneType'">
<xsd:attribute name="Mobile"/>
</xsd:extension>
</xsd:complexContent>
</xsd:compTlexType>

Listing 11.45

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->

371

11 — Complex type derivation

<xsd:element name="Phone" type="EmptyPhoneType"/>

<!-- EmptyPhoneType -->
<xsd:complexType name="EmptyPhoneType'">
<xsd:complexContent>
<xsd:extension base="PhoneType'>
<xsd:attribute name="Mobile"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Phone Type -->
<xsd:complexType name="PhoneType'>
<xsd:attribute name="Home"/>
<xsd:attribute name="work"/>
</xsd:complexType>
</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Phone
Home="888-888-8888"
work="777-777-7777"
Mobile="666-666-6666"/>"

Listing 11.46

Deriving from Empty Content by Extension -
Creating an element only content type

Let us see how to derive an element only content type from an empty
content type by extension. In the previous example, we added a new
attribute Mobile to the PhoneType. Let us change that schema and add it
as an element so that it results in an element only content type. This
example is purely for the purpose of understanding. In real life it makes
sense to keep Mobile as an attribute if Home and Work are presented
as attributes.

<!-- EmptyPhoneType -->
<xsd:complexType name="EmptyPhoneType">
<xsd:complexContent>
<xsd:extension base="PhoneType'>
<xsd:sequence>
<xsd:element name="Mobile"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Listing 11.47

372

11 — Complex type derivation

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION ExampleSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->
<xsd:element name="Phone" type="EmptyPhoneType"/>

<!-- EmptyPhoneType -->
<xsd:complexType name="EmptyPhoneType">
<xsd:complexContent>
<xsd:extension base="PhoneType">
<xsd:sequence>
<xsd:element name="Mobile" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Phone Type -->
<xsd:complexType name="PhoneType">
<xsd:attribute name="Home"/>
<xsd:attribute name="work"/>
</xsd:complexType>
</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Phone Home="888-888-8888" work="777-777-7777">
<Mobile>666-666-6666</Mobile>

</Phone>"

Listing 11.48

Deriving from Empty Content by Extension -
Creating a Mixed content type
It is also possible to derive a mixed content type from an empty content

type. The following example shows a mixed type derived from PhoneType
by extension.

<!-- EmptyPhoneType -->
| <xsd:complexType name="EmptyPhoneType" mixed="true">
<xsd:complexContent>
\ <xsd:extension base="PhoneType'>
<xsd:sequence>

YA

11 — Complex type derivation

<xsd:element name="Mobile"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Listing 11.49

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Phone Element -->
<xsd:element name="Phone" type="EmptyPhoneType"/>

<!-- EmptyPhoneType -->
<xsd:complexType name="EmptyPhoneType" mixed="true">
<xsd:compTlexContent>
<xsd:extension base="PhoneType">
<xsd:sequence>
<xsd:element name="Mobile" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Phone Type -->
<xsd:complexType name="PhoneType'">
<xsd:attribute name="Home"/>
<xsd:attribute name="work"/>
</xsd:complexType>
</xsd:schema>"
GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Phone Home="888-888-8888" work="777-777-7777">
If not available at home or work, call me on my
<Mobile>666-666-6666</Mobile>.

</Phone>"

Listing 11.50

374

11 — Complex type derivation

Complex Type Derivation Summary

New complex types can be created from complex types by extension and
restriction. We have seen how to extend the four different content types
earlier in this chapter. The following table summarizes the type derivation
support extended by each content model.

Base Derived Content Type
Content | gimple Element Mixed Empty
Type Only

Rest | Ext Rest | Ext Rest | Ext Rest | Ext

Simple Yes Yes

Element Yes Yes Yes

Only

Mixed Yes Yes Yes Yes

Empty Yes Yes | Yes Yes

Listing 11.51

The table shows the different content models you can derive from a given
base type. It also shows the derivation method (extension or restriction) to
be used to create a given content type from a base type.

Controlling Complex Type
Derivation

There may be times when you want to control the derivation of a given
complex type. For example, you might have created a complex type that
you don't want others to extend. Or you might not want others to restrict a
certain complex type. The derivation of a complex type can be controlled
by using the final attribute of Complex Type Declaration.

The final attribute of a complex type declaration can take one of the
following three values.

375

11 — Complex type derivation

1. restriction
2. extension
3. #all

Preventing derivation by restriction

By setting the final attribute to “restriction,” you can prevent derivation by
restriction. The following code snippet shows an example.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->]
<xsd:element name="Contact" type="RestrictedContactType"/>

<!-- Restricted Contact Type -->
<xsd:complexType name="RestrictedContactType">
<xsd:complexContent>
<xsd:restriction base="ContactType"/>
</xsd:complexContent>
</xsd:complexType>

<!-- Contact Type -->

<xsd:complexType name="ContactType" final="restriction">
<xsd:sequence>

<xsd:element name="Phone" minoccurs="0"/>

</xsd:sequence>
<xsd:attribute name="Name" />

</xsd:complexType>

</xsd:schema>

Listing 11.52

In the above example ContactType is declared with final restriction, and
you cannot derive a new complex type from it by restriction. If you try to
create a schema collection with this schema definition, SQL Server will
generate the following error.

‘ Invalid type definition for type 'RestrictedContactType', the
derivation was illegal because 'final' attribute was specified on
the base type

The ContactType in the above example prevents only derivation by
restriction. You can still derive a new type by extension.

Preventing derivation by extension

By setting the final attribute to "extension,” you can prevent derivation by
extension. Let us look at an example.

376

11 — Complex type derivation

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Contact Element -->
<xsd:element name="Contact" type="ExtendedContactType"/>

<!-- Extended Contact Type -->
<xsd:complexType name="ExtendedContactType">
<xsd:complexContent>
<xsd:extension base="ContactType"/>
</xsd:compTlexContent>
</xsd:complexType>

<!-- Contact Type -->

<xsd:complexType name="ContactType" final="extension">
<xsd:sequence>

<xsd:element name="Phone" minoccurs="0"/>

</xsd:sequence>
<xsd:attribute name="Name" />

</xsd:complexType>

</xsd:schema>

Listing 11.53

The above schema is invalid because ContactType is declared with final
extension and it cannot be extended further. If you try to create a schema
collection with this schema, SQL Server will generate the following error.

Invalid type definition for type 'ExtendedContactType', the
derivation was illegal because 'final' attribute was specified on
the base type

The above schema prevents only derivation by extension. You can still
derive a new type by restriction from ContactType.

Preventing derivation completely

We have seen how to prevent type derivation by restriction or by extension.
There may be times when you want to protect a complex type from
derivation completely. You can achieve this by setting the final attribute to
"Hall."

<!-- Contact Type -->
<xsd:complexType name="ContactType" final="#all">
<xsd:sequence>
<xsd:element name="Phone" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" />
</xsd:compTlexType>

Listing 11.54

377

11 — Complex type derivation

You can achieve the same results by specifying restriction and extension
together. The following schema is equivalent to the one given in the above
example.

<xsd:complexType name='"ContactType" final="extension restriction">
<xsd:sequence>
<xsd:element name="Phone" minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" />
</xsd:compTlexType>

Listing 11.55

Chapter Summary

Based on the content model, complex types are categorized into simple
content, element only content, mixed content and empty content. You can
derive new complex types from these types by extension or by restriction.

When deriving by extension, you add elements or attributes to the base
type. When deriving by restriction you eliminate elements or attributes. You
can also add additional validations to the elements or attributes declared in
the base type.

Simple types can be extended to create complex types having simple
content. By setting the final attribute of a simple type to extension, you can
prevent the simple type from being extended.

When deriving by restriction, the derived type needs to specify the
elements to be included in its content model. Elements declared in the
base type are not passed down to the derived type by default. Attributes
declared in the base type are passed down to the derived type by default.
You don't need to redefine the attributes in the derived type. You should
redefine attributes only if you want to eliminate the attribute or if you want
to apply restrictions on one or more attributes.

To eliminate an element, simply don't include it while re-declaring elements
in the derived type. To eliminate an attribute in a derived type, the attribute
needs to be re-declared with use attribute set to "prohibited.” You can
eliminate an element or attribute from a derived type only if it is declared
optional in the base type. You cannot eliminate a mandatory attribute or
element in a base type.

378

11 — Complex type derivation

When deriving by extension, all the elements and attributes in the base
type are passed down to the derived type. You don't need to re-declare
them.

You can prevent derivation of complex types by using the final attribute.
The final attribute can take extension, restriction or #all. When it is set to
restriction, the complex type is protected from derivation by restriction.
When set to extension, you cannot derive a new type by extension. By
setting the final attribute to #all, you can prevent derivation completely.

379

CHAPTER 12

XSD REGULAR EXPRESSION
LANGUAGE

In the previous chapters we have covered several examples that use
pattern restrictions to validate the format of values. The pattern restriction
uses a Regular expression pattern to perform a format validation. XSD
supports a Regular Expression language similar to the Regular expression
languages supported by popular programming languages such as .NET,
Perl, Python, etc.

This regular expression language helps to define a pattern that will be
matched against the value stored in a simple type. In this chapter we will
examine the Regular Expression language supported by XSD. We will
discuss the following.

What are Regular Expressions?
Understanding Regular Expression Patterns
Regular Expression Meta Characters

Case Sensitivity

Shorthand Character Classes

Negative Expressions

Character Class Subtraction

After examining the above, we will do a hands-on-lab which is a
continuation of the labs that we did in the previous chapters. This will be
the final lab and we will write the missing parts to complete the schema
needed for the order processing application.

What are Regular Expressions?

| am sure that all of you are familiar with the find functionality most
applications provide (MS Word, web browser, text editors, etc). This
functionality helps us to quickly find a given character or group of
characters within the body of a document.

Sometimes we might come across situations where a normal string find
operation is not enough. Think of an application that parses web pages and

380

12 — XSD regular expression language

extracts all email addresses. You can easily find all occurrences of a static
value using the normal find operation. But how do you find all occurrences
of "a word followed by an ‘@' sign and then followed by two words
separated by a period (without any spaces or special characters)"?

We need a special notation language to write this kind of search
requirement. A notation language may translate this requirement to a
certain format that a search component understands. We then need a
search component that understands this notation format and is capable of
performing a search operation based on the requirement specified by
the notation.

A Regular Expression Language is such a notation language that allows
defining patterns to perform complex string matching operations. A
component that understands such a pattern and is capable of performing
the pattern matching operation is called a Regular Expression Engine. A
pattern that represents a specific string matching requirement is known as
a Regular Expression, or Regular Expression Pattern.

Programming languages like Perl, Microsoft .NET, Python, etc., have their
own regular expression engines. While the syntax and notations used for
creating regular expression patterns in those languages are similar, each
vendor may add their own extensions or enhancements.

XSD also supports a regular expression language very similar to the
regular expressions languages supported by applications mentioned
above. XSD uses regular expressions in pattern restrictions. By using
pattern restrictions you can validate the format of values stored in simple
types. We have seen several examples in the previous chapters.

Let us look closer into the regular expression language supported by XSD.

Understanding Regular Expression
Patterns

Many of the examples we discussed in the previous chapters used pattern
restrictions to validate the format of values. Most of the examples we saw
used very simple regular expression patterns. Let us revisit one of the
examples we saw earlier and try to understand the anatomy of a regular
expression pattern.

381

12 — XSD regular expression language

Assume that we need to restrict the value of a simple type that stores a
phone number. For the purpose of this example, let us assume that we
need the phone number to be in the following format: “(999) 123-5678."

Let us create a simple type with a pattern restriction that performs
this validation.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\([0-9]1{3}\) [0-9]1{3}-[0-9]1{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

-- Validate
DECLARE @x XML (ExampleSchema)
SET @x = '<Phone>(999) 999-9999</Phone>"

Listing 12.1

Let us try to understand the regular expression pattern used in the above
example. To understand the anatomy of this pattern, let us divide it into the
following seven parts.

Part 1 |2 3 |4 5 6 7
Pattern | \(| [0-9K3} |\) [0-91{3} |- [0-9]{4}
Value |(|999) 123 - 4567

Let us look at each part of the pattern in detail.

382

12 — XSD regular expression language

Part 1
Pattern \(
Value (

The first part of the pattern is a backslash followed by a parenthesis.
To understand this we need to understand meta characters and
regular characters.

Meta characters are characters having some special meaning when used
within a regular expression pattern. For example, a question mark is a
meta character that has a special meaning when used in a pattern. A
question mark stands for 0 or 1 occurrence of the preceding character or
group of characters. When a normal character is used inside a regular
expression pattern, it represents the occurrence of that character in the
value being validated using the pattern.

A parenthesis is a meta character. It is used to define a group of characters
or expressions. A backslash is a meta character, also. It is used as an
escape sequence character. When a meta character is preceded by a
backslash, the meta character loses its "meta" status and will be
considered a normal character.

In the above example, since the open parenthesis is preceded by a
backslash, the parenthesis is not considered a meta character. The
parenthesis will be treated as a normal character that stands for the
occurrence of a parenthesis in the value.

Part 2
Pattern [0-9]{3}
Value 999

This part of the pattern has a few meta characters, also Square brackets
and Curly braces are meta characters. A pair of square brackets is used to
define a range of values. The first part of the pattern defines a range that
represents a digit between 0 and 9, inclusive.

Curly braces are used to control the occurrence of the preceding character
or group of characters. The value inside the curly braces indicates the
number of times the preceding character, or group of characters, should
occur in the value. The above pattern stands for 3 occurrences of a digit
between 0 and 9, inclusive.

383

12 — XSD regular expression language

Part 3
Pattern \)
Value)

This pattern includes a backslash and a closing parenthesis. We saw that a
backslash is used to escape a meta character. So the above pattern stands
for a single occurrence of a closing parenthesis in the value at character
position 5.

Part 4

Pattern

Value

The next part of the pattern is a space. That is why you do not see
anything in the cell above. A space is a normal character which stands
for the occurrence of a space in the value.

Part 5
Pattern [0-9]{3}
Value 123

We have seen a similar pattern a little earlier. It stands for 3 occurrences of
a digit within the range of 0 to 9.

Part 6

Pattern -

Value -

The next part of the pattern has a hyphen. A hyphen is a normal character
and stands for the occurrence of a hyphen in the value.

Part 7
Pattern [0-9]{4}
Value 4567

384

12 — XSD regular expression language

This part of the expression stands for four occurrences of a digit between 0
and 9, inclusive.

We saw a basic regular expression pattern and learned how to read
the pattern and understand the format of the value described by the
pattern. Now let us have a closer look at the building blocks of regular
expression patterns.

Meta Characters

We have seen a few meta characters in the example we discussed earlier.
Meta characters are characters having some special meaning when placed
within a regular expression pattern.

XSD Regular Expression language uses the following meta characters.

Dot —"."

Backslash — "\"
Question Mark — "?"
Asterisk — "*"

Plus — "+"

Curly Braces —"{}"
Parenthesis - "()"
Square Brackets — "[]"
Pipe —"|"

Let us examine each of these meta characters in detail.

Dot

A Dot is a Meta Character. It stands for the single occurrence of
any character.

The following pattern defines a CustomerName element, which is twenty
characters long and accepts any character.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="CustomerName">
<xsd:simpleType>
\ <xsd:restriction base="xsd:string">
<xsd:pattern value=".{20}"/>
</xsd:restriction>

385

12 — XSD regular expression language

</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.2

Question Mark

A Question Mark (?) represents 0 or 1 occurrence of the character, or
group of characters, which immediately precedes it.

Let us go back to the pattern we created for validating phone numbers.
Assume that the requirement changes and you need to make the space at
position 6 and the hyphen at position 10 optional. The new version of the
pattern should accept all of the values given below.

U (999) 123-4567
. (999)123-4567

. (999) 1234567

U (999)1234567

Let us rewrite the schema with a modified version of the pattern. Let us use
a question mark to make the space and hyphen optional. Here is the
modified version of the schema.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\([0-9]1{3}\) ?[0-9]1{3}-?[0-9]{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'
GO

-- Validate
DECLARE @x XML (ExampleSchema)
SET @x = '<Phone>(999) 999-9999</Phone>"

386

12 — XSD regular expression language

SET @x = '<Phone>(999)999-9999</Phone>"
SET @x = '<Phone>(999) 9999999</Phone>"
SET @x = '<Phone>(999)9999999</Phone>"

Listing 12.3

Asterisk

We saw that a question mark can be used to represent 0 or 1 occurrence
of a character or group of characters. An asterisk represents 0 or more
occurrences of a character or group of characters.

The following pattern validates a string that accepts any lower case letter
any number of times. Note that it allows 0 occurrences, also; hence, an
empty string will also be accepted.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="MiddleName">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-z]*"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.4

Plus

A Plus sign represents one or more occurrences of a character or group
of characters.

Question mark, asterisk and plus sign are used to control the occurrences
of characters or group of characters. Here is a table that summarizes the
usage of these three meta characters.

Meta Character | Meaning

? 0 or 1 occurrence
* 0 or More occurrences
+ 1 or More occurrences

387

12 — XSD regular expression language

Backslash

Backslash is used as an escape sequence character in XSD regular
expression patterns. This is used to indicate that we are not interested in
the escaped character as a meta character, but are simply interested in the
character itself. We have seen the usage of the escape sequence
character in the example we discussed earlier in this chapter.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Amount">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[\+-][0-9]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.5

Note that we have two plus signs in the pattern. The first sign is escaped
and as a result will match for the occurrence of a plus sign in the value.
The second plus sign is not escaped, and is treated as a Meta Character.
The above pattern accepts both values given below.

DECLARE @x XML (Amount)
SET @x '<Amount>+12</Amount>"'
SET @x '<Amount>-12</Amount>"

Listing 12.6

How do we match with a backslash itself? For example, how do we write a
pattern that accepts a back slash in the value? Well, the back slash can be
used to escape itself.

Here is an example that demonstrates this.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

CREATE XML SCHEMA COLLECTION Examp1eSchema

AS

'<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">

388

12 — XSD regular expression language

<xsd:element name="path">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[c-e]:\\jacob"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

-- validate
DECLARE @x XML (ExampleSchema)

SET @x = '<path>c:\jacob</path>'
SET @x = '<path>d:\jacob</path>'
SET @x = '<path>e:\jacob</path>'

Listing 12.7

Parentheses

Parentheses are used to group a set of characters. To understand this,
let us look at a different version of the pattern we created to validate
phone numbers.

Assume that you want to accept a phone number with or without the three-
digit area code. We saw earlier that we can use a question mark to indicate
that a character or group of characters is optional. So, we need to define
the area code as a single group and then make it optional by using a
question mark.

Here is a schema that does this.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(Q\([0-91{33}\))? ?[0-9]1{3}-7[0-9]{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

389

12 — XSD regular expression language

-- validate

DECLARE @x XML (ExampleSchema)

SET @x '<Phone>(999) 999-9999</Phone>"
SET @x '<Phone>999-9999</Phone>"'

Listing 12.8

The first part of the pattern used in the above example (shown in bold)
might look a bit confusing because of the two parentheses used together.
The first and last parentheses are used to create an expression group. But
the other two parentheses are escaped; hence, they represent the
occurrence of an opening and closing parentheses within the value.

Square Brackets

Square brackets are used to represent a character from a value range or a
character from a list of given characters. To understand this, let us look at
an example. The pattern in the following example represents one or more
occurrences of a character in the range of "a-z" in upper or lower case.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-Z]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.9

The pattern shown in the schema below represents a word that starts with
a vowel in upper or lower case.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[aeiouAEIOU][a-zA-Z]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.10

390

12 — XSD regular expression language

Curly Braces

Curly Braces are used to express the number of times a character or group
of characters should occur. You can specify the minimum and maximum
occurrences using these meat characters. The following table summarizes
the usages of curly braces.

Pattern Meaning

{3} Exactly 3 occurrences

{2,4} Minimum 2 occurrences. Maximum 4 occurrences.
{2,} Minimum 2 occurrences. No maximum Limit

The following pattern restricts the value of a simple type to be exactly three
characters long.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{3}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.11

The pattern shown in the schema below restricts the value of a simple type
to two or three characters. It accepts values with two characters as well as
three characters. The first value in the curly braces defines the minimum
occurrence and the second value defines the maximum occurrence.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z]{2,3}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.12

The pattern in this schema restricts the value of a simple type to be, at
minimum, two characters long. There is no maximum limit specified.

391

12 — XSD regular expression language

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-Z]{2,}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.13

Pipe Symbol

The Pipe symbol is used as an OR operator between a set of values. For
example, the following pattern accepts a URL that starts with htip, fip
or https.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="path">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(http|ftp|https)://sub.domain.com"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.14

Case Sensitivity

Unlike other regular expression languages, unfortunately XSD regular
expression language does not provide a way for a case insensitive match.
Case sensitivity needs to be handled within the pattern expression itself.

It will be tedious to write a pattern that performs a case insensitive
validation. For example, the following is a case insensitive pattern that
validates a string against value: SQL Server 2005."

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection

394

12 — XSD regular expression language

CREATE XML SCHEMA COLLECTION Examp'IeSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Database'">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[Ss][Qq][L1] [Ss][Ee][Rr][Vvv][Ee][Rr]
2005" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

-- Validate
DECLARE @x XML (ExampleSchema)

SET @x = '<Database>SQL Server 2005</Database>'
SET @x = '<Database>SQL SERVER 2005</Database>'
SET @x = '<Database>Sql Server 2005</Database>'
SET @x = '<Database>sql server 2005</Database>'

Listing 12.15

Shorthand Character Classes

Shorthand Character Classes are predefined expressions that represent
frequently used character expressions. For example, the character class
"\d" represents a digit. It is equivalent to "f0-9]." Shorthand character
classes make pattern writing easier.

XSD Regular Expression Language supports the following Shorthand
Character Classes.

Character Class | Meaning

\d Any single Digit

\s A single White Space (Space, Tab, CR or LF)

\i An XML 1.0 initial name character. a letter of
alphabet or an underscore.

\w "word" character, usually [a-zA-Z0-9]

\c XML 1.0 Name characters - XML 1.0 initial name
character plus ".", ":", "-" and digits.

Note that short hand character classes are case sensitive. All the classes
above should be used in lower case. You can create a negation of each of
the above classes by changing the class to upper case.

393

12 — XSD regular expression language

Character Class | Meaning

\D Any single Non Digit Character

\S Any single Non Whitespace character

\I A character that is not an XML initial name character.
\wW A character that is not a word character

\C A character that is not an XML 1.0 name character.

Negative Expressions

All the patterns that we discussed so far were instructing the pattern
processor to match with an expression. Negative expressions are the
opposite of that. They instruct the pattern processor not to accept a value if
it matches with the given pattern.

A negative expression is created by using a caret sign (*). The following
pattern matches with any word that does not start with a vowel.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="word">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[Aaeiou].*"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.16

Character Class Subtraction

So far, we have seen several examples that demonstrated almost all
features of the Regular Expression Language of XSD. If you have followed
all the examples we discussed so far, | am pretty sure that you will be
capable of writing most patterns that your programming life would demand.

Now let us see a feature | would call quite advanced. That is character
class subtraction. Assume that you need to write the pattern to validate a
word that starts with a consonant. How do you do that? | could see a few
hands going up in the air with something resembling the following pattern:

394

12 — XSD regular expression language

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="word">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[b-df-hj-np-tv-z][a-z]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.17

You are absolutely right. The pattern is correct. But there is an easier
way to write this pattern. That is by using a feature called Character
Class Subtraction.

Character Class Subtraction means subtracting a pattern from another.
Look at the example below:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="word">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-z-[aeiuo]][a-z]+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.18

Instead of defining all the consonants (which is a tedious job), we defined
all the alphabet (a—z) and then subtracted the vowels from it.

The following pattern matches with any number that does not start
with zero.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="word">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[\d-[0]]\d+"/>
</Xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Listing 12.19

395

12 — XSD regular expression language

In the above pattern we defined "\d," which represents all the digits, and
subtracted 0 from it. Character Class subtraction makes writing complex
patterns easier.

LAB5: Write schema for the Order
Processing Application - Writing
the final schema

We have done four labs so far and developed most parts of the schema
needed for the order processing application. In this lab, we will write the
schema for the Contact, Item and Discount elements. Once those elements
are created, we will assemble the final schema.

Contact element

Each Customer element should contain a Contact element. This element
contains information about the contact person at the customer's
organization. In case of any query or communication related to the order,
this person should be contacted.

Here is an example of a Contact element.

<Contact Name="Howard Snyder"™ Title="Purchase Manager">
<Email>hsnyder@greatlakes.com</Email>
<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>

</Contact>

Listing 12.20: Example of a Contact element.
The contact element should follow these rules:

. Should have two mandatory attributes: Name and Title.

. Value of Name should not be empty and should not contain more
than twenty characters.

. Value of Title should not be empty and should not contain more than
twenty characters

396

12 — XSD regular expression language

. Contact element can have the following child elements:

o Email
o Phone
o Fax

. The child elements should appear exactly in the order given above.

o Email is mandatory and is expected in the format of
string1@string2.string3. The schema should contain only the
following simple validations. [Steve did not want to make it too
complex.]

. Only alpha-numeric characters are allowed in string1, string2 and
string3.

. There should be EXACTLY one "@" sign in the whole email address
and it should appear between string7 and string2.

. There should be at least one "." between string2 and string3.

. Phone is mandatory and should be in the format: (503) 555-7555.

° Fax is optional. If present, it should be in the same format as the
phone number.

Let us start writing the schema. Here is the basic declaration of the Contact
element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name='"Contact"/>
</xsd:schema>

Listing 12.21

Rule 1

Contact element should have two mandatory attributes: Name
and Title

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:compTlexType>
<xsd:attribute name="Name"/>
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 12.22

397

12 — XSD regular expression language

Rule 2

Value of Name should not be empty and should not contain more
than twenty characters.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:compTlexType>
<xsd:attribute name="Name">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Title"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 12.23

Rule 3

Value of Title should not be empty and should not
contain more than twenty characters.

Note that the validation needed for the Name and Title elements are the
same. So, instead of writing those restrictions twice, let us create a simple
type describing the required length validation. Once that is created, both
Name and Title elements can be bound to the new simple type.

In the example below a new simple type is created (NameType), and Name
and Title are declared as simple types of NameType.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:attribute name="Name" type="NameType"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:complexType>
</xsd:element>
<!-- Name Type -->
<xsd:simpleType name="NameType">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>

398

12 — XSD regular expression language

</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Listing 12.24

Rule 4

Contact element can have the following child elements: Email,
Phone and Fax. Email should be the first element, followed by
Phone and then Fax.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Email" />
<xsd:element name="Phone" />
<xsd:element name="Fax"/>
</xsd:sequence>
<xsd:attribute name="Name" type="NameType'"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:complexType>
</xsd:element>

<!-- Name_Type -->
<xsd:simpleType name="NameType">
<!-- Removed for Brevity -->

</xsd:simpleType>
</xsd:schema>

Listing 12.25

Rule 5

Email is mandatory and is expected in the format of
stringl@string2.string3. Only alpha-numeric characters are
allowed in stringl, string2 and string3. There should be EXACTLY
one "@" sign in the whole email address and it should appear

between string1 and string2. There should be at least one ".
between string2 and string3.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Email">

399

12 — XSD regular expression language

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\w+@\w+\.\w+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Phone" />
<xsd:element name="Fax"/>
</xsd:sequence>
<xsd:attribute name="Name" type='"NameType"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:complexType>
</xsd:element>

<!-- Name Type -->
<xsd:simpleType name="NameType">
<!-- Removed for Brevity -->

</xsd:simpleType>
</xsd:schema>

Listing 12.26

Rule 6

Phone is mandatory and should be in the following format of
"(503) 555-7555." Fax is optional. If present, it should be in the
same format as the phone number.

Phone and fax have the same validation requirements and, therefore, let us
create a simple type that validates a phone/fax number.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Email">
<!-- Removed for Brevity -->
</xsd:element>
<xsd:element name="Phone" type="PhoneType" />
<xsd:element name="Fax" type="PhoneType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" type="NameType'"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:compTlexType>
</xsd:element>

<!-- NameType -->

<xsd:simpleType name="NameType">
<!-- Removed for Brevity -->

</xsd:simpleType>

<!-- PhoneType -->

<xsd:simpleType name="PhoneType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\([0-9]{3}\) [0-91{3}-[0-9]1{4}"/>

400

12 — XSD regular expression language

</xsd:restriction>
</xsd:simpleType>
‘ </xsd:schema>

Listing 12.27

Here is the complete schema that validates the contact element.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Email">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\w+@\w+\.\w+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Phone" type="PhoneType"/>
<xsd:element name="Fax" type="PhoneType"
minOoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" type='"NameType"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:compTlexType>
</xsd:element>
<!-- NameType -->
<xsd:simpleType name="NameType">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
<!-- PhoneType -->
<xsd:simpleType name=' PhoneType >
<xsd:restriction base="xsd:string
<xsd:pattern value="\([0- 9]{3}\) [0-9]{3}-[0-9]{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>"
GO

-- validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Contact Name="Howard Snyder" Title="Purchase Manager">
<Email>hsnyder@greatlakes.com</Email>

401

12 — XSD regular expression language

<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>
</Contact>"

Listing 12.28
Let us move to the next element. Let us create the declaration for the
ltems element.
Items element
Each order should have an items element which contains the details of

items ordered. The following example shows the structure of the
Items element.

<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
\ <Item ItemNumber="SG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />
</Items>

Listing 12.29: An example of Items element.

The ltems element can contain one or more ltem elements. There should
be one ltem element for each item that the customer has ordered.

. There should be at least one ltem element. There is no maximum

limit.
. Each ltem element should have three mandatory attributes:
o ltemNumber
o Quantity
o Price

. ItemNumber should be exactly eight characters long. The first two
characters of the ltemNumber should be upper case alphabets [A to
Z], and the next six characters should be digits.

. Quantity should be a number and should be between 1 and 9999.
Decimals are not allowed.

. Price should be a number between 0.01 and 999999.99. The value
should have two decimal places.

Let us start writing the schema.

402

12 — XSD regular expression language

Rule 1

The items element should contain at least one Item element.
There is no maximum limit.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Items">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Item"
type="ItemType"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 12.30
To simplify the schema, let us create a complex type that validates each

item element. Let us create a type named ltemType that will describe an
Item element.

Rule 2

Each Item element should have three mandatory attributes:
ItemNumber, Quantity and Price.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="ItemType">
<xsd:attribute name="ItemNumber"/>
<xsd:attribute name="Quantity"/>
<xsd:attribute name="Price"/>
</xsd:complexType>
</xsd:schema>

Listing 12.31

Rule 3

ItemNumber should be exactly eight characters long. The first two
characters of the IitemNumber should be upper case alphabets [A
to Z], and the next six characters should be digits.

403

12 — XSD regular expression language

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="ItemType">
<xsd:attribute name="ItemNumber">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}[0-9]{6}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Quantity"/>
<xsd:attribute name="Price"/>
</xsd:complexType>
</xsd:schema>

Listing 12.32

Rule 4

Quantity should be a number and should be between 1 and 9999.
Decimals are not allowed.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="ItemType">
<!-- other attributes here -->
<xsd:attribute name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="9999"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Price"/>
</xsd:complexType>
</xsd:schema>

Listing 12.33

Rule 5

Price should be a number between 0.01 and 999999.99. The
value should have two decimal places.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="ItemType">
<!-- Oother attributes here -->
<xsd:attribute name="Price">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:fractionbigits value="2"/>
<xsd:minInclusive value="0.01"/>

404

12 — XSD regular expression language

| <xsd:maxInclusive value="999999.99"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:schema>

Listing 12.34

Here is the complete schema that validates the ltems element.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Items">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Item"
type="ItemType"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
<xsd:complexType name="ItemType">
<xsd:attribute name="ItemNumber">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}[0-9]{63}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="9999"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Price">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:fractionDigits value="2"/>
<xsd:minInclusive value="0.01"/>
<xsd:maxInclusive value="999999.99"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:schema>"

405

12 — XSD regular expression language

GO

-- Validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
<Item ItemNumber="SG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />

</Items>"

Listing 12.35

Discount element

Each Order element may contain an optional Discount element. Discount
may be given in terms of a fixed amount or as a certain percentage of the
total invoice amount. Here are some examples of Discount element.

<Discount>
<Amount>300</Amount>
</Discount>

Listing 12.36: Discount as Amount.

<Discount>
<Percent>7.5</Percent>
</Discount>

Listing 12.37: Discount as Percentage.
The Discount element should follow the rules given below:
. It should contain either an Amount element or a Percent element.

These two elements are mutually exclusive. Either one of them can
be present in a Discount element.

. If Amount is present, the minimum value should be 0.01. There is no
maximum limit. The value should always have two decimals.
. If Percent is present, the value should be between 0.01 and 100.00.

The value should always have two decimals.

Let us start writing the Discount element.

406

12 — XSD regular expression language

Rule 1

It should contain either an Amount element or a Percent element.
These two elements are mutually exclusive. Either one of them
can be present in a Discount element.

To represent a set of mutually exclusive elements we need to use a choice
group. Let us add a choice group to the discount element.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Discount">
<xsd:compTlexType>
<xsd:choice>
<xsd:element name="Amount"/>
<xsd:element name="Percent"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 12.38

Rule 2

If Amount is present, the minimum value should be 0.01. There is
no maximum limit. The value can have, at maximum, two
decimals.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Discount">
<xsd:compTlexType>
<xsd:choice>
<xsd:element name="Amount'>
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="0.01"/>
<xsd:fractionDigits value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Percent"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Listing 12.39

407

12 — XSD regular expression language

Rule 3

If Percent is present, the value should be between
0.01 and 100.00. The value can have, at maximum,
two decimals.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Discount'">
<xsd:complexType>
<xsd:choice>
<xsd:element name="Amount">
<!-- Removed for Brevity -->
</xsd:element>
<xsd:element name="Percent">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:fractionbigits value="2"/>
<xsd:minInclusive value="0.01"/>
<xsd:maxInclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:choice>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>

Listing 12.40

Here is the final schema that validates a discount element.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Discount">
<xsd:complexType>
<xsd:choice>
<xsd:element name="Amount">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="0.01"/>
<xsd:fractionDigits value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Percent">

408

12 — XSD regular expression language

<xsd:simpleType>
<xsd:restriction base="xsd:decimal'">
<xsd:fractionDigits value="2"/>
<xsd:minInclusive value="0.01"/>
<xsd:maxIncTlusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

Listing 12.41

Let us use this schema to validate two variations of the Discount elements
that we saw earlier in this lab.

-- validate

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<Discount>
<Amount>300</Amount>

</Discount>"'

Listing 12.42

-- Vvalidate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Discount>
<Percent>7.5</Percent>
‘ </Discount>"

Listing 12.43

Assemble the final schema

Let us merge the schema we created in this version with the previous
version of the schema. Before we create the new version of the schema
collection, let us drop the previous version.

-- DROP the previous SCHEMA COLLECTION

IF EXISTS(
SELECT * FROM sys.xml_schema_collections
\ WHERE name = 'ExampleSchema'
) BEGIN

409

12 — XSD regular expression language

\ DROP XML SCHEMA COLLECTION ExampleSchema
END
‘ GO

Listing 12.44

Here is the TSQL code that creates the final version of the
schema collection.

-- Create Schema Collection
CREATE XML SCHEMA COLLECTION ExampleSchema
AS
'<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderDate" type="xsd:date"/>
<xsd:element name="DeliveryDate" type='"xsd:dateTime"/>
<xsd:element name="Customer'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerName"
minoccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Billing" type="AddressType"/>
<xsd:element name="Shipping" type="AddressType"
minoccurs="0"/>
<xsd:element name ="Terms">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="30 Days Credit"/>
<xsd:enumeration value="60 Days Credit"/>
<xsd:enumeration value="90 Days Credit"/>
<xsd:enumeration value="Against Delivery"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Contact">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Email">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\w+@\w+\.\w+"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Phone" type="PhoneType"/>
<xsd:element name="Fax" type="PhoneType"
minoccurs="0"/>
</xsd:sequence>
<xsd:attribute name="Name" type="NameType"/>
<xsd:attribute name="Title" type="NameType"/>
</xsd:complexType>

410

12 — XSD regular expression language

</xsd:element>
</xsd:sequence>
<xsd:attribute name="CustomerNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="[a-zA- Z]{S}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="Items">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Item"
type="TItemType"
maxoccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="OrderNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="InvoiceNote" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="500"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Discount" minOccurs="0">
<xsd:complexType>
<xsd:choice>
<xsd:element name="Amount">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="0.01"/>
<xsd:fractionbDigits value="2"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Percent">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal'">
<xsd:fractionDigits value="2"/>
<xsd:minInclusive value="0.01"/>
<xsd:maxInclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element> </xsd:sequence>
<xsd:attribute name="OrderNumber" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-zA-z0-9]{1,20}"/>
</xsd:restriction>
</xsd:simpleType>

411

12 — XSD regular expression language

</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- Address Type -->
<xsd:complexType name="AddressType'>
<xsd:sequence>
<xsd:element name="Address">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Street" minOccurs="0">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="City" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="State" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="zip" use="required" type="zipType"/>
</xsd:complexType>
<l-- Zip Type -->
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:integer">
<xsd:maxInclusive value="99999"/>
<xsd:minInclusive value="10000"/>
</xsd:restriction>
</xsd:simpleType>
<!-- NameType -->
<xsd:simpleType name="NameType'>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>
<!-- PhoneType -->
<xsd:simpleType name="PhoneType'>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\([0-9]{3}\) [0-9]1{3}-[0-9]{4}"/>
</xsd:restriction>
</xsd:simpleType>
<!-- ItemType -->
<xsd:complexType name="ItemType'>
<xsd:attribute name="ItemNumber">
<xsd:simpleType>

412

12 — XSD regular expression language

<xsd:restriction base="xsd:string
<xsd:pattern value="[A- Z]{Z}[O 9]{6}”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="9999"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Price">
<xsd:simpleType>
<xsd:restriction base="xsd:decimal'">
<xsd:fractionDigits value="2"/>
<xsd:minInclusive value="0.01"/>
<xsd:maxInclusive value="999999.99"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:schema>"
GO

Listing 12.45

Let us validate an XML instance containing order information with the final
version of the schema collection.

-- Validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Oorder oOrderNumber="20002">
<OrderbDate>2008-01-01z</OrderbDate>
<DeliverybDate>2008-01-10T09:00:00-08:00</Deliverybate>
<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing City="Eugene" State="OR" zip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Billing>
<Shipping City="Eugene" State="OR" Zip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Shipping>
<Terms>30 Days Credit</Terms>
<Contact Name="Howard Snyder" Title="Purchase Manager'">
<Email>hsnyder@greatlakes.com</Email>
<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>
</Contact>
</Customer>
<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
<Item ItemNumber="sG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />
</Items>

413

12 — XSD regular expression language

<orderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount>
<Amount>300</Amount>
</Discount>
</order>"'

Listing 12.46

Here is another version of the XML instance that uses Discount percentage
instead of discount amount.

-- validate
DECLARE @x XML (ExampleSchema)
SELECT @x = '
<Order orderNumber="20002">
<Orderbate>2008-01-01z</0OrderbDate>
<Deliverybate>2008-01-10T09:00:00-08:00</DeliveryDate>
<Customer CustomerNumber="LAZYK">
<CustomerName>Lazy K Kountry Store</CustomerName>
<Billing City="Eugene" State="OR" ZzZip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Billing>
<Shipping City="Eugene" State="OR" Zzip="97403">
<Address>2732 Baker Blvd.</Address>
<Street>Main st.</Street>
</Shipping>
<Terms>30 Days Credit</Terms>
<Contact Name="Howard Snyder" Title="Purchase Manager'">
<Email>hsnyder@greatlakes.com</Email>
<Phone>(503) 555-7555</Phone>
<Fax>(503) 555-2376</Fax>
</Contact>
</Customer>
<Items>
<Item ItemNumber="FB001923" Quantity="12" Price="18.25" />
<Item ItemNumber="SG060020" Quantity="80" Price="12.75" />
<Item ItemNumber="FB019090" Quantity="24" Price="6.00" />
</Items>
<OrderNote>Delivery needed before 8 AM</OrderNote>
<InvoiceNote>
Adjust the previous credit note with this invoice
</InvoiceNote>
<Discount>
<Percent>7.5</Percent>
</Discount>
</0order>"

Listing 12.47

We have successfully created the schema collection needed for the order
processing application. This is the last lab we will do in this book. | hope
the labs we attended helped you understand the building blocks of XSD

414

12 — XSD regular expression language

and made you capable enough to undertake any schema development
assignments that you might come across in your SQL Server
programming life.

Chapter Summary

XSD supports Regular Expressions to validate the format of a value with a
pattern. This Regular Expression language is close to the Regular
Expression languages supported by programming languages like Perl,
Python or Microsoft Dot Net class libraries.

A Regular Expression may contain Normal Characters as well as Meta
Characters. Meta characters have some special meaning when they
appear inside a Regular Expression. A backslash is used to escape a
Meta character so that it will lose its special meaning and will become a
normal character.

Meta characters Question mark (?), Asterisk (*) and Plus (+) are used to
define repetition of a character or group of characters. Curly Braces are
used to define the minimum and maximum number of occurrences of a
character or group. Square brackets are used to define a range of
characters, whereas Parenthesis is used to define groups of characters.
A pipe sign is used to "OR" groups of characters, from which only one
group or character is to be matched. A caret (*) sign is used to create a
negative expression.

Character classes are those expressions which represent a group of
characters. The most commonly used character classes are "\d," which
represents any digit. Other character classes are "\s," "\w," "\i" and "\c." The
negative version of the above character classes can be created either with
a caret (") or by making the character upper case. For example, "\d"
represents a digit where as "\D" represents a non-digit.

415

CHAPTER 13
ADVANCED SCHEMA CONCEPTS

In the last few chapters we have discussed various schema components in
detail. All the previous chapters were more focused on the most commonly
used schema components. There are certain parts of schema development
that we have not yet touched in detail. We have discussed them briefly in
the previous chapters and it is time to have a closer look at those topics.

In this chapter, we will discuss:

Attributes of a schema declaration

Wildcard components and content validation
Element and attribute wildcards

Annotations

Attributes of a schema declaration

We have seen several dozen schema declarations in the previous
chapters. The only mandatory attribute of a schema declaration is the
namespace declaration. Here is the basic declaration of a schema.

‘ <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="Customers" />
</xsd:schema>

Listing 13.1

This schema declares an element named Customers. A schema is
declared with "<xsd:schema>" element and it should have a namespace
declaration pointing to "http.//www.w3.0rg/2001/XMLSchema." Though you
can specify a namespace prefix of your choice, you cannot alter the
namespace URI. Also, note that the namespace URI is case sensitive. If
the schema processor does not find the correct namespace declaration, it
will throw an error.

Though the only attribute a schema declaration must have is the schema
namespace declaration, it can take a number of other optional attributes.
These attributes control the behavior of the schema processor while
validating XML instances against the schema collection.

416

13 — Advanced schema concepts
A schema declaration can take the following optional attributes:

id

targetNamespace
attributeFormDefault
elementFormDefault
blockDefault
finalDefault

version

xml:lang

Let us examine each of these attributes in detail.

Attribute: id

The id attribute of a schema declaration shares the same characteristics as
the id attributes of attribute declarations and element declarations. It is
used only to uniquely identify each schema component. It does not add
anything to the meaning of the schema or its validation rules.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
id="mySchema'>
<xsd:element name="Customers" type="xsd:string"/>
‘ </xsd:schema>

Listing 13.2

We have discussed the "id" attribute of element declarations in Chapter 5
and attribute declarations in Chapter 6. Refer to those chapters for a
detailed discussion on this attribute.

Attribute: targetNamespace

None of the XML instances which we saw previously had a namespace
declaration. In Chapter 2 we saw how namespaces help to avoid ambiguity.
The examples we saw in the previous chapters were so simple that they
did not need a namespace declaration. There are times when you need to
make sure that the XML instance should take a specific namespace to be
qualified for consumption by a specific application. You can achieve this by
using the targetNamespace of schema declaration.

Assume that you are writing a schema that describes an ATOM feed. An
ATOM feed is an XML document having a specific structure and usually

417

13 — Advanced schema concepts

contains information about new or modified resources available on web
sites.

ATOM is a popular web feed format. For further
information about ATOM feeds, see:

http://en.wikipedia.org/wiki/Atom_(standard)

The ATOM specification says that a valid ATOM document should contain
the following root element. Let us try to write a schema that performs this
validation.

<feed xmlns="http://www.w3.0rg/2005/Atom">
<!-- other declarations here -->
‘ </feed>

Listing 13.3

We know how to create a schema that describes the root element of the
XML instance. But we have not seen schema declarations that make sure
that the XML instance contains a specific namespace declaration.

This is achieved by adding targetNamespace attribute to the schema
declaration. The following code creates a schema collection that validates
the xml instance given in Listing 13.3.

-- Create the schema
CREATE XML SCHEMA COLLECTION AtomSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.w3.0rg/2005/Atom">
<xsd:element name="feed"/>
</xsd:schema>"

GO

-- Validate

DECLARE @x XML (AtomSchema)

SELECT @x = '

<feed xmlns="http://www.w3.0rg/2005/Atom">
<!-- other declarations here -->

</feed>"

Listing 13.4: An example showing the usage of targetNamespace.

When a schema declaration contains the targetNamespace attribute,
the XML instance should contain the namespace declaration specified in
this attribute.

418

13 — Advanced schema concepts

Attribute: attributeFormDefault

This attribute specifies the default value of the form attribute of attribute
declarations in the given schema. We have examined the form attribute
when we discussed attribute declarations in Chapter 6.

If an attribute is declared without the form attribute, the schema processor
will look for the value of the attributeFormDefault attribute while validating
it. If the schema declaration does not contain the attributeFormDefault
attribute, the schema processor will assume unqualified as the default form
for all the attributes. The default value is used only if the attribute
declaration does not contain the form attribute.

The schema definition in the following example sets qualified as the default
form of all attributes. The Number attribute overrides the default value by
using the form attribute.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="www.employee.com"
attributeFormbefault="qualified">
<xsd:element name="Employee'">
<xsd:complexType>
<xsd:attribute name="Number" form="unqualified"/>
<xsd:attribute name='"Name"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<emp:Employee xmlns:emp="www.employee.com"
Number="123" emp:Name="Jacob" />'

Listing 13.5

The "Number" attribute is in unqualified form because it is declared with the
form attribute having value: "unqualified.” The "Name" attribute is in
qualified form because it does not have the form attribute; hence,
the schema processor uses the value of attributeFormDefault, which
is "qualified."”

419

13 — Advanced schema concepts

Attribute: elementFormDefault

This attribute specifies the default form of elements. As with attributes,
elements can have qualified or unqualified forms. We discussed this in
Chapter 5. If an element is declared without the form attribute, the schema
processor will use the value of elementFormDefault while validating
the element. If the "elementFormDefault”" attribute is not present in the
schema declaration, SQL Server will assume "unqualified” as the default
form of all elements.

As mentioned earlier, if an element declaration contains the form attribute it
will override the default value specified by the elementFormDefault
attribute. The following example demonstrates that.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION Examp1eSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="www.employee.com"
elementFormbefault="qualified">
<xsd:element name="Employee">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Number" form="unqualified"/>
<xsd:element name="Name"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<emp:Employee xmlns:emp="www.employee.com">
<Number>1001</Number>
<emp :Name>Jacob</emp: Name>
</emp:Employee>"'

Listing 13.6

The schema declaration sets the default value of the form attribute of all
elements to "qualified." The Name element is declared without the form
attribute, and as a result the schema processor assumes its form
as "qualified."”

420

13 — Advanced schema concepts

The declaration of the Number element sets its form as "unqualified” by
using the form attribute.

Attribute: blockDefault

This attribute defines the default value of the block attribute. You can use
the block attribute to prevent substitution, extension or restriction of an
element. Refer to Chapter 5 for a detailed explanation of the block attribute.

If an element is declared without the block attribute SQL Server will use the
value of blockDefault, if present. If blockDefault is not present in the
schema declaration and the element is declared without the block attribute,
the element can be substituted, extended or restricted.

Attribute: finalDefault

This attribute defines the default value of the final attribute. You can use
this attribute to prevent the restriction or extension of a given element or
type. We have discussed the final attribute in Chapter 5.

If an element is declared without the final attribute, SQL Server will use the
value of finalDefault if it is present in the schema declaration. If the schema
declaration does not have the finalDefault attribute and the element is
declared without the final attribute, the element can be extended as well as
restricted.

Attribute: version

The attribute version is used only for the documentation purpose. The
schema processor does not use it while validating the schema
components.

What can occur is that after you created a schema the requirement
changes and you might need to write a new schema to support the
additional requirements. You may handle those additional requirements by
extending the existing schema components or by creating a completely
new version of the schema. The version attribute of the schema declaration
can be used to label the new schema with a different version number.

The following example shows a schema declaration that contains a
version number.

421

13 — Advanced schema concepts

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
version="1.0">

<xsd:element name="Employee" />
</xsd:schema>

Listing 13.7

Attribute: xml:lang

This is another attribute that is used only for the documentation purpose.
This attribute is used in XML documents to specify the formal language in
which the content is written.

Just as the version attribute, xml:lang is used only for the documentation
and the schema processor does not use it for validating the schema
components. This attribute can take a valid language identifier specified in
RFC 3066 (http://www.ietf.org/rfc/rfc3066.txt).

Wildcard components and content
validation

All the examples we have seen in the previous chapters demonstrated how
strictly SQL Server validates XML instances against a schema collection.
The XML instance should strictly follow the structure and restrictions
defined in the schema collection. This behavior makes sure that the XML
instance follows the exact structure specified in the schema collection and
that the elements and attributes contain acceptable values.

When you define a schema, you predefine the elements and attributes the
XML instance should have. There are times when you need to give a little
more flexibility so that the XML instance can hold elements or attributes not
known at the time the schema was written. This can be achieved by using
wildcard declarations in the schema definition.

Let us go back to the example of the order processing application we
examined in Chapter 3. Partner agencies of North Pole Corporation will
send order information to the web service exposed by the order
processing. This application needs to send a response back to the client
applications indicating the success or failure of the request.

This response message may contain a response code, description and
some additional information that may vary from case to case and time to

422

13 — Advanced schema concepts

time. We need to keep a provision that if, in the future, we need to send
some additional information regarding the status of the operation, we
should be able to do it without modifying the schema and the processing
logic. Let us see how wildcard components can help in this case.

XSD supports two wildcard components:

1. Element wildcards
2. Attribute wildcards

Let us examine each of these in detail.

Element Wildcards

An element wildcard is used to represent an element that is not known at
the time of writing the schema. Element wildcards are declared using
"<xsd:any>" element. An element wildcard can only appear within
sequence or choice model groups.

Before we examine element wildcards in detail, let us see an example that
uses an element wildcard declaration.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="OrderRegistrationResult">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip"/>
</xsd:sequence>
<xsd:attribute name="cCode"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>'
GO

Listing 13.8

Note wildcard declaration inside the complex type. The two XML instances
given below will validate successfully against the above schema collection.

423

13 — Advanced schema concepts

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<OrderRregistrationResult Code="101">
<Status>0Order registered successfully!</Status>
</0OrderRrRegistrationResult>"

Listing 13.9

DECLARE @x XML (ExampleSchema)

SELECT @x = '
<orderRegistrationResult Code="101">
<Status>
<ID>100</ID>
<Text>0rder registered successfully!</Text>
</Status>

</0OrderRegistrationResult>"'

Listing 13.10

The XML instance given in the first example has an element named Status
which is not declared in the schema definition. Similarly, the second XML
instance has an element named Message which is not declared in the
schema definition as well. The element wildcard that we added to the
schema definition represents the occurrence of an unknown element in the
XML instance. Hence, both the XML instances given above will validate
successfully with the schema collection.

An element wildcard declaration has the following attributes:
processContents

id

maxOccurs and minOccurs

namespace

Let us examine each of these attributes in detail.

Attribute: processContents

This attribute instructs the schema processor how to validate the wildcard

"non

element. The value of this attribute can be "skip”, "strict" or "lax."

Processing wildcard elements with "skip"

When the value of processContents is set to "skip"” the schema processor
will not attempt to validate the wildcard element. We have seen this
behavior in the previous example.

424

13 — Advanced schema concepts

-- Create a schema collection
CREATE XML SCHEMA COLLECTION SkipDemo AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo">
<xsd:compTlexType>
<xsd:sequence>
<xsd:any processContents="skip"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.11

This schema declares a complex type element named Contactinfo. It has
an element wildcard declaration. Since the processContents attribute is set
to skip, SQL Server will not perform any validation against this element.
Hence, all the following XML instances will be accepted.

DECLARE @x XML (Skipbemo)

SELECT @x = '

<ContactInfo>
<Phone>999-999-9999</Phone>

</ContactInfo>"

SELECT @x = '

<ContactInfo>
<Fax>999-999-9999</Fax>

</ContactInfo>"

SELECT @x = '

<ContactInfo>
<Email>a@b.com</Email>

</ContactInfo>"

SELECT @x = '
<ContactInfo>
<Phone>
<Home>999-999-9999</Home>
<work>888-888-8988</Work>
</Phone>
</ContactInfo>'

SELECT @x = '
<ContactInfo>

<Phone Work="888-888-8888" Home="999-999-9999" />
</ContactInfo>"'

Listing 13.12
Note that a wildcard element declaration can represent a simple type or

complex type. The first three examples show simple types and the last two
examples show complex types.

425

13 — Advanced schema concepts

Processing wildcard elements with "strict"

When processContents is set to "strict,” SQL Server will validate the
wildcard element against schema definition from a given namespace. The
following example sets the namespace to "##any," which indicates the XML
instance can have a replacement element from any namespace.

CREATE XML SCHEMA COLLECTION StrictbDemo AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo'>
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict" namespace="##any" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.13

None of the XML instances we tried in the previous example will work for
this version of the schema. Try to run the following code.

DECLARE @x XML (StrictDemo)

SELECT @x = '

<ContactInfo>
<Phone>999-999-9999</Phone>

</ContactInfo>"

Listing 13.14

If you run the above code, SQL Server will raise the following error.

XML validation: Declaration not found for element 'Phone'.
Location: /*:ContactInfo[l]/*:Phone[1]

To demonstrate a working example that uses processContents with strict,
let me present a little more complex schema definition having multiple
target namespaces. Run the following code to add a few more element
declarations having different target namespaces to the above schema.

ALTER XML SCHEMA COLLECTION StrictDemo ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.fax.com">
<xsd:element name="Fax"/>
</xsd:schema>'

ALTER XML SCHEMA COLLECTION StrictDemo ADD '

426

13 — Advanced schema concepts

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">

<xsd:element name="Phone" />
</xsd:schema>"

ALTER XML SCHEMA COLLECTION StrictDemo ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.email.com">
<xsd:element name="Email"/>
</xsd:schema>"

Listing 13.15

All the following XML instances will validate successfully. The wildcard
declaration accepts elements from any namespace; therefore, all three
XML instances given below are valid.

DECLARE @x XML (StrictDemo)
SELECT @x = '
<ContactInfo>
<Fax xmlns="www.fax.com">999-999-9999</Fax>
</ContactInfo>"

SELECT @x = '
<ContactInfo>

<Phone xmTns="www.phone.com">999-999-9999</Phone>
</ContactInfo>"

SELECT @x = '
<ContactInfo>

<Email xmlns="www.email.com">a@b.com</Email>
</ContactInfo>"'

Listing 13.16

Note that each element will be validated against the schema definition
found in the specified namespace. For example, the Fax element in the first
example will be validated against the definition of the schema having target
namespace "www.fax.com."”

Processing wildcard elements with "lax"

We saw two validation modes in the previous examples. When
processContents is set to skip, SQL Server does not validate the element.
When it is set to strict, SQL Server will validate the element against the
definition given in the specified namespace. If the namespace is not found
in the schema declaration, SQL Server will generate an error.

There is a third validation mode, /ax, which will perform a little more liberal
validation. Under /ax validation mode, SQL Server will check if the

427

13 — Advanced schema concepts

namespace specified by the replacement element exists in the schema
collection or not. If the namespace is not found, SQL Server will skip the
validation of the element. If the namespace is found, SQL Server will check
if it contains a declaration for the given element. If it is not found, SQL
Server will skip the validation of the element. The replacement element of a
wildcard declaration will be validated only if the declaration of the element
is found in the specified namespace within the schema collection.

SQL Server 2005 supports strict and skip methods, but not /ax. Support for
lax validation is added in SQL Server 2008. The following example will run
only in SQL Server 2008.

Let us create a schema collection with an element wildcard declaration that
requests lax validation.

-- Create a schema collection
CREATE XML SCHEMA COLLECTION LaxDemo AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo'>
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="Tax" namespace="##any"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>'
GO

Listing 13.17

Let us add another schema definition to the above schema collection. Note
that the new schema definition has a different target namespace.

ALTER XML SCHEMA COLLECTION LaxDemo ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">
<xsd:element name="Phone'">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="\d{3}- \d{3} \d{4}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'
GO

Listing 13.18

The above schema definition declares an element named Phone and
performs a format validation. Now let us try to validate a few different XML
instances against this schema.

428

13 — Advanced schema concepts

DECLARE @x XML (LaxDemo)
SELECT @x =
<ContactInfo>
<Fax>12345</Fax>
</ContactInfo>"

Listing 13.19

This will validate successfully because the element Fax is not associated
with any namespace and SQL Server will just skip it because the
processing mode is set to lax.

DECLARE @x XML(LaxDemo)
SELECT @x =
<ContactInfo>
<HomePhone xmlns="www.HomePhone.com">12345</HomePhone>
</ContactInfo>"

Listing 13.20

This will validate as well. The namespace "www.homephone.com" does not
exist in the current schema collection; hence, SQL Server will exclude this
element from validation.

DECLARE @x XML(LaxDemo)
SELECT @x =
| <ContactInfo>
<HomePhone xmlns="www.Phone.com">12345</HomePhone>
‘ </ContactInfo>'

Listing 13.21

This will also succeed. In this case, SQL Server will be able to find the
namespace in the schema collection. However, the
namespace"www.phone.com” does not contain a declaration for
HomePhone element and as a result SQL Server will skip the validation of
this element.

DECLARE @x XML (LaxDemo)

SELECT @x = '

<ContactInfo>

\ <Phone xmlns="www.phone.com">12345</Phone>
</ContactInfo>"'

Listing 13.22

The above code will not validate. SQL Server will validate the Phone
element against the declaration specified in the schema collection. In the

429

13 — Advanced schema concepts

case of this example, SQL Server will find the namespace declaration and
will find a matching declaration for the Phone element. The validation will
fail because the format of the value does not match with the pattern
specified in the pattern restriction.

Here is the correct XML instance.

‘ DECLARE @x XML (LaxDemo)
SELECT @x = '
<ContactInfo>
<Phone xmTns="www.phone.com">123-123-1234</Phone>
</ContactInfo>"

Listing 13.23

Note that namespace declarations are case sensitive. The following will
succeed even though the value is not in the correct format, because SQL
Server will not be able to find this namespace declaration in the schema

"n.n

collection and will skip the validation. (Note the "p"in "www.Phone.com”)

‘ DECLARE @x XML (LaxDemo)
SELECT @x = '
<ContactInfo>
<Phone xmIns="www.Phone.com">1234</Phone>
</ContactInfo>"

Listing 13.24

As mentioned earlier, SQL Server 2005 does not support /ax validation. If
you attempt to create a schema collection having a wildcard declaration
with /ax validation, you will receive the following error.

The XML Schema syntax 'processContents="lax"' is not supported.

Attribute: Id

We saw the "id" attribute when we discussed element declarations and
attribute declarations. The attribute "id" is used only to uniquely identify
each schema component. It does not add anything to the validation rules or
meaning of the schema. Here is an example that declares a wildcard
element having an "id" attribute.

430

13 — Advanced schema concepts

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo'>
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" id="Skipbemo"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>"'
GO

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo>
<Phone>999-999-9999</Phone>

</ContactInfo>"'

Listing 13.25

Attributes: maxOccurs and minOccurs

These two attributes are not new to us. We previously discussed them
when we discussed element declarations. They control the number of times
an element can appear within its parent element.

To make an element optional, set minOccurs to 0. To make an element
mandatory, set minOccurs to a non-zero value. To restrict the occurrence of
an element to exactly once, set minOccurs and maxQOccurs to 1. You
cannot set minOccurs to a value that is higher than maxOccurs.

Here is an example that declares a wildcard element and can appear a
minimum of two times and a maximum of five times.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection

431

13 — Advanced schema concepts

CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip"
minoccurs="2" maxoccurs="5"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
f/xsd:schema>

GO

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo>
<Phone>999-999-9999</Phone>
<Fax>888-888-8888</Fax>
<Email>a@b.com</Email>

</ContactInfo>"'

Listing 13.26

Attribute: namespace

This attribute specifies the target namespace of the wildcard element. We
have seen the usage of target namespace earlier in this chapter. While
processing the wildcard element, the schema processor will check for a
matching schema definition having the namespace declaration specified in
the namespace attribute of the wildcard declaration.

This attribute can take one of the following values:

##any

##other

##targetNamespace

#i#local

space separated list of namespaces

Let us examine the usages of each of these values in the
namespace attribute.

##any

This specifies that the schema processor will accept any namespace. The
XML instance can specify any namespace that is present in the schema
collection and the schema processor will accept it. Let us see an example
in order to understand this.

432

13 — Advanced schema concepts

Let us first create a schema collection that declares a wildcard element.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict" namespace="##any"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.27

Let us add a few more schema components from different namespaces to
the above schema collection. Let us add the declaration of Phone element
from "www.phone.com" namespace.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.28

Now, let us add the declaration of Fax element from
"www.fax.com" namespace.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.fax.com">
<xsd:element name="Fax'">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>

433

13 — Advanced schema concepts

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.29

Now let us try to validate a few XML instances against this schema
collection. Note that we have set processContents to "strict.” SQL Server
will look for a matching namespace declaration and will validate the
element against the definition given in the schema collection. If the
namespace or element declaration is not found, the validation will fail.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<ContactInfo>
<Phone xmIns="www.phone.com">123-123-1234</Phone>
</ContactInfo>"'

Listing 13.30

The above XML instance will validate successfully because the wildcard
element is declared such that it can accept an element from any
namespace. The namespace given in the XML instance exists in the
schema collection and it has the declaration of an element named Phone.
The value of Phone element in the XML instance validates successfully
against the rules specified in the schema collection.

The following will succeed, as well, for the same reason.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<ContactInfo>
<Fax xmlns="www.fax.com">123-123-1234</Fax>
‘ </ContactInfo>'

Listing 13.31

##other

When the namespace attribute of a wildcard declaration is set to "##other,"
the element in the XML instance can take any namespace other than the
target namespace of the parent element.

The following schema collection declares an element named Contactinfo
and specifies "www.contactinfo.com" as its target namespace.

434

13 — Advanced schema concepts

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict" namespace="##other"/>
</xsd:sequence>
</xsd:compTexType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.32

Now let us add another schema definition to the above schema collection,
with the definition of Phone element having "www.phone.com” as the
target namespace.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.33

Let us add the declaration of an element named Fax from the same
namespace as the Contactinfo element.

ALTER XML SCHEMA COLLECTION Examp1eSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="Fax'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>

435

13 — Advanced schema concepts

</xsd:element>
</xsd:schema>"
GO

Listing 13.34

Now, let us try to validate a few XML instances against the above schema
collection.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
| <ContactInfo xmlns="www.contactinfo.com">
<Phone xmIns="www.phone.com">123-123-1234</Phone>
‘ </ContactInfo>'

Listing 13.35

This will validate successfully. The Phone element is not in the same
namespace as its parent element. The specified namespace exists in the
schema collection and the namespace contains the declaration of the
Phone element.

Now, let us try another XML instance.

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo xmlns="www.contactinfo.com">

\ <Fax xmlns="www.contactinfo.com">123-123-1234</Fax>
</ContactInfo>"'

Listing 13.36

Validation of the above XML instance will fail with the following error.

XML validation: Invalid content. Expected element(s):##other:*
where element 'www.contactinfo.com:Fax' was specified. Location:
/*:ContactInfo[l]/*:Fax[1]

Though there is a Fax element declared in the given namespace, the
schema processor will not accept it because the wildcard is declared with
the namespace attribute set to "##other." When namespace is set to
##other, the element that represents the wildcard declaration cannot take
the same namespace as the targetNamespace of the parent element.

436

13 — Advanced schema concepts

##targetNamespace

The behavior of ##targetNamespace is almost the opposite of ##other.
When ##other is specified, the XML element that represents the wildcard
declaration can take any namespace other than the target namespace.
When ##targetNamespace is specified, it should contain the same
namespace as the target namespace of the parent element.

Let us create a new version of the schema collection with a wildcard
element declaration having namespace attribute set to
##targetNamespace.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict"
namespace="##targetNamespace" />
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.37

Just as we did with the previous example, let us add the declaration of
Phone element having a different target namespace.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>

437

13 — Advanced schema concepts

</xsd:element>
</xsd:schema>"
GO

Listing 13.38

And finally, let us add the declaration of Fax element from the same
namespace as the root element.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="Fax'>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.39

Let us validate an XML instance against this version of the
schema collection.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
| <ContactInfo xmlns="www.contactinfo.com">
<Fax xmlns="www.contactinfo.com">123-123-1234</Fax>
‘ </ContactInfo>'

Listing 13.40

The above XML instance will validate successfully against the schema
collection. However, the following will fail.

DECLARE @x XML (ExampleSchema)
SELECT @x = '
<ContactInfo xmIns="www.contactinfo.com">
\ <Phone xmlns="www.phone.com">123-123-1234</Phone>
</ContactInfo>"'

Listing 13.41

SQL Server will throw the following error if you try to run the above code.

438

13 — Advanced schema concepts

XML Validation: Invalid content. Expected
element(s) :www.contactinfo.com:* where element
'www.phone.com:Phone' was specified. Location:
/*:ContactInfo[1l]/*:Phone[1]

The validation of the above XML instance fails because the schema
specifies that the XML element that represents the wildcard declaration
cannot take a namespace other than the target namespace of the parent
element. Note that you need not declare the namespace in the Fax
element because you already have it declared in the parent element. The
following will validate successfully.

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo xmlns="www.contactinfo.com">
<Fax>123-123-1234</Fax>

</ContactInfo>"'

Listing 13.42

##local

When the namespace attribute of a wildcard declaration is set to ##local,
the element in the XML instance that represents the wildcard declaration
should not be part of any namespace. The schema collection should
contain a declaration for the replacement element and it should not be
associated with any namespace.

Let us create a schema collection that declares a wildcard element having
namespace set to ##local.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict"
namespace="##local" />
</xsd:sequence>
</xsd:compTexType>

439

13 — Advanced schema concepts

</xsd:element>
</xsd:schema>"
GO

Listing 13.43

The schema definition in the above schema collection is created with a
target namespace. Let us add the definition of the Phone element to the
same namespace.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.contactinfo.com">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string
<xsd:pattern value="\d{3}- \d{3} \d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.44

The pattern in the above restriction specifies that the group of digits in the
phone number be separated by a hyphen. (Take note of this. We will come
back to this a little later).

Now let us add one more schema definition to the above
schema collection.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3} \d{3} \d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"
GO

Listing 13.45
Note that this schema, too, defines a Phone element. However, the pattern

restriction is slightly different. This specifies that the group of digits in the
phone number be separated by space characters.

440

13 — Advanced schema concepts

At this point, we have two definitions of Phone element. One version
resides in the same namespace as the root element and accepts phone
numbers having groups of digits separated by a hyphen (example: 999-
999-9999). The other version of Phone element does not belong to any
namespace and accepts phone numbers having space separated groups of
digits (example: 999 999 9999).

Let us try to validate an XML instance against this schema collection.

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo xmlns="www.contactinfo.com">
<Phone>123-123-1234</Phone>

</ContactInfo>"

Listing 13.46

If you run the above code, SQL Server will throw the following error.

XML validation: Invalid content. Expected element(s):* where
element 'www.contactinfo.com:Phone' was specified. Location:
/*:ContactInfo[1l]/*:Phone[1]

The Phone element in the above XML instance does not have a
namespace. In the absence of a namespace declaration, the schema
processor will associate the namespace of the parent element to a child
element. The element in the XML instance that represents the wildcard
element cannot take a namespace. Though there is a Phone element in the
given namespace and the element validates successfully against that
element, the schema processor will not accept it.

Here is the correct XML instance that validates with the above schema.

DECLARE @x XML (ExampleSchema)

SELECT @x = '

<ContactInfo xmlns="www.contactinfo.com">
<Phone xmlns="">123 123 1234</Phone>

</ContactInfo>"'

Listing 13.47

Setting namespace attribute to specific
namespace values

It is also possible to associate the wild card elements to one or more
specific namespaces. When done so, the XML element that represents the

441

13 — Advanced schema concepts

wildcard element should contain one of the namespaces declared in the
namespace attribute of the wild card element declaration.

Let us create a schema collection that declares an element
named Contactinfo.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<xsd:element name="ContactInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="strict"
namespace="www.phone.com www.fax.com"/>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.48

Note that the wildcard element accepts two namespaces. The XML
instance element that represents the wildcard declaration can take only
one of the namespaces declared above.

"

Let us add the declaration of Phone element from "www.phone.com
namespace to the above schema collection.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.phone.com">
<xsd:element name="Phone">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>"'
GO

Listing 13.49

442

13 — Advanced schema concepts

Let us add one more schema definition to the above schema collection.
The example given below adds the declaration of Fax element from
"www.fax.com" to the schema collection.

ALTER XML SCHEMA COLLECTION ExampleSchema ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace:"www.fax.com”>

<xsd:element name="Fax'>
<xsd:simpleType>
<xsd:restriction base="xsd:strin
<xsd:pattern value="\d{3}- \d{3} \d{4}" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:schema>'
GO

Listing 13.50

Let us validate a few XML instances against this schema collection.

‘ DECLARE @x XML(Examp]eSchema)
SELECT @x =
<ContactInfo>
<Phone xmTns="www.phone.com">123-123-1234</Phone>
</ContactInfo>"

Listing 13.51

This succeeds because "www.phone.com” is one of the namespaces
declared with the wildcard element declaration.

DECLARE @x XML (ExampleSchema)

SELECT @x =

<ContactInfo>

\ <Fax xmlns="www.fax.com">123-123-1234</Fax>
</ContactInfo>"'

Listing 13.52

This will succeed, too. "www.fax.com" is also one of the namespaces
declared in the wildcard element declaration. The schema processor will
not accept any namespace other than the namespaces declared in the
wildcard element declaration.

443

13 — Advanced schema concepts

Attribute Wildcards

In the previous section, we examined element wildcards. An element
wildcard declaration represents an attribute in the XML instance that is not

known at the time of writing the schema.

Attribute wildcards work very similar to element wildcards. When a complex
type contains an attribute wildcard declaration the XML instance can

contain replacement attributes from the specified namespace.

An attribute wildcard is declared using "<xsd:anyAttribute>" element. Let us

see an example.

-- DROP the previous SCHEMA COLLECTION
IF EXISTS(
SELECT * FROM sys.xml_schema_collections
WHERE name = 'ExampleSchema'
) BEGIN
DROP XML SCHEMA COLLECTION ExampleSchema
END
GO

-- Create a schema collection
CREATE XML SCHEMA COLLECTION ExampleSchema AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="www.employeeinfo.com"
attributeFormbefault="qualified">
<xsd:element name="Employees">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Employee'>
<xsd:complexType>
<xsd:anyAttribute
namespace="##any"
processContents="strict"/>
</xsd:compTlexType>
</xsd:element>
</xsd:sequence>
</xsd:compTlexType>
</xsd:element>
<xsd:attribute name="FName" />
<xsd:attribute name="LName"/>
<xsd:attribute name="Number"/>
</xsd:schema>"
GO

Listing 13.53

The following XML instance validates against the above schema collection.

‘ DECLARE @x XML (ExampleSchema)
SELECT @x = ']
‘ <emp:Employees xmlns:emp="www.employeeinfo.com">

444

13 — Advanced schema concepts

<Employee emp:FName="Jacob" />
</emp:Employees>"'

Listing 13.54

It may be surprising to know that the following will be validated, too.

‘ DECLARE @x XML (ExampleSchema)
SELECT @x = '
<emp:Employees xmlns:emp="www.employeeinfo.com">
<EmpToyee emp:FName="Jacob" emp:LName="Sebastian"
emp:Number="1001" />
</emp:Employees>"

Listing 13.55

Your XML instance can contain any number of replacement attributes
against an attribute wildcard declaration. Unlike element wildcards,
attribute wildcards do not have minOccurs or maxOccurs attributes. Hence,
the attributes can appear 0, one or more times.

An attribute wildcard declaration can take the following attributes.

id
° processContents
. namespace

The behavior of these attributes is the same as we have seen with element
wildcards. Refer to the section "Element Wildcards" above for a detailed
discussion on these attributes.

Annotations

Annotations are used to add documentation to the schema. You can add
annotations to any schema component. Schema documentation can be
added using documentation as well as appinfo elements. The
documentation element is used to add user documentation and appinfo
element is used to add processing instructions for applications.

User Documentation

The following example shows a schema declaration with a basic
documentation example.

445

13 — Advanced schema concepts

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation>
This element stores employee information.
</xsd:documentation>
</xsd:annotation> <xsd:element name="Employees"/>
</xsd:schema>

Listing 13.56

The documentation element can take a few attributes, using which you can
add additional documentation. You can add references to external
resources as well as specify language identifiers. The following example
shows an annotation element having documentation in two languages.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation
source="http://www.sqlserverandxml.com/employee/en-us"
xml:Tlang="en-us">
This element stores employee information.
</xsd:documentation>
<xsd:documentation
source="http://www.sqglserverandxml.com/employee/it"
xml:lang="1it">
Questo element negozi dipendente informazioni.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="Employees"/>
</xsd:schema>

Listing 13.57

Application Information

The appinfo element of an annotation is used to add processing
information to applications. For example, an application that reads
information from a table or writes to a table can use appinfo to store the
mapping between XML elements and columns/tables. An example of such
an application is the XMLBulkLoad component of SQLXML.

The following example shows a schema that uses appinfo element to store
processing instructions for XMLBulkLoad component.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:sqgl="urn:schemas-microsoft-com:mapping-schema">
<xsd:annotation>
<xsd:appinfo>
<sql:relationship
name="CustomerProduct"
parent="Customers" parent-key="CustomerID"

446

13 — Advanced schema concepts

child="orders" child-key="CustomerID"/>
</xsd:appinfo>
</xsd:annotation> <xsd:element name="Orders"
sql:relation="orders">
<!-- other declarations here -->
</xsd:element>
</xsd:schema>

Listing 13.58

Chapter Summary

In this chapter we have discussed a few advanced schema topics. We
discussed the attributes of schema declarations and examined each
attribute in detail. The only mandatory attribute of a schema declaration is
the namespace declaration. A schema declaration can take a few optional
attributes, also.

The targetNamespace attribute of the schema declaration can be used to
specify a namespace to which the XML instance should belong.

The attributeFormDefault and elementFormDefault attributes specify the
default value of the form attribute of all elements and attributes.
The blockDefault and finalDefault attributes specify the default value for
the block and final attributes of elements and types. The default value is
used only if the element or attribute declaration does not contain the
specified attribute.

Element and attribute wildcards can be used to create flexible schema
components that can accept elements and attributes not known at the time
the schema was written. SQL Server supports three modes to validate the
content of wildcard declarations. When the validation mode is set to skip,
SQL Server will skip the validation of the replacement element. When the
validation mode is set to strict, SQL Server will locate the specified
namespace in the schema collection and will validate the element or
attribute against the element/attribute declaration given in the specified
namespace. If the namespace is not found or it does not contain the
declaration for the specified element or attribute, the validation will fail.

SQL Server 2008 supports a third validation mode: /ax. When the
processing mode is set to /ax, SQL Server will validate the replacement
element/attribute only if the specified namespace exists in the schema
collection and the namespace contains the declaration for the specified
element or attribute.

447

13 — Advanced schema concepts

The behavior of element wildcards and attribute wildcards are almost
similar, except that the XML instance can have 0, one or more attributes
against a single attribute wild card declaration.

Annotations can be used to add documentation to the schema collection.
The documentation element can be used to add user documentation
and appinfo element can be used to add processing information
for applications.

448

CHAPTER 14

SQL SERVER SCHEMA
COLLECTIONS AND METADATA

SQL Server maintains XML schemas in schema collections. A schema
collection is a system object just like tables, stored procedures, indexes,
etc. A schema collection can store more than one schema definition. In this
chapter we will examine XML Schema Collections in detail. We will discuss:

Why is there a collection?

How to create schema 'collections’

How to alter schema collections

Retrieving schema definition from SQL Server

Adding constraints using facets: CONTENT and DOCUMENT
XML Schema Collection Metadata

Limitations of SQL Server Schema Collections

Why schema 'collection'?

It is not clear to me why there is no xml schema object in SQL Server.
Instead, what we have is xml schema collection objects. Each xml schema
collection object stores one or more schema definitions, so you need an
xml schema collection even for storing a single schema definition.

Though a schema collection can store more than one schema definition,
most of the time you would prefer to store only one schema definition in it.
When you validate an XML instance against a schema collection, SQL
Server will validate the XML instance against all the global elements
declared in the entire schema collection until a suitable match is found. If
the XML instance validates against any of the global elements declared in
the entire schema collection, the insert/update/assignment operation will
succeed.

449

14 — SQL Server schema collections and metadata

A Schema Collection Example

Let us look at a schema collection having more than one schema definition.
Let us think of an application used by a training school. They have a table
named "person” that stores information of students as well as trainers.
Assume that they need to store some additional information which is
specific to the type of data stored in each row. For example, if the row
stores information regarding a student they need to store the course and
duration of the course in which he or she is enrolled. If the row stores
information of a trainer, they need to store the qualification of the trainer
and the details of industry experience he or she has.

Let us try to use an XML column to store this additional information. Let us
create a schema collection that contains two schema definitions: one to
validate student information and the other to validate trainer information.

Here is an example of student information.

<Student>
<Course>SQL Server Training</Course>
\ <Duration>6 Months</Duration>
</Student>

Listing 14.1

And the following example shows the structure of the trainer information
XML document.

<Trainer>
<Qualification>MCDBA</Qualification>
<IndustryExperience>10 Years</IndustryExperience>
</Trainer>

Listing 14.2

Let us create a schema collection containing the schema definition to
validate student information.

CREATE XML SCHEMA COLLECTION StudentOrTrainer AS '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<!-- student Element -->
<xsd:element name="Student">
<xsd:compTlexType>
<xsd:sequence>
<xsd:element name="Course"/>
<xsd:element name="Duration"/>
</xsd:sequence>

450

14 — SQL Server schema collections and metadata

</xsd:complexType>
</xsd:element>
</xsd:schema>"
GO

Listing 14.3

You can add a new schema definition to an existing schema collection by
using ALTER SCHEMA COLLECTION ADD command. Let us add the
schema definition of the trainer information to the above schema collection.

ALTER XML SCHEMA COLLECTION StudentOrTrainer ADD '
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<!-- Trainer Element -->
<xsd:element name="Train