High Performance SQL Server

ing SQL
ller

Master
Server Prof

Brad M McGehee

HEMPTON
MARSH

Mastering SQL Server
Profiler

By Brad McGehee

First published by Simple Talk Publishing 2009

Copyright Brad McGehee 2009

ISBN 978-1-906434-11-3

The right of Brad McGehee to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic,
mechanical, photocopying, recording or otherwise) without the prior written consent of the publisher. Any person who does any unauthorised act in relation to this
publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher’s prior
consent in any form other than which it is published and without a similar condition including this condition being imposed on the subsequent publisher.

Typeset by Chris Massey

iii

CONTENTS

COMEBIIES .ottt 3
ADOUL the AULNOT.....viiiiiiii s 7
TROAUCHON ...ttt e 9
Which Version of SQL Server Profiler is covered in this BOOK?......cooceeiinncicccnnne. 9
How the BoOk 18 StrUuCtured ..o 9
Getting Started With Profiler.......ocoociiiiiiiiiiiiiiic s 13
Why Mastering Profiler can help make you an exceptional DBA.........c..cccoiviiiniinen. 13
The inner workings of Profiler ... 14
Profiler termMINOLOZYc.cciiiiiiiiiiiiiiiiiiiici e 15
Getting Started With Profiler ... 17
SUMMATY 1.ttt 28
Working with Traces and Templatesccoviiiiiiiiiiiii 29
Understanding the Events Selection OPtionscccevvieeieenieenrenieeiriieiensiceeeseeeenns 29
Creating a Custom Trace from ScratCh.......ccccvviiiiiviniiiiniiiiiiccceeccceaes 32
Saving Traces to a SQL Server Tableccooviviiiiiiiiiiiiiiccces 43
Capturing ANalysis SEVer TIACES.....ccvvviririiiiiiiccceieeete e 46
Creating and Using Trace TemMPIates......cccouieuririiieirinieieiriieeiriieieisiceensceieneeseeeneeeans 48
SUMMALY 1.ttt ettt bbbttt 60
Profiler GUI Tips and THICKS ..c.coviiiiiiiiiiiiiiciic s 601
Tips on Selecting Profiler Events and Data Columns ... 601
Tips on Using Column FIIters ... 069
Tips on Organizing Columns for Grouping and ANalysisc.ccoevveierviriceiinicinnnnnn 72
How the "Server Processes Trace Data" Option Affects Tracescoocecvecuricrvicunnnnn. 77
How to Set Global Trace OPtions ..o s 78
How to Schedule a Trace's StOp TIME ...vcuvieurieciriciriciricricicieieeieeieneecneeeseee e 79
How to Use the Auto Scroll WINAOWccviieiiiiiiiiiiiciriiceiccesieececens 80
How to Search for Data in a Trace FIlecovviiiiiiiiiiciicicccecccceines 81

HOW tO St BOOKMIATKS evveitieeeeeeeeee ettt ettt eee ettt s et e st eeeeeesateseneesentesanteseeeessseesanees 32

SUMMATY c.iiiiii s 82
How to Identify Slow Running QUETLIESc.couiueiiiiiiieiiiiiieieiiiieieiicetesccieesssieessscse e 85
Creating a Trace to Identify Slow Running QUETIes........cccouiurvviiiiiriniiiiniiniciiiiiciinnes 85
Analyzing the Poorly Performing Queries Identified by Profiler..........ccccccccciciinnininnee 94
SUMMATY ..t 105
How to Identify and Troubleshoot SQL Server Problemscccovveiiccceeeieeieennnnines 107
How to Identify Deadlocks.......ccooviiiiiiiiiiiiiiiiiiiiiicces 107
How to Identify Blocking ISSUES.........ccviuiiiiiiiiiiiiiiiicccc s 115
How to Identify Excessive AUto Stats ACHVILYc.ovveeerevriiereiriieieieiiceeeseceeneecenens 121
How to Identify Excessive Statement Compilations..........cccevicucininicicininicnininccennns 125
How to Identify Excessive Database File Growth/Shtinkagecccocovvevcuvcircuneunennee 130
How to Identify Excessive Table/Index SCans........ccocvricvcineiniinisicenenieesiceenenne 134
How to Identify Memory Problems ..o 139
SUMMALY 1.ttt 144
Using Profiler to Audit Database ACHVILYccovviiiiiiiiiiiiiiiicicc s 145
Capturing Audit EVENTS....cccviiiiiiiiiiiiiiicicccce e 145
Selecting Data CoIUMNS ..o 148
Selecting Colummn FIIEerscoviiiiiiiiiiiiiiiciicie s 149
Organizing ColuMNS ... s 150
How to Conduct an Audit Trace. ..o 151
SUMMATY ..t 153
Using Profiler with the Database Engine Tuning AdvISOLcccceuviviiiiiniicininiicieieicnennes 155
Features and Benefits of Using the DTAccccoviiiiiiiiiiiiiiiccccccce, 155
How to Create a Trace for Use by the DTA ..o, 156
SUMMATY ..t 170
Correlating Profiler with Performance MONItOLccveueuviviiiiiiiniiciiiniiccniiceeiceeiees 171
How to Collect Profiler Data for Correlation Analysiscccooeviviiiiviiicniiiicicininnnn, 171
How to Collect Performance Monitor Data for Correlation Analysis........c.ccocvuvenneee. 172
How to Capture Profiler Traces and Performance Monitor Logscccccvvicuruninnnee. 183

How to Correlate SQL Server 2005 Profiler Data with Performance Monitor Data.184

How to Analyze Cortelated Data.......ccceuvviecieiiiniiiciiiiciicceceecceeeeeneeenens 189
SUMMALY 1.ttt bbbt 199
How to Capture Profiler Traces Programmatically.........cccooviviiviiiiniiniiiniiinniccnicnen 201
Pro and Cons of Capturing Traces Programmatically..........cccovoiiiiiiiiiinnnninne. 201
Capturing Trace Data Programmatically: An OVervIeWcccvvvieeurinicieiricicnsirecienenes 202
Required System Stored Procedufes.........ccvvviiiniiiiiiiiiiiiiiinccccccccceecnens 202
Putting the Pieces Together: Writing Your Own Trace Capture Scripts........cccevveunee. 205
Creating T-SQL Traces from the Profiler GUIccccceuiiiiiinininniniiiiiiccccicicens 212
Using a Trace Function to Query a Trace File. ..o, 215
SUMMALY 1.ttt 216
Profiler Best PLACHICES w.vviriiieiiiiiicieieieieieieeteteieietetse sttt 217
General Profiler Best PractiCes......coovvinininininiiiiiiiciciciciciieisieieeisssececceeeenenes 217
Creating TIACES ..o 220
RUNNING TIACES ottt 221
ANALYZING TIACES ...vuvuiiiiiiiiiic s 223
Performance MONITOL ... 223
Database Engine Tuning AdVISOL ..ot seseeseenens 224
SUMMALY 1.ttt 225
Profiler Events and Data Columns Explainedcccccoviiiiiiiiiiiiiiciccccne, 227
EVENt CaAtE@OTIES ...ttt 227
Profiler Data Columns........ccccuviiiiiniiiicce s 295
SUMMALY 1.ttt 303

vii

ABOUT THE AUTHOR

Brad McGehee is a MCSE+I, MCSD, and MCT (former) with a Bachelors degree in Economics and a
Masters in Business Administration. Currently the Director of DBA Education for Red Gate Software,
Brad is an accomplished Microsoft SQL Server MVP with over 13 years' SQL Server experience, and
over 6 years' training expetience.

Brad is a frequent speaker at SQL PASS, SQL Connections, SQLTeach, Code Camps, SQL Server user
groups, and other industry seminars, where he shares his 13 years' cumulative knowledge.

Brad was the founder of the popular community site SQL-Server-Performance.Com, and operated it
from 2000 through 2006, where he wrote over one million words on SQL Server topics.

A well-known name in SQL Server literature, Brad is the author or co-author of more than 12 technical
books and over 100 published articles. His recent books include "How to Become an Exceptional DBA"
and "Brad's Sure Guide to SQL Server 2008".

When he is not traveling to spread his knowledge of SQL Server, Brad enjoys spending time with his
wife and young daughter in Hawaii.

INTRODUCTION

I have been a SQL Server DBA for about 14 years, and I regard Profiler as one of the most useful of
SQL Setver's "built-in" tools. Profiler records data about various SQL Server events. This data is stored
in a trace file and allows you to view the communications sent from a client to SQL Server, in addition
to giving you an insight into its internal workings. This information can be used to troubleshoot a wide
range of SQL Server issues, such as poortly-performing queries, locking and blocking, excessive
table/index scanning, and a lot more.

For such a potentially powerful tool, Profiler is surprisingly underused. This must be due, at least in part,
to the fact that it is occasionally a frustrating tool. The user interface is poor, it lacks many important
features, it is poorly documented and, unless you have a lot of experience as a DBA, it is often hard to
analyze the data you capture. As such, many DBAs tend to ignore it and this is distressing, because
Profiler has so much potential to make a DBA's life more productive.

This is why I wrote this book, Mastering SQL Server Profiler. My goal was to make it easier for you to learn
how to use Profiler, analyze the data it provides, and to take full advantage of its potential for
troubleshooting SQL Server problems.

WHICH VERSION OF SQL SERVER PROFILER IS COVERED IN THIS BOOK?

Most DBAs are still using SQL Server 2005, so all the examples in this book are based on SQL Server
2005 Profiler. However, the differences between SQL Server 2005 and SQL Server 2008 are minimal.
While you may notice some minor cosmetic changes between the two editions, and discover that SQL
Server 2008 includes a few new events, every example in this book will work with SQL Server 2008 and
everything you learn here is applicable to both SQL Server 2005 and SQL Server 2008.

In fact, most of what is covered in this book also applies to SQL Server 2000, although you will want to
use the SQL Server 2005 Profiler tool to access your SQL Server 2000 instances.

How THE BOOK IS STRUCTURED

If you are new to Profiler, you will want to start with the first three chapters, which provide the basic
foundation you need to begin using Profiler. If you'te already familiar with the basics of captuting traces
with Profiler, then you can head straight to Chapter 4 and onwards. These chapters are self-contained
and can be read in any order that you wish.

CHAPTER 1: GETTING STARTED WITH PROFILER

If you are new to Profiler, this is where you will want to start. This chapter covers all the basics you need
to get you started using Profiler, such as:

e Understanding how Profiler works
e Anintroduction to Profiler terminology, such as events, data columns, filters and traces
e Learning the basics of how to create, control, and save a Profiler trace

CHAPTER 2: WORKING WITH TRACES AND TEMPLATES

This chapter delves deeper into the world of traces. It covers topics such as:

e How to build custom traces from scratch
e How to Save Profiler traces to a SQL Server Table
e How to trace Analysis Services activity

e How to create and modify reusable profiler trace templates

CHAPTER 3: PROFILER GUI TIPS AND TRICKS

At this point, you should have a good understanding of what Profiler can do and how it works. This
chapter covers several Profiler tips that will make you more productive, such as:

e Tips on Selecting Profiler Events and Data Columns

e Tips on Using Column Filters

e Tips on Organizing Columns for Grouping and Analysis

e How the "Server processes trace data" Option Affects Traces
e How to Set Global Trace Options

e How to Schedule a Trace's Stop Time

e How to use the Auto Scroll Window

e How to Search for Data Inside a Trace File

e How to Set and Use Bookmarks

CHAPTER 4: How 1O IDENTIFY SLOW RUNNING QUERIES

Now that you have mastered Profiler basics, you get the opportunity to start making practical use of
Profiler. As DBAs, one of the problems we face on an almost daily basis is slow-running queries. These
are the kind of queries that keep us up late at night, ruining our sleep and turning us into zombies. This
chapter shows you how to:

e Create a Profiler trace to capture all the information you need to identify and analyze
slow running queries

e Analyze the poorly-performing queries identified by Profiler

CHAPTER 5: How TO IDENTIFY AND TROUBLESHOOT SQL SERVER PROBLEMS

This chapter shows how to create and analyze Profiler traces that will help you uncover a multitude of
different problems (possibly problems that you didn't even know you had!). In this chaptet, you will
learn:

e How to Identify Deadlocks

e How to Identify Blocking Issues

e How to Identify Excessive Auto Stats Activity

e How to Identify Excessive Statement Compilations

e How to Identify Excessive Database File Growth/Shrinkage
e How to Identify Excessive Table/Index Scans

e How to Identify Memory Problems

CHAPTER 6: USING PROFILER TO AUDIT DATABASE ACTIVITY

Many DBAs are tasked with auditing the activity within their databases. Although Profiler is not the
ideal tool for auditing, it can still get the job done. This chapter covers:

e The pros and cons of using Profiler for auditing
e Available Audit events
e How to conduct an Audit Trace

xi

CHAPTER 7: USING PROFILER WITH THE DATABASE ENGINE TUNING ADVISOR

In combination, Profiler and the Database Engine Tuning Advisor can make it much easier for DBAs to
identify indexing issues in your databases. In this chapter, you learn:

About the features and benefits of using the DTA

How to create a trace for use by the DTA

How to run a trace for use by the DTA

How to Perform a Missing Index Analysis Using the DTA

CHAPTER 8: CORRELATING PROFILER WITH PERFORMANCE MONITOR

Data captured in Performance Monitor and Profiler can be combined and displayed within the Profiler
GUI, making it possible to identify correlations between Transact-SQL execution and resource usage. In
this chapter, you learn:

How to collect Profiler data for correlation analysis

How to collect Performance Monitor data for correlation analysis

How to correlate SQL Server 2005 Profiler data with Performance Monitor data
How to analyze correlated data

CHAPTER 9: How 10 CAPTURE PROFILER TRACES PROGRAMMATICALLY

While most DBAs create and collect traces using the Profiler GUI, there are certain advantages to using
T-SQL scripts and system stored procedures. In this chapter, you will learn:

The pros and cons of capturing traces programmatically
How to use T-SQL and system stored procedures to capture traces
How to use the Profiler GUI to create T-SQL trace scripts

How to use a trace function to perform SELECT queries directly against a physical trace
tile

CHAPTER 10: PROFILER BEST PRACTICES

There are many different ways to use Profiler to capture trace data. This chapter summarizes some of
my thoughts on the most efficient ways to:

Create Traces

Run Traces

Analyze Traces

Use Performance Monitor with Profiler

Use Database Engine Tuning Advisor with Profiler

CHAPTER 11: PROFILER EVENTS AND DATA COLUMNS EXPLAINED

We saved the longest chapter for last. It provides a reference source for each of the 21 Profiler event
categories that Profiler has to offer, and to offer an explanation of how they can be used to troubleshoot
many different SQL Server problems. It includes a description of those events in each category that will
be of the most interest to the DBA along with a digest of the most important data columns.

xii
HAVE FUN, AND LET THE PROFILER ADVENTURE BEGIN

Now that you know where you are going, jump in with both feet and begin your journey towards
mastering Profiler. Learning is always a great adventure, and I hope you enjoy reading this book as much

as I did researching and writing it. If you have any questions or feedback, please send them to
brad.mcgehee@red-gate.com.

mailto:brad.mcgehee@red-gate.com�

Getting Started with Profiler 13

Chapter 1

GETTING STARTED WITH PROFILER

SQL Server 2005 Profiler is a powerful tool that allows you to capture and analyze events, such as the
execution of a stored procedure, occurring within SQL Server. This information can be used to identify
and troubleshoot many SQL Server-related problems.

Everybody has to start somewhere and, if you are new to Profiler, this is where you want to begin. In
this chapter, we'll cover the basics of how Profiler works, its cote terminology, and how to create and
save basic Profiler traces.

If you have used Profiler a lot in the past, you may want to skip right to the later, more advanced
chapters in the book where we start to put Profiler into action, analyzing slow performing queries,
troubleshooting bottleneck, auditing database activity and so on.

After reading this chapter, you will know why Profiler is such an essential tool in the DBA's armoury,
and will:

e Understand how Profiler works
e Be familiar with core Profiler terminology, such as events, data columns, filters and traces
e Understand the permissions required to use Profiler and how to start up Profiler

e Be able to create and control basic Profiler traces and then save a completed trace to a
file

WHY MASTERING PROFILER CAN HELP MAKE YOU AN EXCEPTIONAL DBA

One of the things that separate mediocre DBAs from exceptional ones is that exceptional DBAs know
how to take full advantage of the tools available to them. By mastering Profiler, the exceptional DBA
can track down and fix SQL Server performance and other problems quickly and efficiently, and even
spot potential problems before they cause real difficulties. In this section, we take a look at the many
different ways we can use Profiler to help us out in our job.

While the following lists are not totally comprehensive, they do describe the majority of the ways
Profiler can be used to help us out as DBAs or developers.

How PROFILER CAN HELP DBASs

e Monitor the activity of the:

o SQL Server Database Engine
o Analysis Services
o Integration Services

e Monitor and identify performance-related problems with front-end application, queries,
T-SQL, transactions, and much more

e Perform query analysis of execution plans

e Monitor and identify SQL Server errors and warnings

e Capture and replay traces of activity to replicate problems

Getting Started with Profiler 14

e Audit user activity
e Analyze trace results by grouping or aggregating them
e Create your own custom traces, and save them, for use whenever you wish

e Correlate Profiler trace events with System Monitor performance counters to identify
what event(s) are hogging server resources

e Capture data for analysis in the Database Engine Tuning Wizard
e Save trace results to a file, a database table, or to XML for later analysis
e Trace Profiler events programmatically, instead of using only the Profiler GUI

How PROFILER CAN HELP DEVELOPERS

e View how SQL Server works when interacting with a client
e Decbug T-SQL code and stored procedures

e Perform stress testing

e Perform quality assurance testing

As discussed in the book's introduction, the focus of this book is on DBAs, not developers. Because of
this, we will be focusing on the type of features described above that are targeted more toward DBAs.

THE INNER WORKINGS OF PROFILER

What may be a surprise to many DBAs and developers is that SQL Server Profiler is only a GUI
designed to work with another feature of SQL Setrver called SQL Trace. It is SQL Trace that is actually
doing most of the work when it comes to capturing SQL Server events and storing them for later use.
SQL Trace is a feature of SQL Server that can be accessed indirectly with the Profiler GUI, system
stored procedures, or programmatically using Server Management Objects (SMO).

In essence, SQL Trace is a very simple tool. Its job is just to capture SQL Server-related communication
between a client and SQL Server. It acts similarly to a specialized network sniffer that captures traffic on
the network related to SQL Server and allows you to see exactly which events are being sent from the
client to SQL Server.

Unlike a network sniffer, which allows you to see every byte transversing the network, SQL Trace only
captures and processes SQL Server-specific events. Here's how it works.

SQL Server Profiler Architecture

Catabase
SQL Trace Table
SQL Server /
Events
Generated by Filg
Clients or : >
e — Fiter = Queue SC!PI_meﬁg\rser
Processes \‘ /
S0
\‘ Lser
Application

Figure 1-1: The flow of Profiler data from SQL Server events to final output.

Getting Started with Profiler 15

First, a SQL Server-related event is created between a client or SQL Server process and SQL Server.
Events include many different types of activities and will be described in more detail later. As these
events are occurring in SQL Server, it is SQL Trace’s job to capture specific SQL Server events that are
of interest and to filter out those of no interest.

Once the events are captured, they are queued up in memory. At this point, they can be sent directly to a
database table, to a physical file, or to an SMO-based application.

NOTE

Server Management Objects (SMO) is an object model that can be used to directly access SQL
Server, including SQL Trace. In fact, the SQL Setver Profiler GUI is actually a SMO-based
application that interacts with SQL Trace.

In addition to SQL Server Profiler, SQL Server includes many system-stored procedures that use the
SMO object model to interact with SQL Trace. We will discuss these system-stored procedures later on.
Developers can also directly access SQL Trace using SMO objects, although this topic is not discussed
in this book.

In effect, this means that SQL Trace is a black box that we can't ditectly access. All we can do is to
interact with it indirectly with various tools. In our case, these tools will be Profiler and system-stored
procedures.

PROFILER TERMINOLOGY

At school, I hated learning new terminology. Unfortunately, there is some basic Profiler terminology
that we need to thoroughly understand before we can proceed any further. We will introduce four key
terms now and expound on them later when appropriate.

These terms are:

e Events

e Data columns

e Filters
e 'Trace
EVENTS

I have already used this term several times, without propetly explaining what an event is. Essentially, it is
the occurrence of some defined action inside SQL Server. The execution of a stored procedure is one
example of an event. SQL Server Profiler allows you to capture over 170 different SQL Server-related
events. An Event Category is a group of related events. For example, the Stored Procedure event
category groups together all events relating to the execution of a stored procedure. This event category
will include events that, for example, allow you to capture information about when a procedure started
executing, completed executing, and so on. The term Event Class refers to an event, and all of the data
columns associated with it.

DATA COLUMNS

Every event that can be captured includes a group of related data that describes that event and is stored
in what are called data columns. Think of an event as a row in a database and data columns as the
columns in a worksheet. Different events are associated with different data columns, and not every data
column is available for every event, as you can see in Figure 1-2.

Getting Started with Profiler 16

Ewents | Applicationt ame | BinaryD ata | ClientProceszID | DatabazelD | Databazeh ame | Duration | EndTirme |

= Stored Procedures
Deprecated

RFC Dutput Parameter
RPC:.Completed
RPC:Starting
SP:CacheHit
SP:Cachelnsert
SP:Cachemisz
SP:CacheRemove
SP:Completed
5P:Recompile

i

W~ i i

a"aaTaaaanan
axKaTaTaaTaan
ajaaTaanan
a"aaaanaan
ax"T o aananan

Figure 1-2: The left column above shows some of the available events for the Event Class called Stored
Procedures. The columns to the right are the data columns that include the data captured for each event.

Examples of the data columns for a stored procedure event include EventClass, TextData,
ApplicationName, Reads, Writes, and Duration. Profiler offers 64 different event columns, although no
event uses all of the available data columns. This data is very useful to the DBA or developer when
analyzing specific events.

FILTERS

Many times you will want to capture information about a certain event, but only when it occurs under
specific circumstances, rather than every single time the event occurs. For example, maybe you only
want to capture events from a selected user, a specific application, or for a given database. Filters allow
you to tell Profiler not to collect the events (rows) that you don't want to save or view.

Edit Filter x|

- ~ —DatabaselD

QiizliaDt:::;Name T ID of the database specified by the USE
database statement, or the default

ClientProcessID database if no USE database statement has

DatabaselD been issued for a given connection,

DatabaseMarne

Lk ation

EndTirne b

HoskMarne =-Equals o~

IsTystem : il

LineMurnber ¢ Mot equal ko

Logintarne -- Greater than or equal

Loginsid - Less than or equal ﬂ

HestLevel ﬂ [Exclude rows that do nok conkain valuss

()4 | Zancel |

Figure 1-3: The above is an example of how you create a filter with Profiler. In the above example, we are
filtering out all events that are not generated by the database with a DatabaselD of 5.

TRACES

A trace includes the events and data columns you collect and is usually stored in a physical file for later
examination. A trace file can be saved in many ways.

It can be:

Getting Started with Profiler 17

e Stored in memory of Profiler

e Exported to a proprietary Profiler file format
e Exported to a database table

e Exported to an XML file

In essence, your goal is to use Profiler to capture and save trace files for analysis.

| EventClass | TextData | Applicationt ame | MTUszert ame | Laogint ame | CPU | Feads | writes [ruration
SOL:Eatchstarting select o.name, schema_... SOLOMO_1 Erad ERAD-LAPTOFYErad
sOL:eatchCompleted select o.name, schema_... SOLOMO_1 Erad ERAD-LAPTOPYErad 172 L1 u] SES
SOL:Eatchstarting select o.name, schema_... SOLOMO_1 Erad ERAD-LAPTOFYErad
sOL:eatchCompleted select o.name, schema_... SOLOMO_1 Erad ERAD-LAPTOPYErad &3] u] 254
SOL:Eatchstarting exec sp_Mshelptype nul... SOLOMO_1 Erad ERAD-LAPTOFYErad
sOL:eatchCompleted exec sp_Mshelptype nul... SOLOMO_1 Erad ERAD-LAPTOPYErad 75 441 u] 593
Audit Logout SOLDMO_1 Erad ERAD-LAPTOPYErad 2735 19... El 120393

Figure 1-4: This is a small example of an actual trace displayed in Profiler. It shows events as rows and data
columns as columns.

GETTING STARTED WITH PROFILER

Now that we have covered the basics, we're going to start using the tool. You will get the most out of
this book if you read it sitting in front of your computer, having access to a test or production SQL
Server 2005 instance, Management Studio, and SQL Server Profiler. While you may be wary of working
on a production instance, you need not be. Most of what we will do with Profiler will have minimal
petformance impact and can't hurt your production instance. There are a couple of exceptions to this,
and I will clearly point them out at the appropriate time.

While a test server is perfectly adequate, the advantage of using a production instance is that you will be
able to capture real and interesting events. If you only have access to a test SQL Server instance, you will
want to write a script to simulate some database activity, so you can better follow the examples in this
book. The following script, for example, does nothing special, except put a small load on your server so
that you are able to capture some Profiler Events. As an alternative, there are several SQL Server stress
tools on the market (Google "SQL Server stress test") that you may want to download and try. Most of
these have free trial periods that will be more than adequate for simulating a SQL Server load for
Profiler to trace while you are following the examples in this book.

USE [Adventureworks]
EXECUTE dbo.uspGetEmployeeManagers 1
GO

SELECT _
FROM Production.Product ;
GO

SELECT
FROM Production.Product
WHERE [ReorderrPoint] > 500
OR [ReorderpPoint] < 1000 ;
GO

SELECT _
FROM Production.ProductInventory ;
GO

SELECT
FROM Sales.SalesOrderDetail ;
GO

Getting Started with Profiler 18

SELECT _ o
FROM Production.TransactionHi story ;
GO

PERMISSIONS REQUIRED TO USE PROFILER

As you might imagine, you just don't want just anyone to create, view, or play back a Profiler trace. If
that were possible, anyone could see the data moving between client applications and SQL Server.

By default, only an SA, or a member of the SYSADMIN group, can create and run a Profiler trace, or
replay an existing trace. In SQL Server 2005, it is now possible for SAs or SYSADMINSs to grant
Profiler permission to any SQL Server user. This, of course, is a potentially dangerous permission to
assign, so it must be done with utmost discretion.

To assign SQL Server Login ID permission to use Profiler, an SA or member of the SYSADMINS
group must grant the ALTER TRACE permission, like this:

USE master; _
GRANT ALTER TRACE TO Log1nID;
GO

To remove this permission, use this statement:

USE master;
REVOKE ALTER TRACE FROM LOQiniID;
GO

How TO START UP PROFILER

There are a couple of ways you can start up the Profiler GUI. Use whichever option is more convenient
for you and appropriate to the operating system you are using. The following example assumes that you
are using Vista as your desktop OS to run Profiler.

If you are at the Desktop, go to:

Start &> All Programs > Microsoft SQL Server 2005 - Performance Tools > SQL
Server Profiler.

Or, if you have Management Studio or the Database Engine Tuning Advisor already open, then in each
case you can go to:

Tools > SQL Server Profiler

Or, if you prefer the Command prompt, type in the following and press ENTER.:
profiler90

Personally, I think all of the above options are too much work. I prefer to create a Profiler shortcut and
add it to my Quick Launch bar.

Getting Started with Profiler 19

At this point, you can begin following along with me on your own computer. It is a great way to speed
up your mastery of Profiler.

GETTING FAMILIAR WITH THE PROFILER GUI

In this section, we take a brief look at the Profiler GUI, so we have a frame of reference for when we
drill down into the details of this tool. Once Profiler is launched, using any of the techniques described
above, you get the less-than-intuitive and informational screen shown in figure 1-5:

QL Server Profiler

File Edit View Replay Tools “Window Help

BOSeEds | AN DE|P

| Connections: 0 v

Figure 1-5: The Profiler GUIL

I'm betting that Microsoft must have spent over a million dollars just to design this screen, as it is so
useful. Or maybe they saved a million dollars. I'm not sure which.

Seriously though, am I the only one who finds this user interface a little hard to figure out? For example,
what's your first step? Even the icons at the top of the screen confuse me. But again, I have problems
reading most street signs, so perhaps I am not a good person to offer an opinion.

To get Profiler up and running, click on the File menu (see Figure 1-6 below). From here, it gets easier, 1
promise.

Getting Started with Profiler 20

ES SOL Server Profiler

FEM Edit Wieww Replay Tools Window Help

I

Mew Trace. .. Chrl-+HM
Open 3
Close Chrl+Fd

Save Chrl+5
Save As 3
Properties...

Templates 4

Run Trace
Pause Trace
Stop Trace

Expuort 3
Import Perfarmance Data. ..

Exit

|Fi|e operakions. Conneckions: O v

Figure 1-6: The File menu is where you begin using Profiler.

We will eventually examine all the options available in this menu, and the rest of the GUI, but for now,
selecting "New Trace" is the best way to get started. After selecting "New Trace", you get a screen
similar to the one shown in Figure 1-7:

Getting Started with Profiler

E‘: SOL Server Profiler

File Edit Wiew FReplay Tools ‘Window Help

21

HOsEa GHATR D\ P

¥ Connect to Server E

Micosoft % Windows Server Systemn

SQL Server 2005

Server type: I D atabase Engine

Server name: BRAD-LAPTOFR

Authentication: IWindnws ALthentication

I zer name: IB RaD-LAFTOFBrad

Pazzwiord: I

I Femember passwond

Connect I Cancel Help

Optians > |

| Connections: 0 -

Figure 1-7: You must always log in to Profiler before you can use it.

As we already discussed, not just anyone can use Profiler to capture SQL Server trace data. So before we
can begin using Profiler for any task, we have to log in for SQL Server to verify that we have the proper

permissions to use Profiler.

In order to log in, we must tell Profiler what kind of server we want to Profile (Database Engine or
Analysis Services), the name of the server we want to access with Profiler, and the kind of authentication
we want to use in order to have our credentials verified. This is all straightforward, and is exactly how we

log in to Management Studio.

Assuming we have the proper credentials and have selected a running instance of SQL Server, we will

see the following screen after clicking on "Connect."

Getting Started with Profiler 22

£% SQL Server Profiler

File Edit Wiew FReplay Tools ‘Window Help

BN Edas | AEANR FE| P

Trace Properties H

General |Events Selection I

Trace name: Lntitled - 3

Trace provider name: I ERAD-LAPTOR

Trace provider bype: I Microsoft SOL Server 2005 wersion: 9.0,3054

Use the template: IStandard ({default)

[~ Save to il I
Set maximum file size (B}
¥ Enatile file rollover

I~ server. processes trace data

™ Sawe to bable: I

I~ 5t maxirmum rows (in thousands):

[~ Enable trace stop time: | sizezony = | aasizzem

| | Connections: 1 A

Figure 1-8: The Trace Properties screen is where you start to create a trace.

As you can see, there are lots of options on the first tab of this screen ("General"), and a second tab
("Events Selection") that we haven't even looked at yet. To keep things easy, we ate going to start out by
explaining the top two parts of this screen, then save the rest for later sections. No point overwhelming
ourselves too soon.

So, let's first take a closer look at the top portion of the Trace Properties screen, as seen in Figure 1-9:

Trace Properties H

General | Events Selection I

Trace name! I Untitled - 1]
Trace provider name: I ER.AD-LARTOR
Trace provider tvpe: I Microsoft SOL Server 2005 wersion: 9,0,5054

Figure 1-9: You should assign traces a name so you can easily refer to them.

One of the first things you need to do when you create a new Profiler trace is to give it a name. If you
don't, then Profiler will automatically assign an easy-to-remember name (not), such as Untitled-1, for
you. Assign a descriptive name that will make it easy for you to remember what this particular trace is
for.

Notice that the next three boxes are grayed out. This is great; these are all filled in for you. If you are not
in a big hurry, you might want to verify that the information is correct:

e Trace Provider Name should be the name of the SQL Server instance you are going to
Profile

Getting Started with Profiler 23

e Trace Provider Type should be the version name of the SQL Server instance Profile
you are going to capture

e Version is the numerical version of the SQL Server instance you are profiling

Here's some "inside info". SQL Server Profiler can capture Profiler traces of both SQL Server 2000 and
2005. Events and data columns will vary somewhat with each version, but that is to be expected as the
feature set between product versions is somewhat different.

If any of these is not what you expect, you probably logged in to the wrong instance and need to exit
Profiler and start over again.

Now let's take a brief look at the second, "Use the template", section of this screen, as seen in Figure 1-
10:

IUse the template: IStandard {deFaulty j

Figure 1-10: Templates are a powerful feature of Profiler.

So what exactly is a template? Remember when we defined events, data columns, filters, and traces
earlier? Essentially, a template is a predefined trace, which includes predefined events, data columns, and
filters. Profiler comes with a variety of templates you can use, or you can create your own. Once you
create your own template, you can use it over and over again, saving a lot of time.

We are going to return to the theme of templates later chapters, but for now all you need to understand
is that in Profiler, the Standard template is the default, which means that the events and data columns
that define this template have already been selected and are ready for use. You can see which events are
covered by this template by clicking on the "Events Selection” tab, although we will save the details of
that to the next chapter.

This means that, without any further work, simply click the "Run" button and you can start collecting
trace data, which is exactly what we will do next!

CAPTURING BASIC TRACES

Finally, we get to do some fun stuffl Up to this point, all we have covered is background information.
Now we get to perform our first trace. The goal of this section is to show you how to start, pause, and
stop traces, and learn when you should use each option. We will be using the Standard (default)
predefined trace template, and accept all the Profiler default options.

NOTE

If you want to follow the examples, but don't have a production SQL Server to connect to,
consider running the T-SQL code provided eatlier. You will need to run it in Management
Studio each time you want to simulate some SQL Server activity.

Please note before you start running any trace in Profiler, that the collected events are stored in the
RAM of the computer where Profiler is running. So, if you are at the server, valuable RAM is being used
by Profiler to store this data. That is why it is a good idea to run Profiler on a computer other than the
SQL Setver you are monitoring. This way, SQL Server doesn't have to compete for memory with
Profiler. At some point, it is possible for your computer to run out of RAM to hold all the Profiler
events. When this happens, your computer begins to use the Operating System swap file for additional
memory, greatly slowing down your computer. Later in the book we will talk about how to avoid this
problem. For now, just keep your traces short to prevent any unexpected problems.

Getting Started with Profiler 24

How TO START A TRACE

Let's start at the beginning,.

Step 1: Start Profiler.
Step 2: Select File>New Trace

Step 3: The "Connect to Server" screen appears. Log in to the SQL Server instance you want to profile.
This can be any running SQL Server instance.

Step 4: You should now be at the "Trace Properties” screen. For now, we are going to leave all the
options at their default setting. This is because our goal now is to learn how to start a trace, and nothing
mote.

Step 5: To start your first trace, click on "Run" at the bottom of the screen. Congratulations! You have
just learned how to start a Profiler trace. The trace screen now appears (see figure 1-11). As new trace
events occur, you will see them appear on the screen. As you can imagine, the events you see in the
figure below will be different from the events you will be capturing.

EE SOL Server Profiler - [Untitled - 2 (BRAD-LAPTOP)]
%File Edit Wew Replay Tools ‘window Help ;lilﬂ
EREEEEARRE -
| EventClass | TextData |.f1‘n.pp|ic:ati0nName MTUzerMame |ﬂ
cqQL:BatchCompleted SELECT top 10000 *, gl_cmp_lo... Sstress utility Erad
Audit Logout stress utility Erad
Audit Login -- network protocol: TCRAIP set qQu... stress utility Etrad
sgL:Batchstarting exec dbo.ADSSP_EN_INSTructions Stress UTility Brad
SQL:eatchCompleted exec dbo,ADSSP_EN_IRnstructions stress utility Erad
Audit Logout stress utility Etad
Audit Login -- network protocol: TCPSIP sef gqu... stress utility Brad
SOL:Eatchstarting exec dbo,ADSSP_PO_Furchasord stress utility Etrad
cQL:eatchCompleted exec dbo.ADSSP_PO_Purchasord stress utility Erad
Audit Logout stress utility Erad
Audit Login -- network protocol: TCRAIP set qu... stress utility Etrad
SOL:Batchstarting exec dbo.ADSSP_PO_Purchasord stress utility Erad
SQL:eatchCompleted exec dbo,ADSSP_PO_Furchasord stress utility Erad
Audit Logout stress utility Etad
Audit Login -- network protocol: TCPSIP sef gqu... stress utility Brad
SOL:Eatchstarting exec dbo,ADSSP_EN_SalesInstr stress utility Etrad
cQL:eatchCompleted exec dbo.ADSSP_EN_SalesInstr stress utility Erad
AUdit Logout stress utility Brad
Audit Login -- network protocol:s TCRAIP set qQu... 5tress utility Etrad
cQL:eatchstarting exec dbo.ADSSP_EN_SalesInstr stress utility Erad e
foml spatcheamnlatad H awar dhn ARCED Chl Calar Thacte ctracrc ntdlHd e orard hud
: | ST
-
exec dbo.ADGSF_EN_SalesInstr —
=
‘ | o[
Trace is running. Lr 104, Cal 1 |Rows: 105
|Cnnnectinns: 1 S

Figure 1-11: A partial screen shot of a running trace.

Getting Started with Profiler 25

While we are at this screen, there are a few things you need to learn. First, be aware that each row on the
screen is an event that has been captured by Profiler. Second, each column on the screen represents a
different data column. Notice again that not all events include all data columns. This trace has many data
columns, and they are not all shown on this screen. You can scroll to the right to see them all.

The screen itself is divided into two areas. The top portion of the screen lists the events. The bottom
portion of the screen (the gray area) shows you the complete contents of the TextData data column. If
you can't see all the TextData in the lower window, you can choose to resize the height of the two
windows, or you can scroll either of the two windows up and down to view the TextData.

At the very bottom left of this screen, notice the message "Trace is running” which tells you that the
current state of the trace. Other messages that can appear here are "Trace is paused" and "Trace is

stopped.”

At the bottom right of the screen, you see several different types of information. First is the Line and
Column number of the row that is currently selected by the cursor. In this case, it is Line 104 and
Column 1. "Rows" refers to the total number of rows (ot events) that have been captured so far. When a
trace is running, this number generally increments very quickly.

As you view a live trace, new events are continually added and displayed on the screen. In our example,
new events are being added to the bottom of the top window.

How TOo PAUSE A TRACE

Pausing a trace means exactly what is says. When you pause a trace, you are telling Profiler to stop
collecting events and wait until you either restart the trace or stop it. When you restart a paused trace,
any events that occurred between the time you paused and unpaused it are gone and can't be recovered.
But when you restart (unpause) the trace, Profiler will again begin collecting events, adding them to the
screen from the moment you unpaused.

Pausing and unpausing a trace can be handy when you are trying to "capture" an event with the Profiler
without collecting more events than you need. Think of pausing as a way as to control when you collect
data, and when you don't, for short Profiler trace captures.

There are two ways to pause Profiler from the GUI First, you can select the File menu at the top of the
screen and select "Pause Trace." Or, you can click on the "Pause Trace" icon, which looks like this:

- S —
n|m A

re—r
—|Pause Selected Trace |

I ey r

Figure 1-12: You can pause a trace by clicking on the Pause icon.

If you haven't done so already, give it a try and pause the trace. When the trace is paused, you will see
"Trace is paused” at the bottom left of the screen.

To unpause a trace, you can either select the File Menu at the top of the screen and select "Run Trace",
ot you can click on the "Start Selected Trace" icon, which looks like this:

|ﬂ I | &
Skark Se:lected Trace|

Figure 1-13: You can unpause a trace by clicking on the Start Selected Trace icon.

Getting Started with Profiler 26

How To STOP A TRACE

When you decide to stop a trace, you are telling Profiler that you are completely done with this trace and
do not want to restart it later. If you attempt to start a trace after it has been stopped, it will delete the
event data from the old trace from memory and start fresh. So, only stop a trace if you know that you
don't want to restart it again.

There are two ways to stop a Profiler trace from the GUI. First, you can select the File menu at the top
of the screen and select "Stop Trace." Or, you can click on the "Stop Trace" icon, which looks like this:

now || % HE @S
| Toudl =k
—————stop Selected Trace |

Figure 1-14: You can stop a trace by clicking on the Stop Trace icon.

After stopping a trace, you will see the message "Trace is stopped" at the bottom left of the screen.
Once a trace is stopped, you can view it or save it for later viewing. We will learn how to save a trace
later in this chapter.

How TO CLEAR A TRACE

Clearing a trace allows you to remove the current trace results from RAM. If you have saved these
results, the saved results aren't affected by this option; only the RAM is cleared. I rarely need to use this
option, as starting a new trace automatically clears the current trace.

There are two ways to clear a Profiler trace using the GUI First, you can select the Edit menu at the top
of the screen and select "Clear Trace Window." Or, you can click on the "Clear Trace Window" icon,
which looks like this:

& 2| »

Figure 1-15: You can clear a trace from memory by clicking on the Clear Trace Window icon.

Once you have cleared a trace, you can start a new trace at any time.

How TO SAVE A COMPLETED TRACE TO A FILE

In many cases, you will want to save your Profiler traces. You may not have time right away to analyze
the trace, you may want more time to analyze the data, you may want to share the data with others, or to
archive the trace results so you can compare them to traces taken later. In this section, we take a look at
how to save a trace after it has been captured and stored in RAM. In the next chapter, I'll explain how to
save a trace as it is being run.

Traces can be stored in a trace file (.trc format) or directly in a database table. In almost all cases, you
will want to store traces in the trace file format, as it is the most efficient way to store them. Should you
decide you want to store your traces in a database table, we will show you how to do that in a later
chapter.

If you are following on your computer, start the default trace we have already been discussing. Be sure
that some trace events have been captured in the trace window.

Now, let's save the trace to a trace file.

Getting Started with Profiler 27

Step 1: Stop the trace. While it is not required to stop a trace before you save it, it makes sense that you
would only really need to save a trace once it is complete and has been stopped.

Step 2: From the main menu, select File 2 Save, and you will get a standard Windows save dialog box.
You can choose to save trace files anywhere you want. By default, trace files are stored under My
Documents. You must give the trace file a name. So choose any folder and filename that works for you,
then click "Save," and the file is saved. If you have accidentally selected a name already used, you will be
asked if you want to overwrite the older file.

savens 21 x|
Save n: IBM_I,I Documents j . 5 ER-

ﬁ SOL Compare
o S0 Server Management Studio

KMy B VWisual Skudio 2005

Drocum

File name: I ractice brace j Save
I

Cancel JL

%

Save az ype: ISDL Server Profiler trace files [nz)

Figure 1-16: Trace files are saved like any other files in Windows.

The trace has now been saved. Notice that the trace is still in RAM. Saving a trace does not affect the
trace currently in RAM. At this point, you can choose to clear the trace, start a new trace (which clears
the current trace), ot exit Profiler, which also clears the trace from RAM.

How TO LOAD A SAVED TRACE

Once you have created and saved a trace, it is very common for a user to want to reload it into the
Profiler GUI for additional analysis. For our example, let's assume that we want to load the trace we just
created in the previous section. If you are following on your own computer and have not done so yet,
exit Profiler, so we can all start from the beginning.

Follow these steps to load an existing trace file.

Step 1: Start Profiler.
Step 2: Next, select File 2 Open = Trace File, as shown below.

Getting Started with Profiler

EX SOL Server Profiler

28

&N Edit Wiew FReplay Tools ‘Window Help

Chrl+M

Mew Trace. ..

Close Chrl+F4

Trace File... Chrl+0

Trace Tahble, ..

Save Chrl+5
Save As k

Figure 1-17: How to open an existing trace file.

Step 3: A new screen appears.

Script File. ..

Laak jr; I My Documents j = ¥ ER-

S0L Compare
AL Server Management Studio

ky B it Wisual Studio 2005
[:l (u] &

practice_trace.trc

File narme: Iprau:tiu:e_trau:e.trn:

j Open

Filez of wpe: ISDL Server Profiler trace files [.trz)

[oo |
j Cancel KL

Figure 1-18: Select the existing trace you want to open.

Select the trace you want to open and click on the "Open" button, and the trace will appear, just like it

did after you did the initial trace capture.

SUMMARY

Believe it or not, you have just mastered the basics of getting Profiler up and running. Without wishing
to scare you, though, it has to be said that we have barely scratched the surface of what Profiler is

capable of and we have a long way to go. But we have made a good start.

Now, let's drill down and learn how to master this powerful, though inelegant, tool.

Working with Traces and Templates 29

Chapter 2

WORKING WITH TRACES AND TEMPLATES

As you have probably guessed, there is a lot more to Profiler than using the default template and simply
clicking "run". More usually, you'll want to create and save your own custom traces, tailored to the
specific problem you are trying to solve.

The first goal of this chapter is to introduce you to the fundamentals of creating a new trace using a
simple example. This will include selecting events and data columns, applying filters, ordering columns,
as well as running the trace and saving it to a file or to a database table. Although this book is focused
on profiling database engine events, I'll also briefly show you how you can apply the same knowledge of
creating traces to profiling Analysis Server events.

We will then return to the topic of templates. Creating your own custom traces is a fundamental skill,
but it would be a mistake to dismiss the built-in templates that Profiler provides, as they can save you a
lot of time and effort.

We'll examine these built-in templates first, then investigate how to modify them to ctreate your own
custom templates, finally to build your own template from scratch. We'll even see how to import and
export templates, as Exceptional DBAs often maintain a collection of Profiler Trace templates that they
share with co-workers and other DBAs.

UNDERSTANDING THE EVENTS SELECTION OPTIONS

In Chapter 1, we spent all of out time on the "General" tab of the Profiler GUI, barely glancing at the
"Events Selection" tab. Before we statt creating custom traces, we need to quickly review this tab. Its
name is not very accurate, since not only does it allow you to select events, but also to sort events, select
data columns, and to filter events.

If you leave all the default options on the General tab, and switch over to Events Selection, you'll see the
screen shown in Figure 2-1:

Working with Traces and Templates 30

x)

Trace Properties L3

General Ewvents Selection l

Review selected events and event columns to krace, To see a complete list, select the "Show all events" and "Show all columns" options.

Events | TextData | Applicationt ame | MTUzeM ame | Logint ame | CFU | Feads | Wites] Druration | ClientProcess|
- Security Audit
""" 7 Audi Login v v 7 v ¥
v Audit Logout v v v v v Iv v v
= Sessions
[EsistingConnection v v v v v
= Stored Procedures
[+ RPC:Completed r v v v v v v v v
= T50L
v SOLBatchCompleted v v v v v v Iv v v
v SOL:BatchStarting i~ v v v 3
< | >
ExistingConnection B
Indicates properties of existing user connections when trace was started, Server fires one ExistingConnection event ™ show all events
per user conneckion,
I~ show all colurns
‘Writes {no filkers applied)
Murnber of physical disk writes performed by the server on behalf of the event, Column Eilkers. . |
Qrganize Columns. .. |
Run Cancel | Help |

Figure 2-1: The Default Events Selection screen

NOTE:

Figure 2-1 is not quite the "default" Events Selection screen. I've expanded the data columns so
you can read their names in full. You do this by simply dragging the right edge of the column
across, or double-clicking on it. Unfortunately, changes in column width are not saved, so the
next time you bring up Trace Properties window, you will have to repeat this step.

The first column on the screen is "Events". This is where you select one or more events to be captured
in your trace. Here, we can see four event categories (in bold) and six events. All the remaining columns
are the available data columns associated with each event. A checked box in a column means that the
data column will be captured for that event. The existence of an empty box means that the data column
in question is available for the given event, but is currently not set to collect data. For example, in figure
2-1, the TextData data column is available for the RPC:Completed event, but is not selected. If
there is no box, then the data column is not available for that event — for example The CPU, Reads,
Writes and Duration data columns ate not available for the ExistingConnection event.

In Figure 2-1, Profiler is showing you a default selection of events and database columns: those that
comprise the Default template. In fact, this is just a small subset of the events and data column that are
available to you. In order to see them all, simply check the "Show all events" and the "Show all columns"
check boxes in the lower right portion of the screen:

Working with Traces and Templates 31

Trace Properties u

General Events Selection]

Review selected events and event columns to trace. To see a complete list, select the "Show all events" and "Show all columns” options.

Events [#pplic... | Bignt... | Bigint.. | Binary.. | CPU__ | Clirt... | Colum.. | DBUs.. | Datab.. | Datab.. | Durati, < |
| Broker

+ CLR

+ Curzors

+ D atabaze

¥ D epracation

+ Erors and 'warnings

+ Full text

+ Locks

+ OLEDE

¥ Objects

+ Perfarmance

0 Drmmrmnn D mmmrk i

4 »
—Broker

Includes event classes that are produced by Service Broker. ¥ show all events

¥ show all columns

—ClientProcessID ino filters applied)
The process ID of the application caling SQL Server, Column Filkers.. . |

Organize Columns... |

Run Cancel | Help |

Figure 2-2: The Events Selection screen showing all events.

The screen is now showing you only "event categories,”" not specific events. This is why there are no
longer any options to select or deselect the data columns. To see specific events, you have to click on the
plus sign next to each event category, at which point the check boxes for the data columns will reappear.

Directly below the rows and columns that represent the event and column data to be collected are two
Help boxes. In Figure 2-3 below, you see that the "Broker" event category is named in the top Help box,
and below that is a brief description of the events found in this event category.

Broker
Includes event classes that are produced by Service Broker,

Figure 2-3: This Help box is for events.

In Figure 2-4 below, the bottom Help box says "ClientProcessID (no filters applied), with a short
description below. This Help box describes the data column the mouse is hovering over. So if you move
the mouse to other data columns, you will see different Help information for each different data
column. The words "no filters applied" tell you that no filter has been applied to this data column. We
will learn more about filters shortly.

ClientProcessID {no Filkers applied)
The process ID of the application calling QL Server.,

Figure 2-4: This Help box is for data columns.

Now that we understand how the two Help boxes work, let's take a quick look at the remaining part of
the Trace Properties screen, as shown in Figure 2-5 below.

Working with Traces and Templates 32

[+ Show all events

v Show all columns

Column Filkers. .. |

Qrganize Columns. . |

Figure 2-5: This portion of the Trace Properties screen allows you to perform many more tasks than you might
imagine.

As we have seen, the top options shown in Figure 2-5 allow you to show, or not show, all the available
events and data columns. I leave these options on when I am selecting which events and data columns
to collect for a particular trace, so I can see what is available. I am getting old and can't remember as well
as I used to, but once I have selected all the events and data columns I want to trace, I often deselect
these two options. When you do this, only the events and data columns you have selected remain,
making the screen a bit easier to read.

The "Column Filters..." button allows you to filter out any events (together with their data columns) that
you don't want to capture. The "Organize Columns..." option is used to perform two tasks. First, you
can use it to arrange the order of the data columns on the screen when a trace is running. Second, it
allows you to group events by a single event type. Both these are large subjects and deserve their own
sections; they are discussed later.

Now that you know your way around both tabs, we can move on to see how to create a new trace from
scratch. While you don't have to follow the order I have outlined below, it is a practical approach and
you might want to follow it closely until you have gained more experience with Profiler.

CREATING A CUSTOM TRACE FROM SCRATCH

In Chapter 1, we used all the default options and the default template to create a Profiler trace. In this
section, you will learn the fundamentals of creating a new trace from scratch, using a simple example. In
later chapters of this book, we will apply the fundamentals we learn here to more practical and complex
solutions, but the fundamentals remain the same.

We won't look at every possible option, as there is no point confusing you with complex information
before you have mastered the basics. Essentially, to create a new trace, you follow these steps:

1. Start Profiler and log in to a SQL Server instance

Create a new trace definition and assign it a name

Specify that you want to save the trace file, and how to save it

Select the specific events you want to trace

Select the data columns for each event you want to trace

Create any filters you might want to use

Otder the data columns, along with deciding what column to group by

Start the trace

e I A A T o

End the trace, once you have captured all the data you want to collect

Working with Traces and Templates 33

STEP 1: START PROFILER

If you are following on your own computer, start Profiler using one of the options described in Chapter
1, so that the following introductory screen appears.

= SOL Server Profiler

File Edit ‘ew Replay Tools ‘Window Help

BlNSgda AN TR Q@

| Connections: 0 v

Figure 2-6: This is where we always start when creating a new trace.

STEP 2: CREATE A NEW TRACE DEFINITION

Next, select File> New Trace, then log on to the SQL Setver instance you want to practice with.
Once you have logged in, the Trace Properties screen appears.

Working with Traces and Templates 34

Trace Properties u

General]Events Selection]

Trace name:

Trace provider name: ‘ ERAD-LAPTOR

Trace provider bype; ‘ Microsoft SGL Server 2005 version; 9.0,3054

Use the template:]Standard {default) j
[~ save to file: ‘ =

Sek maximum file size (ME):

]

¥ Enable file rollover

= server processes krace data
[~ Save to table:] =

= et maimun rows (in thousands): 1

I~ Enable trace stop time: I N R =

Run Cancel Help

Figure 2-7: The Trace Properties screen is where we create new traces.

Now we can begin creating our own new trace. Next to "Trace Name" give this trace some name you
will remember, such as Profiler_Practice, or whatever you prefer.

General]Events Selection]

Trace name: I Profiler_Practice|
Trace provider name: ‘ ERAD-LAPTOP
Trace provider bype: I Microsoft SOL Server 2005 wersion: 9.0.3054

Figure 2-8: Enter a name for your first trace.

Next to "Use the template,” use the drop-down menu to select "Blank." This tells Profiler that you don't
want to use a pre-existing template and that you want to set all the trace options manually. The "Blank"
option is at the very top of the drop-down list, so you may have to scroll up to see it.

Use the template:]Blank ﬂ

Figure 2-9: Select the "Blank" template.

STEP 3: SAVING THE TRACE TO FILE

Up to this point, we have not done much different from before. Now it is time to do something new. In
Chapter 1, as we were running the trace, the data was stored only in RAM, which is the default behavior.
Only after the trace was complete did we save the results to file.

For this new trace, we want Profiler to store the results in a physical file on a local hard disk, as well as in
RAM, as the trace data is being collected. As you gain more experience with Profiler, you will find
yourself wanting to save trace files, and specifying this now can save a little time.

Working with Traces and Templates 35

NOTE:

A little later in the chapter, I'll show you how to save a trace directly to a database table
(although this is not recommended, because of performance issues).

[save tofile: I =

Set maximum file size (ME): I 5

¥ Enable file rollover

I Server processes krace data
[sSave to table: I = |

I~ Set masimumn rows (in thousands): I 1

Figure 2-10: Automatically saving a trace to a file.

To tell Profiler that you want the trace to be automatically saved as a trace file, select the option "Save to
File." When you click on this option, you immediately get a "Save As" dialog box:

Save As 4 3
Save in: IE by Docurments j = E‘F "

i &rchived Data [CiPasswords Plus

L5 Camtasia Studio IC)PDFs

Excel [ChPerformance Dashboard Session
ExceptionalDEA ELIF'DwerF'Dint
Insertion_orders_and_Invoices IChRedcate

License Codes EDSQL Compare

Microsoft Money IZ=35%L Comparison Bundle Presentation
M3DMN Subscriber Downloads_files IC350L Data Compare

My Google Gadgets [C350L Server Management Studio
My TUsic [CTurboTax

24 My Pictures [CUpdaters

My Received Files I visual Studio 2005

™k videas [Chword

Mero Home @ SOL Server Performance Test.bro
Molo Press % 0L Server Test.tro

Recent

Y

J y Diocumen

o8

L3
G ekl | File name: F'r-:nfiIEer Fractice j Save

Cancel ‘L

r

Save az type: I SOL Server Profiler trace files [*.tro)

Figure 2-11: You have to tell Profiler where to store the trace file.

By default, traces are stored under "My Documents". If you would prefer to store traces somewhere
else, that's fine. Notice that the "File Name" for the trace is the same name you assigned the trace. You
can use this name, or choose a different name, whichever option works best for you. In addition, trace
files have a .trc extension. While the file format used to store trace data is proprietary, it is an efficient
way to store traces. We can, as we will discover later, convert the trace data into different formats, but
for now, we will stick with the .trc format, which works well.

Working with Traces and Templates 36

Once you assign the trace file a name, you are returned to the Trace Properties screen, which now looks
slightly different,

¥ Save tofile: | CiiDocuments and Settings\BradyMy DocurmentsiProfiler_Practice.trc =]

Sek maximurn file size (ME): g

¥ Enable file rallawer

[~ Server processes trace data

Figure 2-12: Once you choose to save a trace file, you have several options to choose from.

The first option you have available is to "Set maximum file size (MB)." The default value is 5 MB.
Depending on how busy your server is, and how many events and data columns you are collecting, it
doesn't take long for a trace file to get huge. This option allows you to control the size of the saved trace
file. You can choose any file size you want, up to the available space on your disk.

The next option, "Enable file rollover" is directly related to the "Set maximum file size (MB)." By
default, this option is selected. What this means is that when your trace file reaches 5 MB (or whatever
size you specify), a new file will be created to store the trace data. The new file name will be the original
.tre filename with a number appended to it, such as Profiler Practice_1. This rollover effect will
continue until you stop the trace or you run out of disk space. If you don't select this option, the trace
will automatically stop when the maximum file size you specified is reached.

As a DBA, you must decide what the best compromise is between file size and file rollover. For now, 1
suggest you accept the defaults. When you have gained some experience, you will be in a better position
to be able to determine what values work best for you.

However, be warned: when you begin practicing using Profiler, carefully watch the size and quantity of
your rollover files. Depending on your server, you can create a lot of data very quickly, much faster than
you might expect. You don't want to receive a nasty "Out of Disk Space" error. And one more tip: be
sure to delete traces once you no longer need them. Again, they can take up a lot of disk space,
potentially causing you future problems.

The next option is called "Server processes trace data,”" which we will save for the next chapter, as it is
an advanced option.

STEP 4: SELECTING THE EVENTS TO TRACE

When I create a trace, the first thing I like to do is to select the events I want to capture. Since this is a
practice trace, we don't want to select a lot of events. Our goal is learn the overall picture now, and we
will focus on specific details later in this book. For our practice example, let's assume that we want to
trace all Stored Procedure events. In order to select these events, we have to click on the plus sign next
to the "Stored Procedures” event category, and the events specific to stored procedures are displayed on
the screen. See Figure 2-12 below.

Working with Traces and Templates 37

Trace Properties n

General Events Selection]

Review selected events and event columns to trace, To see a complete list, seleck the "Show all events" and "Shaow all colurmns" options.

Events | appiic. . | Bigint. | Bigint.. | Binary. | cPU | Client.. | Colum.. | DBUs. | Datab.. | Datab.. | Durati. |

+ Server

Sessions

Stored Procedures

I~ Deprecated

I~ RPC Output Parameter
I~ RPC:Completed

I~ RPC:Starting

I~ SP:CacheHit

[~ SP:Cachelnsert

[~ SP:CacheMiss

I~ SF:.CacheRemove
CO. Pl — ==
4 l_ | >

—RPC:Completed
Ocours when a remote procedure call has been completed, ¥ Show all events

2) o
171
2) o
2 e o
0| |

v show all colurins

—Duration {no filkers applied)
Amount of time taken by the event, Although the server measures duration in microseconds, SQL Server Profiler can Column Filkers. .. |
display the value in miliseconds, depending on the setting in the Tools=Options dialog. |

Organize Columns. ..

Fun Cancel | Help |

Figure 2-13: Selecting specific events to trace.

As you can see, the "Stored Procedures" event class has many specific events associated with it. In
addition, you can see from the figure above that there are different data columns associated with each
event.

To capture all the Stored Procedure events in the Stored Procedures category, click on each of the
events as shown below. Not all are displayed on the screen, so you will need to scroll down a little to
view and select them all.

Ewventz

- Stored Procedures
Deprecated

RPC Output Parameter
RPC:Completed
RPC:Starting
SF:CacheHit
SP:Cachelnzert
SP:CacheMiss
SF:CacheRemove
SP:Completed
SP:Recompile

CO-Ckarbivm

ARIIAAAAAAA

Figure 2-14: We have elected to trace all stored procedure events.

Essentially, that is all there is to selecting events to trace. You can select as many events as you want,
although I should warn you that the more you select, the more data you collect and the more SQL
Server resources you consume.

Working with Traces and Templates 38

STEP 5: SELECTING THE DATA COLUMNS

Now that we have selected the events we want to trace, our next step is to select the data columns
associated with the events we want to capture, for which we want to collect and store information. As
you select your desired events, every data column available for that event is automatically selected.

Trace Properties n

General Events Selection l

Review selected events and event columns ko trace, To see a complete list, select the "Show all events" and "Show all colurmns" options,

Events | &ppiic... | Bigint... | Bigint... | Binary... | CPU_ | Client... | Colum... | DBUSs... | Datab... | Datab... | Durati. « |
= Stored Procedures
¥ Deprecated

W FRPC Output Parameter Ird Ird Ird I~
¥ RPC:Completed I Ird ~ 7 [I]7
¥ RPC:5tarting 7 I~ v [o]
¥ SF:CacheHit I I []
[V SPF:.Cachelnzert I I 7]
¥ SP:CacheMiss v ¥ [
¥ SP:CacheRemaove Ird I [v
W SP:Completed Ird I w [[3
SP:Recompile Ira ¥ I [
Lz L 0= =3 I

]7 b4
‘ l—" T Chorbivm |] -] 3] _’,J

—SP:SkmkSkarting
Indicates that a Transact-30L statement within a stored procedure has started, [V Show all events

¥ show all colurnns

—DatabaseMamea (no filkars applied)
Marme of the database in which the statement of the user is running. Column Filkers. .. |

COrganize Columns. .. |

Run Cancel | Help |

Figure 2-15: By default, when you select an event, all the data columns associated with that event are
automatically selected.

While you can leave them all selected if you want, it is always a better choice to only select those you
need, in order to minimize resource overhead. This means you need to deselect those columns you don't
need.

However, to keep things simple for this example, let's keep all of the data columns selected. We will
learn later in the book which data columns are the best selected, and which data columns are best not
selected.

STEP 6: APPLYING FILTERS

Now we enter new territory. We are going to learn how to apply a filter to a trace. Remember, a filter is a
way to reduce the number of events we collect in a trace. For example, if we only want to collect trace
events for a single connection, or for a single database, we can do simply that. This reduces the amount
of data that is stored in our trace. Using filters is optional, but very useful when isolating what data is
collected during a trace.

To add a filter to a trace, click on the "Column Filters..." button, and the "Edit Filter" screen appears.

Working with Traces and Templates 39

Edit Filter x|

~ —applicationkame
Mame af the client application that created

ApplicationManme

BigintDatal the connection to SQL Server, This column is
BigintDakaz populated with the values passed by the
BinaryData application rather than the displayved name

ClientProcessID cilhelpioaiers

ColurmnPermissi, ..,
ZPU
Databasell - Like

DatabaseMame - Mok like
DEserMarne
Curakion
EndTime
Errar

j [Exclude rows that do nok contain values

Ik | Cancel

Figure 2-16: Select which trace events to capture using this screen.

On the left-hand side of this screen, you see all the available data columns for all the events you
previously selected. On the right-hand side you see where you can add criteria to filter which events are
selected and which are not.

You can apply a filter to any of the data columns available. A common filter column is DatabaseName,
in order to collect events only from a given database, or to exclude other databases. For example, if
Reporting Services is installed on the server you are profiling, you may find that you often use a "Not
like ReportServer" filter on the DatabaseName column, in order to prevent your traces being cluttered
with events fired on the ReportServer database.

In our practice example, let's choose a filter on the Duration data column, so that we only capture those
events that have a duration longer than 100 milliseconds. This way, we filter out very short-running
events and only see events than take more than 0.1 seconds to execute. To do this, select the Duration
data column and enter 100 in the "Greater than or equal” box.

Working with Traces and Templates 40

Edit Filter x|

—_— —Dar ation
Applicationkamne _*
B.pl.:l tDatal Amounk of time taken by the event.
IqintLiata Although the server measures duration in
BigintDataz microseconds, SOL Server Profiler can

display the value in miliseconds, depending

BinaryDaka

ClientProcessID on the setking in the Tools =Options dialog,
ColumnPermissi, ..

CPU

DatabaseID [+ Equals -
Databasetame .. Mok equal to Nl
DEUserMame El Greater than or equal

Durakion '

EndTime [+]- Less than or equal ﬂ
Error

j [~ Exclude rows that do not contain values

Ik | Cancel |

Figure 2-17: We have just added a filter based on the duration data column.

Once you have specified a filter, you can continue to add more. In our case we are done, so we click on
"OK" and the filter has been saved for this trace. To verify this, you can click on the "Column Filters..."
button again, and you'll see a filter icon next to the Duration column (not shown).

STEP 7: ORDERING THE DATA COLUMNS

Now that a filter has been added, our next step is to select the order in which we want the data columns
to be displayed when the trace is run, and to specify whether we want to group events according to a
given data column. This is an optional step, but one that you will find quite useful for many traces.

To organize columns, click on the "Organize Columns" button, and the following screen appears.

Working with Traces and Templates 41

Organize Columns E

Groups a| Select a column and use Up and
= Down buttons to change its

- order, Mowve the column under
EvventClass istoups ko group data by Ehat
Applicationianme calurmn,

EinaryData
CPU
ClientProcessID
DatabaselD
DatabaseMamne
Duration
EndTirne

Errar
Eventaequence ,ﬂ

Heekhlzrme

p | Chatirn | Ik | Cancel

Figure 2-18: The Organize Columns screen

= Columns

By default, when the Organize Columns screen appears, there is no grouping by events, and data
columns are sorted alphabetically, with the exception of EventClass, which always appears first. If you
wish to change the order in which the columns are displayed, simply select an event and click the "Up"
ot "Down" buttons.

For our practice trace, let's say that we want to group events by Duration and leave the remaining data
columns in their default order. To group by Duration, click on Duration on the screen, and then click on
the "Up" button until it moves up under "Groups," as shown in Figure 2-18:

Organize Columns H

= Groups a| Select acolumn and wse Up and

— Down buttons ko change its

order. Move the colurn under

= Columns iaroups ko group daka by that
Eventlass column.

Applicationiane
BinaryData

CPU
ClientProcessID
DatabaselD
Databasetame
EndTirne

Errar
Eventaequence ,ﬂ

HnAckhlara

Up | Cooiry | (] 4 Zancel

Figure 2-19: With the above setting, captured events will be grouped by duration.

Duration

Once you have completed this step, click on OK to return to the Trace Properties screen.

Working with Traces and Templates 42

Can you believe it, we are now done creating our practice trace, and it is ready to run. So let's run it.

STEP 8: RUNNING THE TRACE

To run your new trace, click on the "Run" button at the bottom of the screen, and the trace begins. You
will see a screen similar to the one below, except that your events will look different, as I am using a
different database and application than you are. If the server you are monitoring is not being accessed by
stored procedures, or if all of them are faster than 0.1 seconds, or if your servers are not doing much,
you won't see many results (because of the events and filter we selected). On the other hand, you may be
seeing hundreds of events being collected very quickly. It all depends on your server's current workload.

File Edit Wew Replay Tools MWindow Help _|E!|£|

EREEEEIRRERE T I
Duration | EventClazz | SFID I SezzionLogint ame | Applicationtame

Figure 2-20: This is what a running trace looks like when it is grouped by duration. If you don't group by
duration, the screen will look different, as we will see later.

In Figure 2-20, you see that events are sorted by duration, with the shortest running events shown at the
top, the longest running at the bottom. The first figure in the Duration column is the elapsed time in
milliseconds and it is followed, in brackets, by the number of events that ran in that duration.

The first row shows 35 events with what appears to be no duration. This is not really true. Some events
don't have a specific duration. They occur, but their duration is not measured. Because of this, they have
a duration of NULL and they show up at the top of the screen without any apparent duration.

After that, you see other events, starting with a duration of 277 milliseconds all the way to 6,022
milliseconds. In each case, only one event has run in each of these discrete time periods.

To view the actual events, you must click on the plus sign next to the row you want to examine. Let's
start with clicking on the 35 events with a NULL duration.

Working with Traces and Templates 43

|Dwﬂbn |EmmDms |5Pm |Sﬂﬂm¢mMNmm |ﬂmkﬂhﬂhme “
iTrace sStart :

.RPC:Starting L2 EBRAD-LAFTOF%Erad SOQL Server F...
SPiCacheHit £3 BRAD-LAPTOPYErad SOL Serwer P...
SFistmtstarting L2 EBRAD-LAFTOF%Erad SOQL Server F...
SPiCacheHit £3 BRAD-LAPTOPYErad SOL Serwer P...
SP:starting £3 BRAD-LAPTOP%Erad SOQL Server FP...
SP:Stmtstarting L3 BRAD-LAPTOPErad SOL Server P...
SP:iCacheMiss L2 BRAD-LAFTOP%Erad stress utility
SP:CacheHit L2 BRAD-LAPTOP“Erad stress utility
SP:istarting £2 BRAD-LAFTOP%Erad stress ULility
SP:StmtsStarting L2 BRAD-LAPTOP“Erad stress utility
SPistmtstarting L2 BRAD-LAPTOP%Erad stress Utility
SP:CacheMiss L2 BRAD-LAPTOP%“Erad stress utility
SP:CacheHit L2 BRAD-LAPTOP%Erad stress Utility
SP:ctarting L2 BRAD-LAPTOP%“Erad stress Utility

Figure 2-21: The above events don't have a discrete duration.

While I don't want to get into a lot of detail now, you can see that some of the events above represent a
stored procedure being executed, and show whether its execution plan was found in SQL Server’s buffer
cache.

Let's now take a look at one of the discrete events that wete captured:

= 277 (1)
277 sPistmtCompleted L2 BRAD-LAPTOPH“Erad stress utility

Figure 2-22: Here is an example of a stored procedure being completed. Note that the duration of this stored
procedure execution was 277 milliseconds.

In the above figure, we see that a particular stored procedure ran for 277 milliseconds. Because of the
small size of the screen, I can't show you all of the data columns. But if you are following on your
computer, you can scroll over and see all the various data columns that have been collected.

STEP 9: STOPPING THE TRACE

Once you've collected enough data, stop the trace by clicking on the "Stop Selected Trace" icon.

Congratulations, you have now created and run your first trace. At this point, you would usually review
the collected trace data to identify whatever issue you were looking for. Once you were done, you would
exit Profiler. Because we gave the trace a name and saved it as a trace file, this file has automatically been
saved on disk for us at the location previously specified.

So, if you exit Profiler now, Profiler will exit, but the trace you made is still saved and can be viewed any
time you like by selecting File | Open | Trace File.

If you are done analyzing your trace, you can either archive the trace (store it somewhere so that you can
find it again) or delete it to save space.

SAVING TRACES TO A SQL SERVER TABLE

Until this point, we have only talked about saving Profiler traces directly to disk. There is a good reason
for this, and that is performance. For the least impact of using Profiler, traces should be originally stored
on disk using the standard Profiler file format.

Working with Traces and Templates 44

Is this the only option? No. Profiler also allows you to store a Profiler trace directly into a SQL Server
table (see Figure 2-5), bypassing a disk file entirely. While this option works fine, it puts a lot of
overthead on SQL Server that can negatively affect SQL Server's performance. Because of this, saving a
Profiler trace directly to SQL Server is not recommended.

Now you ask, what if I want to store my Profiler traces in SQL Server, not only for the ease of querying
the data, but to store it in order to maintain a baseline of Profiler activity? That's not a problem. Instead
of saving Profiler trace data directly to a SQL Server database, you should first save it to disk. Then you
can import the Profiler trace data into a SQL Server database later. While this is an extra step, it is
necessary if you don't want to hutt the performance of the production SQL Setver instances you trace.

Within the SQL Server Profiler GUI, it is very easy to save a Profiler trace to a SQL Server table. To
begin, you have to have a trace loaded into Profiler. To save this file into a SQL Server table, go to the
Main menu and select File | Save As | Trace Table.

4 SQL Server Profiler E=EE
File | Edit View Replay Tools Window Help
Mew Trace... ctl+n - B 5 |] &= | P
Open »
: [Sle)
Close Ctrl+F4
ata |ApplicaﬁonName NTUserMame | LoginMName =
Save Ctrl+S [T s.name AS [Name] FROM maste... Microsoft 54... Profil..
Save As N T F Microsoft sQ.. Profil..
p . T T I Microsoft sQ.. Profil.. =
== e Microsoft sQ.. Profil.. E
Templates b Trace Table... . Microsoft sQ.. Profil..
Trace XML File... . Microsoft sq.. Profil..
Run Trace Trace ¥ML File for REp'Ey . Microsoft 5Q.. Profil..
Pause Trace T ST o e Ty —rorgTas. . Microsoft 5Q.. Profil..
Stop Trace CT s.name AS [Name], s.langid... Microsoft 5Q.. Profil..
CT s.name AS [Name], s.langid... Microsoft 5Q.. Profil..
Export P CT s.name AS [Name], s.langid... Microsoft sQ.. Profil..
Import Performance Data... CT s.name AS [Name], s.langid... Microsoft 5Q.. Profil.. «
3
Exit
s.name AS [Name], i
s.langid AS [LangID],
s.dateformat AS [DateFormat], =
s.alias As [Alias], 3
s.days AS [Days], R
s.datefirst AS [FirstDayofweek],
s.months AS [Months],
s.shortmonths AS [ShortMonths],
s.upgrade AS [Upgrade], 7
< n | »
|Trace is stopped. | Ln 36, Coll | Rows: 113~

Figure 2-23: Profiler traces can be saved in SQL Server tables using the Trace Table option.

Once you select this option, a new window appears (see figure 2-34 below) prompting you to log into
the SQL Server instance where you have the database containing your Profiler traces.

Working with Traces and Templates

!ﬁ Connect to Server

Microsoft .fi.,u.'

SQL Server 2005

Micrmsolft

Windows Server System

I Database Engine

Servertype:

v FRemember password

=]

Server name: EELE ;I

Authentication: ISG L Server Authertication LI

Login: IF‘mﬁIerUser ;I
Password: I

Cancel Help

Connect I

Options =»

Figure 2-24: Log into any SQL Server instance where you want to store Profiler traces.

Next, you must specify the name of a pre-existing database where you want to store the trace table (see
figure 2-25 below). Ideally, you should have a database designed for this specific purpose. In addition,
you have to assign the trace table a name. Give it a name that makes it obvious what it is so you can find

it later.

Destination Table

()

Select the destination table for the trace.

S0L Server: PELE

Databaze: Isqlstress ;I
Owner: Idbu ;I
Table: I application_trace_March1998| LI

(8]4 I Cancel | Help |

Figure 2-25: Select the database where you want to store Profiler traces.

Once you click the OK button, the file is automatically moved from Profiler to the database. A new

table is automatically created for you, and the data stored in it.

45

Working with Traces and Templates 46

Object Explarer >0 x ELE.sqlstress - ..n_trace_March1938| Object Explorer Details | - X
Connect+ !g E RowMumber EventClass TextData ApplicationMame NTUserMame LoginMName CPU *
=) [PELE (SQL Server9.0.3054 - ProfilerUser) ||| ¥ 0 55528 ML ML AL AL ML

= [Databases 1 655534 MLLL NULL NLEL NLEL MNLEL
[C3 System Databases 2 17 —network protocol: L... SQLAgent - Gen... Brad pele'Brad NLEL
[Database Snapshots 3 17 — network protocol: L... Microsoft 5QL 5... ALLL ProflerUser AL
U AdventureWorks)
= 4 17 —network protocol: L... Microsoft SQL 5... ALLL ProfilerUser ALEL
U Big_Database
L‘] MorthCards 5 13 SELECT'Server[@Nam... MicrosoftSQLS... AL ProfilerUser MNLEL
L_j Morthwind & 12 SELECT'Server[@Mam... MicrosoftSQLS... ALEL ProfilerUser 0
= [__] sqlstress 7 13 use [master] Microsoft SQL 5... ALEL ProfilerUser MNLEL
[[3 Database Diagrams 8 12 use [master] Microsoft SQL 5... ALEL ProfilerUszer a =
= [Tables] 14 —network protocol: ... Microsoft SQL 5. ALLL ProfilerUser ALLL
3 System Tables)
— 10 13 SET LOCK_TIMEQUT ... MicrosoftSQL 5., AL ProfilerUszer ML
=l dbo.application_trace_Mar,
£3 Views i1 12 SET LOCK_TIMEOUT ... Microsoft 5QL 5... AL ProfilerUser v}
[Synonyms 12 13 SELECTlog.name AS [... Microsoft SQLS... ALEL ProfilerUser ML
3 Programmability i3 12 SELECTlog.name AS [... Microsoft SQL 5., AL ProfilerUser 16
3 Service Broker 14 13 SELECTdtb.collation_... Microsoft SQL 5. ALEL ProfilerUser ALEL

Figure 2-26: This is what the trace looks like inside a SQL Server table.

Once the data has been stored in a SQL Server database, you can access the data just as you would with
any other SQL Server data. Many DBAs create their own scripts to analyze the data; others use
Reporting Services to create custom reports.

CAPTURING ANALYSIS SERVER TRACES

The focus of this book is on administrative DBAs who work with the SQL Server engine, not Analysis
Services. However, starting with SQL Server 2005, DBAs do now have the ability to capture Analysis
Services traces, and the process is very similar to the one we've just seen, so what you have already
learned can be reapplied here.

To start an Analysis Services Profiler trace, start Profiler and select File | New Trace, just as you do
create any trace in Profiler. The only difference is that you select Analysis Services as the Server type:

[!ﬁ Connect to Server ﬁ

Microsoft A% Windows Server System

SQL Server 2005

Server type: Iﬂnahrsis Services ;I
Server name: ;I
Authentication: I"-"u'inu:h:u';a's Authentication ;I
User name: IDEIE"-.Blad ;I
Password: I
[Remen d

Connect I Cancel Help Options =

Figure 2-27 When you start an Analysis Services trace, you must select the appropriate server type.

Working with Traces and Templates 47

After you select the appropriate server and login information, click on "Connect" and the Trace
Properties screen appears:

Trace Properties - u
General | Everts Selection I

Trace name: IUrrtitIed -2

Trace provider name: IPELE

Trace provider type: IMicms.oﬂ SQL Server 2005 Analysis Services version: 9.0.3054

Use the template: Standard {default) ;I
Blank

[~ Savetofile: Standard (default)

Set maxirum file size [ME]:

s

¥ Enable file rollover

[T Server processes tace data

[Savetotable: I él

™ St masimum rows (in thousands):

]

[~ Enable trace stop time: [11/1672007 +| | 45709Pm

Figure 2-28: Gee, this screen looks familiar.

As you can see, the General tab is identical to what we have seen before. The only difference is that
there are only two built-in templates, plus the blank template available.

Let's choose the Blank template and click on the "Events Selection” tab.

Working with Traces and Templates 48

Trace Properties Lﬁ

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.

Events | Applic... | CPUT... | Client... | Gient.. | Conn.. | Cume.. | Datab... | Durati.. | EndTi. | Emor | Event.. |
+ Command Events

- Discover Events

+ Discover Server State Events

+ Emors and Wamings
+ Locks
- Motification Events

+ Progress Reports

+ Queriss Events

+ Query Processing
Security Audit
Session Events

4| mn | +

Command Events
Collection of events for commands. ¥ Show all events

¥ Show all columns

Mo data column selected.
Column Fitters... |

Organize Columns... |

Run | Cancel | Help |
s =_ = —
Figure 2-29: The "Events Selection" tab above works just like the "Events Selection" tabs we have seen
throughout the entire book.

At first glance, this screen looks very similar to the "Event Selection” tabs we have already seen. In fact,
it works identically, but what is different is that Analysis Services has its own set of unique events and
data columns, distinct from the database engine, so in fact this is an entirely different world that we have
not seen before.

We are confronted with 11 Event Categories, 42 events, and 32 data columns. There is enough material
hetre for another book, and that's why we won't be discussing any of the details of the events and data
columns available for Analysis Services.

However, all other aspects of using Profiler are identical so, if you want, you can use what you already
know to start experimenting with Analysis Services traces and see how they can help make your data
warchousing projects perform better.

CREATING AND USING TRACE TEMPLATES

Now that you know how to create your own trace, it's time to explore further the idea of trace
templates. As you might expect, creating custom traces can be a lot of work, especially if you take the
care to select only those events and data columns that you really need, apply the appropriate filters,
organize the columns as you want them, and so on.

Once you've taken the time to define a trace exactly as you want it in order to investigate a certain SQL
Server issue, you certainly would not want to have to go through all that work again next time the issue
arose. Instead, you will want to save your custom trace as a trace template, so that you can run it again
and again, as required.

Fortunately, Profiler provides a variety of built-in (predefined) templates, and also allows you to define
you own. We'll start our investigations with the former.

Working with Traces and Templates 49

PREDEFINED PROFILER TEMPLATES

From the General tab in Profiler, you can click on the down arrow of the "Use the Template" drop-
down box to see all the available templates:

Use the template: Standard {default) j
SP_Counts -
Standard {default)

[save ko file: TSGL

TSOL_Duration
T3QL_Grouped
T3QL_Replay
TSL_SPs

Figure 2-30: Predefined Profiler templates are listed.

Profiler comes with eight predefined templates for the Database Engine, plus the blank template. At first
glance, you may or may not be able to guess what some of these templates are designed to capture. To
be honest, until I played with each template, I couldn't figure out what each one was really designed to
do, as the template names are not obvious.

To learn how to use predefined templates, we don't have to take an in-depth look at each one. What 1
want to do is to talk about the first two templates in some detail, so you fully understand the concepts
behind templates. The last six templates will then only need a brief mention.

STANDARD (DEFAULT)

This template captures six different events in four event categories: Security Audit, Sessions, Stored
Procedures, and TSQL. It also includes many different data columns, many of which are not included
in this screen shot because there is not enough room to show them all.

Events | Tewtl ata | Applicationt ame | MTUzert ame | Logink ame | CPU | Reads | Wites | Diuration | Client. .. | SPID |
- Secunty Audit
""" 7 Audit Login W 7 7 7 W W
I Audt Logout 2 2 IV W T4 v v v I3
= Sessions
[¥ EuistingConnection Ird Ird Ird Ird Ird i~
= Stored Procedures
[¥ RPC:.Completed r I3 I3 v v I3 v v v v
= T5aL
¥ SOL:BatchCompleted I I~ I~ I~ Ira Ira I Ird Ird I3
v SOLBatchStarting Ird Id Id I Ird v

Figure 2-31: The Standard (default) template collects a wide variety of information.

As you might expect from a fairly complex, general purpose template, the resulting trace (below) can be
reasonably complex.

Working with Traces and Templates 50

EventClass TextData ApplicationM ame MTUszeMa.. | Loginh... | CPU | Feads Writes
Trace start
Existinglonnection -- network protocol: LPC set quote... SQLAgent - Generic Refresher Brad BRA. ..
Audit Login -- hetwork protocol: TCPSIP set qu... stress utility Brad BRA. ..
SOL:EBatchstarting exec dbo.ADSSP_EN_EOLINStr stress UEility Erad BRAL ..
SOL:BatchCompleted i exec dbo,ADGSP_EN_BOLINS tr stress utility Brad BRA. .. 1640 10028 1]
Audit Logout stress utility Erad BRA... 1640 10028 o
Audit Login -- network protocol: TCPSIP set qu... Sstress utility Brad BRA. ..
S0L:Batchstarting exec dbo.ADGSP_SO_LOADNOTSHIP stress utility Brad BRA. ..
sOL:BatchZompleted exec dbo.ADGSP_SO_LOADNOTSHIP stress utility Brad BRAL .. 1656 147303 3z
Audit Logout stress utility Brad BRA. .. 16586 147309 32
Audit Login -- network protocol: TCPSIP SeT qu... SCress ucilicy erad BRAL ..
SOL:BatchsStarting exec dbo, ADGSP_EN_Instructions stress utility Brad BRA. ..
sOL:eatchCompleted exec dbo.ADSSP_EN_Instructions stress utility Erad BRA... 4000 15859482 o
Audit Logout stress utility Brad BRA. .. 4000 1853482 1]
Audit Login -- hetwork protocol: TCPSIP set qu... stress utility Brad BRA. ..
SOL:Batchstarting exec dbo, ADGSF_PO_Furchasord stress UCilicy erad BRAL ..
SOL:BatchCompleted exec dbo,ADGSP_PO_Purchasord stress utility Brad BRA. .. 34 71zl 1]
Audit Logout stress utility Erad BRA... EE&2 7121 o
Audit Login -- network protocol: TCPSIP set qu... Sstress utility Brad BRA. ..
S0L:Batchstarting exec dbo.ADGSP_PO_Purchasord stress utility Brad BRA. ..
sOL:BatchZompleted exec dbo.ADSSP_PO_Furchasord stress utility Brad BRAL .. 5453 7121 o -
Audit Logout stress utility Brad BRA. .. L4532 1zl 1]
Audit Login -- network protocol: TCPSIP SeT qu... SCress ucilicy erad BRAL ..

exec dbo.ADGSP_EN_BOLINstr

| []

Figure 2-32: A small sample of the events captured by the default trace template.

So why might you use this templater First, it lists all the currently existing connections to the server
instance you are monitoring. In my example, there is only one connection. Second, it lists audit events,
showing you when SQL Server Login IDs have logged into and out of the server. Third, it captures
stored procedure execution. Fourth, it captures T-SQL statements that are not part of stored
procedures. In the data columns, you also see a little bit about the resources used by each event, which
can help tell you how each event has affected the instance's resources. Oftentimes, I use this template
when I want to do a "quick and dirty" profile without having to put a lot of thought into selecting what
specific events or data columns I want to collect. This template identifies many common performance-
related issues, and is a good starting point.

SP_CounTs

This template is very different from the Standard template, including far fewer events and data
columns. A point I want to make now is that templates can be very different from one another.

This simple template is designed to capture information whenever a stored procedure is first started.
The results are then sorted by EventClass, ServerName, DatabaseID and ObjectID. This way,
once the output has been collected, it can be sent to a SQL Server database where you can then perform
a Transact-SQL count on the ObjectName in order to count how many times each stored procedure
ran during the trace period.

For example, as you can see from the screen shot below, this template captures a single Event:
SP:Starting.

Everts | ServerMame | DatabaselD | ObjectID | SPID | DatabaseMame | ObjectMame |
Stored Procedures
[v SP:Starting v v v v v v

Figure 2-33: Events captured with the SP_Counts Profiler template.

Working with Traces and Templates 51

The screen shot below shows a trace generated by the SP_Counts Profiler template

| EventClass | ServerMame | DatabaselD | ObjectID | SPID | DatabaseName | CObjectName

SP:starting PELE 1 LO8655945 52 master sp_trace_getdata
SP:starting PELE 831810521 53 Big_Database ADGSP_EN_INstructions
SP:starting PELE 12815879429 53 Big_Database ADGSP_PO_Purchasord
SP:Starting PELE & 1281879423 53 Big_Database ADGSP_PO_Purchasord
SP:Starting PELE 6 1769577888 53 Big_Database ADGSP_EN_SalesInstr
SP:Starting PELE & 17658577888 53 Big_Patabase ADGSP_EN_SalesInstr
SP:starting PELE & 1769577888 53 Big_Database ADGSP_EN_SalesInstr
SP:starting PELE 13 1773443775 53 Big_patabase ADGSP_SO_LOADNOTSHIP
SP:Starting PELE & 1801578002 53 Big_Patabase ADGSP_EN_BOLInstr

Trace Start
Trace Stop

Figure 2-34: An example of a trace produced by the SP_Counts Profiler template.

So how might you use this template? Let's say that you are interesting in identifying the top ten most run
stored procedures in your application. By running this trace, and through a little Transact-SQL code, you
can produce a report showing how many times each stored procedure ran during the trace period.

Now that you have seen a little detail about two of the predefined Profiler templates that come with
Profiler, let's take a quick look at what the remaining templates do.

TSQL

This template is used to capture all T-SQL statements that are submitted to SQL Server by clients, along
with time stamps. This might be used by developers to debug client applications.

TSQL_DURATION

The TSQL_Duration template is used to capture all T-SQL statements submitted to SQL Server by
clients and their execution time. It groups the results by execution time duration. This template is often
used to identify slow queries.

TSQL_GROUPED

This is used to capture all T-SQL statements submitted to SQL Server and the time they were submitted
for execution. In addition, the statements are grouped by the user or client that submitted the statement.
This is often used to investigate problem queries from a particular client or user.

TSQL_REPLAY

This is used to captute the appropriate events and data columns about T-SQL statements so the trace
can be captured and later replayed back to SQL Server. This is often used to for iterative tuning,
benchmark testing, or stress testing.

TSQL_SPs

This template captures detailed information about all executing stored procedures. It is often used to
analyze the statements within stored procedures.

Working with Traces and Templates 52

TUNING

This template captures information about stored procedures and T-SQL batch execution. This trace can
be used as the raw data to feed into the Database Engine Tuning Advisor for index optimization.

As you can see, these templates are fairly limited in scope, but they are often a good starting place for a
novice Profiler user. As you gain more experience, you will tend to skip these templates and create your
own.

CustoM PROFILER TRACE TEMPLATES

As we've seen, a custom trace is one where you define the events and data columns to collect, the filters
to apply and so on. A custom trace template is essentially the same thing, but you have the ability to
reuse it again and again, without having to repeat all this work. So, if you think about it for a moment,
every trace you create, apart form the very simplest, should be a custom trace template!

In this section we will be taking a look at the following topics:

e How to create a Trace Template from scratch

e How to create a Trace Template from a running trace

e How to create a Trace Template from a saved trace file or trace table
e How to modify a Trace Template

e How to execute a Trace Template

e How to import and export Trace Templates

CREATING A CusTOM TRACE TEMPLATE FROM SCRATCH

Creating a trace template is as easy as creating a custom trace, although you use different Profiler
options. To begin creating a trace template, from the Main menu, select File | Templates | New
Template, as shown in figure 2-35:

Working with Traces and Templates 53

‘I

] 5QL Server Profiler
Edit View Replay Tools Window Help
Mew Trace... Cerl+M

Open 3
Close Ctrl+F4
Save Ctrl+S
Save As 3

Properties...

Mew Template...
Edit Template...

Temnplates i

Run Trace
Pause Trace Import Template...
Il Stop Trace

Export Template...

Export 3

Import Performance Data...

Exit

2-35: Select "New Template" to begin creating a new template.

After selecting the "New Template" option, the Trace Template Properties screen appeats:

Working with Traces and Templates 54

Trace Template Properties u

General | Events Selection |

Flease select the type of server to which the new template will be applied, and then type the template name. Use the Events Selection tab to
modify the template.

Select server type:

Mew template name:

[~ Base new template on existing one: ;I

[Use as a default template for selected servertype

Save I Cancel Help

Figure 2-36: Creating a template is very similar to creating a custom trace.

This screen is very similar to the "Trace Properties" screen we see when we create a custom trace. There
are two tabs: "General" and "Events Selection." While the "General" tab is slightly different from the
"Trace Properties" screen, the "Events Selection" tab is identical.

Let's have a look at the "General" tab first. At the top of the screen is a drop-down box called "Select
server type":

Select servertype: Microsoft SGL Server 2005 =]
Microsoft SQL Server 2000
Microzoft SGL Server 2005
Microsoft SOL Server 2005 Analysis Services

MNew template name:

Figure 2-37: When you create a trace template, the first step is to choose the type of trace.

As you can see in figure 2-37 above, this option allows you to specify what kind of instance the trace will
be running against. You need to make this choice because it affects the events and data columns that will
be available on the "Events Selection" tab.

Next to "New template name" you enter the name of the template. Be sute to give it a descriptive name
that not only you, but other DBAs, will be able to understand.

If you like, you can create a new template based on an existing one. To do this, check the "Base new
template on existing one" checkbox and then select the predefined template you want to use as basis for
your new custom template.

If you want to make your custom template the default Profiler template for the selected Server type, you
can do this by checking the "Use as a default template for selected server type." The default Profiler
template refers to which template is displayed, by default, next to "Use the template" from the "Trace
Properties" screen. Generally, I don’t bother with this option because I end up selecting some other
template other than the default one listed on the screen.

Working with Traces and Templates 55

Once you have made your choices (only the first two are required), click on the "Events Selection" tab.

Trace Template Properties ﬁ

General Events Selection

Review selected events and event columns to trace when using this template. To see a complete list, select the "Show all everts” and "Show all columns” options.

Events | Applic... | Bigint... | Bigint... | Bimary... | CPU | Client... | Colum... | DBUs... | Datab... | Datab... | Durati.. =
+: Broker I
+ CLR

+ Cursors =
+ Database

+ Deprecation

+ Emors and Wamings

+ Full text
+ Locks
+ OLEDE
+ Objects
+ Performance
0 Demmemmm Dmmmed T
4| mn | F
r— Broker
Includes event classes that are produced by Service Broker. ¥ Show all everts

[Show all columns

— Mo data column selected.

Column Filters... |

Organize Columns... |

Save I Cancel | Help |

————————————— e
Figure 2-38: This screen is identical to the "Events Selection" tab we have used many times before.

Now you are ready to create your trace, selecting the events and data columns you want, including
setting column filters and organizing columns, just you did before. Once you are done, click on "Save"
to save the template. The template will be saved and will be available from the "Use the template" drop-
down box on the "Trace Properties" screen.

CREATE A CusTOM TRACE TEMPLATE FROM AN EXISTING OR SAVED TRACE FILE

Above, we discussed how to create a trace template from scratch. There are two other ways to create
this template. One is to take a currently existing trace (loaded in Profiler, but not running) and convert it
into a trace template. The other way is to load a pre-existing trace file from disk into Profiler, then create
a trace template from that.

Let's say that you have created a custom trace (not a trace template) as we did eatlier in the chapter, and
are looking at the results on the Profiler screen. It is doing exactly what you need, but you did not create
this originally as a template. Is there any way to save all this work as a template without having to create
a template from scratch?

Yes. From the Main menu, select File | Save As | Trace Template, as you see in figure 2-39.

Working with Traces and Templates 56

f .ﬁ SQL Server Profiler - [Identify Bad Queries (PELE)] E@g
g5 File| Edit View Replay Tools Window Help [— =[]
= Mew Trace... Ctrl+N E| e | @@

I Open b | TextData | CPU | Reads | wir »
Close Ctrl+F4

<ShowPlanxML xmlns="http://schemas....

Save Crl+5 [<ShowPlan¥Ml_xmIns="http: //schemas. ...
Save As 3 Trace File... 1ns="http: //schemas....
Properties... Trace Template... Ins="http://schemas....

Trace Table... Tns="http: //schemas....
Templates 4) Tns="http: //schemas....
Run T Trace XML File... 1ns="http: //schemas....
A e Trace XML File for Replay... Ins="http://schemas....

Pause Trace <showPlamxML xmins="http://schemas....

Stop Trace <ShowPTlanxML xmlns="http://schemas....
Ex <ShowPlanxXML xmlns="http://schemas....
»
poik <ShowPTlanxML xmins="http://schemas.... =

7 Import Performance Data... :I b

Exit

E | =] EE|
= Nested Loopz Marge loin - Mas

S comtt 8 % @eft outer Join) (eft Sutar Join) e s wert

Trace is running.

[Ln2, Col3 | Rows: 50

Figure 2-39: You can save a trace template by using the "Save As Trace Template" option.

Then the following screen appears, where you enter the name you want to assign to the template. After
you have entered the new template name, click on OK and the trace is saved. See figure 2-40.

Select Template Name

Server type: Ir'-“liu:r-:usu:uﬂ S0L Server 2005 ;I

Template name: I ;I

Figure 2-40: Name the new template.

If you want to create a custom template from a trace file previously saved to disk, simply open the trace
file in Profiler (File | Open | Trace File) and follow the same steps.

If you had saved the file to a SQL Server database table instead of a file, you can also load it into Profiler
by selecting File | Open | Trace table, which will allow you to select the table you want to load, and it
will load into Profiler for viewing. At this point, you can save the file as a new template, just as in the
previous example.

Sometimes, when you follow the above procedure and try to select File | Save As | Trace Template, the
option will be grayed out, preventing you from saving your existing trace as a Trace Template. This can
be caused by one of two things. First, be sure the existing trace has been stopped, and is not running.
You cannot save a trace template of a running trace.

Working with Traces and Templates 57

If this hasn’t fixed the problem, then go to the Main menu and select View, and either "Aggregated
View" or "Grouped View" will be selected. Deselect whichever option is selected. Now, to back to File
| Save As | Trace Template, and try again. This time, it will not be grayed out and you can save the
template. For whatever odd reason, you can’t save a trace template unless both of these options are
turned off.

MoDIFYING CuSTOM TEMPLATES

If you decide later that you want to modify your custom template, this is also an easy task. Go to the
Main menu and select File | Templates | Edit Template.

) SQL Server Profiler -‘ LE‘@E

Edit View Replay Teools Window Help
MNew Trace... Ctrl+N

Open]
Close Ctrl+F4

Save Ctrl+S

Save As 3

Properties...

Templates 3 Mew Template...
Run Trace Edit Template...
Pause Trace Import Template...
Stop Trace Export Template...
Export »

Import Performance Data...

Exit

e ——
Figure 2-41: You can edit a Profiler template at any time.

Once you have made this selection, the following screen appears.

Working with Traces and Templates 58

.

Trace Template Properties . ﬂ

General | Everts Selection |

Select the type of serverto apply the edited template to, and then select the template to edit. Click Events Selection to modify the template.

Select servertype: [Microsoft SQL Server 2005 |

Select template name: Standard (default) ;I Delete |
Excessive Autostats (user) -
[Use as a default template for selected ser |dentify Blocked Processes (user)

|denrtify Excessive File Growth {user)

Template description IdentE Excessive SP Comiilations iﬁseri | _
Records when all stored procedures and T s s LT SR

executed on the server so you can track ey gtiﬁ%:?dm{r:ﬂefault} ity
T5QL
TSQL_Duration
TSQL_Grouped
TSQL_Replay
TSQL SPs L
Tuning

m

1

Save I Save As Cancel Help

Figure 2-42: You can edit any template you want.

To select a template to edit, first choose "Select server type" for the type of template you want to edit.
Notice that specific templates are associated with specific server types. This makes sense as each server
type offers different Profiler trace events and data columns.

Once you have selected the server type, click on the "Select template name" drop-down box to select the
template you want to edit. Notice in the drop-down list shown above (figure 2-42) that templates you
create are labeled as "User" and that default templates that come with Profiler don't have any
designation.

Once you have selected the template to edit, click on the "Events Selection" tab, whete you can modify
the template to your liking. When you are done modifying the template, save it by clicking on the
"Save" button.

EXECUTING CusTOM TRACE TEMPLATES

We execute custom-made templates like we would any template; simply select your custom template
from the "Use the template" dropdown on the General tab.

If you like, you can modify a trace before you execute it. All you need to do is to go to the "Events
Selection" tab and make any changes you want. These changes will not be saved to your template, and
will only be in effect for this trace.

IMPORTING AND EXPORTING TRACE TEMPLATES

Once you have created many useful Profiler templates, you may want to share them with other DBAs.
Or, perhaps, other DBAs have created trace templates that they have given to you for you to use. While
you can locate the trace files on your computer and just copy them, it is easier to use the built-in features
of Profiler that allows you to export and import trace template files.

Working with Traces and Templates 59

To export a trace template, from the main menu of Profiler, select File | Templates | Export Template.

3 SQL Server Profiler
Edit View Replay Tools Window Help
MNew Trace... Ctrl+N

Open 4
Close Ctrl+F4
Save Ctrl+S
Save As 4
Properties...

MNew Template...
Edit Template...

Templates >

Run Trace
Pause Trace Import Template...
Stop Trace . Export Template...

Export 4

Import Performance Data...

Exit

Figure 2-43: You can easily import and export Profiler trace templates.

Next, the following screen appears.

Select Template Mame

Server type:

Template name: Ismndard (default)

Figure 2-44: You can only export or import one template at a time.

Here, select the template you want to export. Notice that you can only export one Profiler trace template
file at a time. When you click on "OK," you are presented with a standard save screen, where you are
able to choose the path where you want to export the trace file.

If you want to import a trace file, select File | Templates | Import Template, and you are presented with
a standard open screen, where you can select the template you want to import.

Working with Traces and Templates 60

SUMMARY

Having read this chapter, you now understand the basics of creating your own custom traces; you also
know how to save them to file and subsequently to a database table for further analysis.

You have appreciated the advantages of creating reusable trace templates, either from scratch or based
on existing pre-defined templates.

In the next chapter, we take a look at some tips and tricks that will allow you to use Profiler more
efficiently. Once you master this chapter, you will know about every feature and option in Profiler. Then

you will be ready for the rest of the book, where we focus on how to apply Profiler to our daily jobs as a
DBA.

Profiler GUI Tips and Tricks 61

Chapter 3

PROFILER GUI TIPS AND TRICKS

By this stage in the book, you should have a good idea about what Profiler can do and how it works. Up
to now we've tackled the GUI in a fairly "narrow" fashion, covering only those features that were
directly necessaty to us to achieve our goals of creating basic traces custom traces, template and so on.

There are quite a few options that we didn't cover, however, and quite a few tips and tricks that, once
you know about them, can really help you use Profiler more efficiently.

So, in this chapter, we cover these topics:

e Tips on Selecting Profiler Events and Data Columns

e Tips on Using Column Filters

e Tips on Organizing Columns for Grouping and Analysis

e How the "Server processes trace data" Option Affects Traces
e How to Set Global Trace Options

e How to Schedule a Trace's Stop Time

e How to use the Auto Scroll Window

e How to Search for Data Inside a Trace File

e How to Set and Use Bookmarks

So let's get started.

TIPS ON SELECTING PROFILER EVENTS AND DATA COLUMNS

In the previous chapter, you learned how to select events and data columns in order to create a custom
trace. This is a straightforward process and is more or less self-evident. The problem is not in the
mechanics of selecting events but in deciding which of the 170 Profiler events and 64 data columns that
really want to select and in making sure you haven't inadvertently included extraneous events and
columns.

Our focus here is on tips and tricks to help you select which profiler events and data columns to capture
in a trace.

Tip #1: DON'T OVERLOAD YOUR TRACES

There is no easy way to decide which events or data columns you need to capture as part of a trace. It
depends on the problem at hand, and it requires a good understanding of what events are available and
what each one of them does.

NOTE:

We cover specific events and data columns in some detail in Chapter 11, Profiler Events and Data

Columns Explained.

Profiler GUI Tips and Tricks 62

Your first inclination as a beginner will probably be to select more events and data columns than you
need. This is very reasonable thing to do because the only real way learn about them, and especially how
they apply to your SQL Server environment, is to experiment. I encourage you to experiment with
different events and data columns, but with caution. Keep the following things in mind:

e Experimenting with too much data makes it hard to analyze the results. In other words,
traces become very difficult to read if you collect too much data. You may get so
overwhelmed that you become discouraged from wanting to learn how to master Profiler.
For example, who would want to wade through several thousand Lock events (see Figure
3-1)?

e Returning too much data can put a performance hit not only on the SQL Server instance
you are tracing, but on the local computer you are using to perform the trace.

e If, for some reason, you do need to collect a large number of events in a single trace, at
least limit the length of the trace to a short period, say five minutes or less. This will
allow you to collect a wide range of data, while at the same time not overwhelming
resources.

So whether you are experimenting, or you are running actual traces, don't get carried away with
collecting too much data. As you gain more experience with using Profiler, this will become easier and
easier for you to do.

4 SQL Server Profiler [E=ER X

File Edit View Replay Tools Window Help
AN dFac|» v AANR EE|P
2] Untitled - 3 (PELE) o =] ()

J EventClass | ApplicationName | ClientProcess|D | DatabaselD | DatabaseName Duration | EndTime -

Lock: Acquired 1 0 2007-11-14 13:47:15..
Lock:Released 1
Lock: Acquired 1 0 2007-11-14 13:47:15..
Lock: acquired 1 0 2007-11-14 13:47:15..
Lock:Released 1
Lock: acquired 1 0 2007-11-14 13:47:15..
Lock: Acquired 1 0 2007-11-14 13:47:15..
Lock:Released 1
Lock:Released 1
Lock:Released 1
Lock: Acquired SqQL server P.. 5112 1 0 2007-11-14 13:47:22..
Lock:Released SQL server P.. 5112 1 e
Lock: Acquired SQL Server P.. 511z 1 0 2007-11-14 13:47:22.. |—I
Lock:Released SOL Server P... 5112 1 i
4| rrr b
-
o m | »
|Trace is stopped. | Ln 214, Coll | Rows: 214 =

| Connections: 0 A

Figure 3-1: If you capture too many events, you can get lost, trying to make sense out of events that aren't really
important. Who wants to see 5,000 Lock:Acquired and Lock:Released events?

Profiler GUI Tips and Tricks 63

Tip #2: EVENT CATEGORIES ARE A GUIDE ONLY

As we have already discussed, individual events are divided into categories of similar events. The
purpose of this is to allow you to more easily locate the events you are looking for. However, it is no?
designed as a short cut to help you identify which events to select. For example, if you wish to diagnose
a problem with a slow performing query, you might be tempted to assume it's as simple as selecting all
the events in the Performance event category. Far from it. In most cases, you will need to carefully select
trace events from multiple event categories. Rarely would you find yourself selecting all the events in a
single event category (except those, of course, that only have one event associated with them).

F =
Trace Properties &J

General Events Selection | Events Extraction Settings]

Review selected events and event columns to trace. To see a complete list, select the "Show all events" and " Show all columns” options.

Events | Applic... | Bigint... | Bigint... | Binary... | CPU_ | Client... | Colum... | DBUs... | Datab... | Datab... | Dursti... | E =
= Performance
W Auto Stats ra v v v v
v Degree of Parallglism (7.0 Insart) v v i~ I~ ~d B
[v Performance statistics v =3 v [v v ‘E‘
v SQLFull TextQuery v v v =3 i~ | &
[v Showplan All v v v v ~J
[Showplan All For Query Compile v 2 v v "
[Showplan Statistics Profile [v v ~d 3 =
[v Showplan Text [v v v ™ ~
[v Showplan Text (Unencoded) [v v v =2 [+
v Showplan XML [v v ~d [+ ~
3 Chaumlan VMl Car O me s Cammnila s s i Ly s
4| i | F

Showplan XML For Guery Compile
Oceurs when SQL Server compiles a SQL Statement. Include the Showplan XML For Query Compile event class to identify V¥ Show all events

the Showplan operators on SGL Server 2005.
¥ Show all columns

Mo data column selected.
Column Fitters. .. |

Organize Columns... |

Run | Cancel | Help |

Figure 3-2: Don't be tempted to select all of the events within a given event category. You will only end up
selecting events of little use, and missing other events that are important to your analysis.

Tip #3: DESELECT UNWANTED DATA COLUMNS

As we noted in Chapter 2, when you select an event, all the data columns for that event are automatically
selected. In most cases, you will want to select only limited data columns, not all of them, meaning that
you will have to deselect those data columns from the events you don't want.

A common mistake is to accidentally leave unnecessary data columns selected, and therefore clutter the
resulting traces with unwanted data. In fact, the Profiler GUI offers you a helpful visual clue that can
help you avoid this situation. Take a look again at Figure 3-2. You may not have noticed it at first, but
there are two data columns in that figure that are empty, and grey in color. Every other column in the
tigure is selected for at least one event, and is white in color.

In other words, a white column is a visual cue to you that a data column has been selected for at least
one event. So how is this helpful? Let's say that you are creating a new trace and have selected about a
dozen events, as seen in the figure 3-7 below.

Profiler GUI Tips and Tricks 64

Events | Object... | Durati... | TextD.. | CPU | Reads | Wittes | DatabaselD | DatabaseName | Einary... | SPID
"' Showplan XML 7 v v v v [
- Stored Procedures
[¥ RPC:Completed W 7 v 2 2 W W ¥ W v
[¥ RPC:Starting ¥ 2 ™2 v ¥ v
[¥ SPCompleted W ¥ ¥ 7 v W v
[+ SP:Recompile ¥ ¥ ™2 I ¥
[V SP:Starting I~ v 2 Ird I~d I
¥ SP:StmtCompleted I I3 v v I I I~ I v
[¥ SP:StmtStarting I~ I~ Id Ird I
- TsaL
L 1 Y O N | = = = = = = [ril L]

Figure 3-7: Often, you can't see all the events you selected on the same screen without scrolling through all of
them.

As you select each event, every data column is selected for that event. However, let's say that you want
to deselect the Database ID data column for all events, because it essentially duplicates information in
the DatabaseName column. So, you deselect the DatabaselD column for every event you can find, as
shown in Figure 3-8:

Events | Object... | Durti... | TextD...| CPU | Reads | Wites | DatabaselD | DatabaseName | Binary... | SPID =
- Performance T
[¥ Showplan XML I~ 2 [l 2 2 I

= Stored Procedures
[¥ RPC:Completed I v I3 I3 I W r I3 I3 v =
[RPC:Starting I~ I”d [l I I”d I~
[# SP-LCompleted v v v r v v [
[¥ SP:Recompile 2 v - 2 v
[SP:Starting I~ v - v v W
[# SP:StmtCompleted ¥ I3 ¥ ¥ ¥ WV r ¥ [
[# SP:StmtStarting 2 I3 [l 2 I

= T5aQL
P = [0 P gy e | il Lrl Ll Ll Ll Ll L]

4| T | 3
Figure 3-8: After deselecting all the DatabaseID checkboxes, the column is still white.

What you will notice is that the column is still white. This is an immediate indication that there are still
some events for which this column is selected:

Everts | Object... | Dureti... | TeaD.. [CPU | Reads | Wwites | DatabaselD | DatabaseName | Binary... | SPID =
[¥ SP-Completed v I3 v r ¥ WV [
[¥ SP:Recompile Ird Ird - 2 I
[¥ SP:Staring Ird Ird I 2 2 ™
[+ SP:StmtCompleted v v v v v v r v v
[¥ SP:StmtStarting ¥ ¥ — ™2 ™

- T5aL
[7 SQLBatchCompleted IrZBN I R N I S 2 v
¥ SQL:BatchStarting I3 |7 I~ I 1
W SQL:StmtCompleted I~ Ird ¥ I~d I~d I~d ™2 I
[V SQL:StmtRecompile Ird Ird 2 2 ™
v SQL:StmtStating Ira 2 v '

4 mn | r

Figure 3-9: I guess I didn't unselect all the events after all.

Profiler GUI Tips and Tricks 65

This visual cue can be very helpful when creating complex traces and when you want to ensure that you
don't collect more data than you intended. Once you've deselected the column for the rogue events that
you missed, the screen should look as shown in Figure 3-10:

Figure 3-10: The grey columns tell us that no events have been selected for this data column.

In actual fact, Profiler offers a second visual clue that can help you spot events for which all data
columns ate still selected. Did you spot it? Take a close look at the checkboxes to the left of the event
names, in Figures 3-9 and 3-10. In Figure 3-9, the first five rows have a grayed-out check and the
remaining events have a black check. If you see a black check, it means that all the data columns for that
event have been selected. If you see a grayed-out check in the checkbox, it means that at least one of the
data columns have been unselected. This can be useful to know as you create complex traces.

One more tip. If you want to select or deselect all the data columns for all the events listed on the
Events Selection screen, right-click on the data column heading and choose cither "Select Column"
or "Deselect Column."

Tip #4: USE SHow ALL EVENTS AND SHOW ALL COLUMNS

I mentioned this briefly in Chapter 2, but it's worth emphasizing again here. When you create a new
trace, the easiest way is to start is with the Blank template, with the Show All Events and Show All
Columns text boxes selected.

However, once you have selected the events and data columns you want, the screen soon becomes hard
to read because it still shows events and data columns you did not select. In addition, since the size of
the screen is limited, you can't see all the events you selected without scrolling up and down the screen.
See figure 3-12 below.

Events | Object ... | Durati.. | TedtD.. [CPU | Reads | Wites | DatabaselD | DatabaseName | Binary... | SPID ~
[SP-Completed r v v r v W o
[+ SP:Recompile v v B v v
[SP:Starting v v B v v v
[SP:StmtCompleted r v I v I r r v r
[SP:StmtStarting v [v B v [v

- TS@L
[5QL:BatchCompleted v v v v v r v .
[5QL:BatchStarting v r v r
[50L:StmtCompleted v v v v v r v v
[+ SQL:StmtRecompile ~ [v [v [v
[+ SQL:StmtStarting v v [w—

4| m 3

Profiler GUI Tips and Tricks

66

-

Trace Properties e ——— A ————

General Ewents Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events” and “Show all columns™ options.

Events | Applic... | Bigirt... | Bigint.. | Binary... | CPU | Client... | Colum... | DBUs... | Datab... | Datab

.| Durati.. =

[~ RPC:{Completed
[~ RPC:Starting

[~ SP:CacheHi

[~ SP:Cachelnsert
[~ SP:CacheMiss
[~ SP:CacheRemove
3! SP Completed
I- SP:Recompile

[~ SP:Starting

[T SP:StmtCompleted
[~ SP:StmtStarting

Tend
4 m

— RPC:Starting

O O
r

OO Onl<k0o0nooon
OoOOnk0onooon

Occurs when a remote procedure call has started.

— Column Permissions (no filters applied)
Indicator of whether a column pemission was set. Parse the statement text to determine exactly which pemissions were
applied to which columns.

O0OoolskOonooon
Oooolkal [Ooong

¥ Show all events

¥ Show all columns

Column Filters...

Organize Columns...

Run I Cancel

Help

Figure 3-12: This Profiler screen makes it hard to see what events have been selected.

Once you have selected the events and data columns you want, it is much easier to see what you have
selected if you deselect the Show All Events and Show All Columns checkboxes. When you do this, you
only see those events and data columns, as shown in figure 3-13 below.

Profiler GUI Tips and Tricks 67

Trace Properties

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events" and " Show all columns™ options.

| Applic... | Datab... | Datab... | Durati... | EndTi... | Emor | Event... | Evert... | HostN... | indexID | Intege... |

Events
i Performance
W Auto Stats 2 2 -2 B 7 = 2 21 2 N 7
¥ Dearee of Parallelism (7.0 Insert) v v 2 I 2 2 2
[¥ Peformance statistics Ird Ird I~ Ird Ird
[w Showplan Al v I3 v v 3 I3
= Stored Procedures
v SP:Completed v I3 v v v v I3
4 | 1 | b
— Auto Stats
Collects the events associated with the automatic creation and updating of statistics. [~ Show all everts
[~ Show all columns
— No data column selected.
Column Fitters...
Organize Columns...

Run I Cancel Help

Figure 3-13: Now it is easy to see what events and data columns I have selected.

If you decide later to add more events or data columns, you can easily check the Show All Events and
Show All Columns checkboxes, makes the changes you want, and then deselect the Show All Events
and Show All Columns checkboxes again. If you have many events selected, you still may have to scroll
to see them all, but it is still a lot easier than scrolling through 150+ events.

Tip #5: WHEN CREATING TRACES, YOU CAN ONLY CHANGE THE COLUMN ORDER USING ORGANIZE
COLUMNS

As you select the data columns you want to capture for each event, it would often be handy to move the
data columns in a different order. Unfortunately, you can't click and drag a data column from one
location to another. If you want to rearrange the columns on the screen in any order other than
alphabetical order, you have to do so by using the Organize Columns button on this screen. If you click
on any of the data columns head, thinking you might be able to drag and drop them, or even to change
the sort order of the events (which you can't), a box pops up that can be a little disconcerting.

Profiler GUI Tips and Tricks 68

Edit Filter [

applicationiame | DigintDatal
- o Bigint value dependent on the event dass
BigintDatal H

captured in the frace.
BigintData2

BinaryData
ClientProcessID
ColumnPermissi. ..

CPU

DatabaselD - Equals
DatabaseMame .. Not equal to
DEUserMame -- Greater than or equal
Duration [#- Less than or equal
EndTime

Error

-

[T Exdude rows that do not contain values

QK I Cancel

Figure 3-14: The Edit Filter window appears whenever you click on the name of any data column.

Clicking any of the data column names is the same as clicking on the Column Filters button. If you do
this by accident, click "Cancel" to get rid of the screen.

However, note that once you are actually running a trace, then you can move the data columns into a
different order, just by dragging and dropping.

Tip #6: THE SPID AND EVENTNAME DATA COLUMNS ARE MANDATORY

Let's say that you don't want the SPID data column to be captured for a given event and try to unselect
it. It will produce an error message as in figure 3-16.

SQL Server Profiler [

SPID column is required and cannot be removed from your trace,

Figure 3-16: The SPID data column is required.

Of all the data columns, two are required and must be included in every trace. One is EventName,
which is not even listed on the Events Selection screen, and SPID, which is listed. It seems a little odd
that one required data column is not even shown, but that is the way Profiler has been designed, so just
be aware of this peculiarity. You will see both the EventName and SPID column when you run a trace.

Profiler GUI Tips and Tricks 69

Tip #7: USE THE HELP TiPS!

You have probably already figured this out, but just in case you haven't, if you hover the mouse pointer
over any event or data column name, you will see a help tip at the bottom of the screen.

iQ 9
Trace Properties Iﬁ
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns™ options.
Everis | Server. | SPID | Applic... | Bigint... | Bigint... | Binary... | CPU | Client... | Colum... | DBUs... | Datab. ~
| Stored Procedures
[~ Deprecated | |
[T RPC Output Parameter L | | | | B m
[~ RPC:Completed n I [[[| | | |
[~ RPC:Starting B u | | [[] |
[~ SP:CacheHit | | | | | B
[~ SP.Cachelnsert | | n | | m j 2
[~ SP.CacheMiss | u E 2] H
[~ SP.CacheRemove | | n | | || |
[~ SP.Completed B [|] | | s} H
[~ SP:Recompile o B]] I]
— CD-Cidimn - — — — — — s
< | i | r
RPC-Completed
Oceurs when a remote procedurs call has been completed. W Show all events
W Show all columns
ServerName
MName of the SQL Servertraced. Column Fitters.__
Organize Columns...
Run | Cancel | Help

Figure 3-17: Tooltips are available for all events and data columns.

In figure 3-17, I hovered my mouse pointer over the checkbox that intersects the event RPC:Completed
and the ServerName data column. This way, I get two tooltips: one for the event and one for the data
column. Or, you can just hover over the event or data column name to see a tooltip.

TIPS ON USING COLUMN FILTERS

Filters are a powerful tool because they allow you restrict which events are captured and which are
excluded. For example, if you have selected the SQL:StmtCompleted event as part of your trace, you
may only want to see Transact-SQL statements from a single database only, not from all the databases
on your server. This is easily accomplished by creating a filter to limit the events to be captured to those
that occur only in the database you select, not events occurring on other databases on the same SQL
Server instance.

In this section, we look at some tips to help you make the most of this feature.

Tip #1.: EDITING FILTERS

There are two different ways to display the Edit Filters window, which is used to add, modify, or remove
column filters. The easiest option is to click on the Column Filters button. The other way is to click on
any column name on the screen. If you choose the latter method, the column name you selected is
automatically selected for you in the Edit Filters window.

Profiler GUI Tips and Tricks 70

[I B

Trace Properties e

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns™ options.

Events fo=— = 3 ... | Datab... | Datab... | Durati.. =
T Edit Filter - ﬁ I —
+ i Broker
* CLR —DatabaselD
ApplicationMame =
+ Cursors _DI_J T ID of the database specified by the USE =
- Datab BigintDatal = database statement, or the default 0
apase BigintData2 database if no USE database statement has
+ Deprecation BinaryData . been issued for a given connection.
+ Ermrors and Wamings ClientProcessID
+ Full text ColumnPermissi...
+ Locks CPU
+ OLEDB DatabaselD [-Equals
+ Objects DatabaseName .. Mot equal to
DBUserMame - Greater than or equal
+ Performance . :
. e o Duration (- Less than or equal -
€| I | EndTime 3
— E
Broker rer - T [Exdude rows that do not contain values
Includes event classes that are prodt v Show all events
EX I = ¥ Show all columns
— DatabaselD (no fiters applied)
ID of the database specified by the USE database statement, or the defautt database if no USE database statement has Column Fitters_.
been issued for a given connection.
Organize Columns...

Run | Cancel Help

Figure 3-18: The Edit Filter window is used to create, modify, or remove column filters.

In figure 3-18 above, I clicked on the DatabaseID data column on the Events Selection tab of the
Trace Properties screen and the Edit Filter window appeared, with DatabaselD preselected for me.

Tip #2: FILTERS DO NOT NECESSARILY REDUCE WORKLOAD

Many DBAs assume that by creating filters for a Profiler trace, that they are substantially reducing the
workload on SQL Server. The assumption is that if you are collecting fewer events because you have
added filters, that the workload should be less. Unfortunately, this assumption is often not true.

Here is what is happening. When you select an event for SQL Server to trace, SQL Trace (the SQL
Server component that actually does the tracing work) has to look at every event that is occurring in
order to identify a patticular event as one you want to collect. If you don't add a column filter, then your
trace will record data for every occurrence of that event in your instance of SQL Server. This alone is a
lot of work.

When you add a column filter, every event is still captured, but then SQL Server also has to decide
whether to keep the event (and store it in RAM and/or disk) of to toss it away.

But all is not lost. While the addition of a column filter does introduce additional CPU overhead, it does
reduce the number of events that are stored in RAM and/or written to disk. This acts to reduce the
amount of resources used to run Profiler. The hard part is gauging whether or not the extra resources
needed to apply the filter are more, or less, than the resoutrces saved by limiting the number of events
collected.

Profiler GUI Tips and Tricks 71

Tip #3: CREATING MULTIPLE FILTERS

When you create a column filter for a trace, you can filter on a single data column or on multiple data

columns. Each time you filter on an additional data column, a funnel icon appears next to the data
column you are filtering on.

Edit Filter (S
icationMame = ApplicationName
T Appl = Mame of the dient application that created
BigintDatal = the connection to SQL Server. This column is
BigintData? populated with the values passed by the
BinaryData B application rather than the displayed name
ClientProcessID SE T
ColumnPermissi. ..
F CRU
DatabaseID =t ije
DatabaseMame L app
CEUserMame - Mot like
“F Duration
EndTime
Error ald)
[Exdude rows that do not contain values
Ok | Cancel

Figure 3-19: Funnel shaped icons appear next to the data columns where you have set up specific filters.

As you add filter criteria to a data column, only click the OK button if you have finished adding filters
for this trace. If you want to create several data column filters at one sitting, create one filter, then press
the TAB key to save the criteria, and then to proceed to add other filter criteria. Only when you are done
should you click OK. If you click OK by mistake before you are done, the Edit Filter screen disappears,
although you can still go back and change the filter; it just takes extra keystrokes.

Tip #4: FILTER CRITERIA

When adding filter criteria, keep the following in mind:

e Not all data columns can be filtered.

e Some data columns have different filter criteria than others. The available criteria are
displayed for you, so you know what is available.

e You can use the % symbol as a wildcard for the TextData data column.

e The data you are filtering for has to exist. Not all data columns are always populated for
the same event.

e If you filter on StartTime or EndTime data columns, use the format: YYYY/MM/DD
hh:mm:sec.

TiP #5: EXCLUDING EMPTY ROWS

At the bottom of the Edit Filter window is a checkbox that says, "Exclude rows that do not contain
values." This provides a way to filter out records that don't include any data for a specific data column.

Profiler GUI Tips and Tricks 72

Edit Filter S5
. CPU
ApplicationMame *
I.:lp & Amount of CPU time (in miliseconds) used by
ClientProcessID e etremk.
“F CRU
DatabaselD E
DatabaseMame
Duration
EndTime
HostMame [#-Equals
IntegerData - Mot equal to
IntegerData2 [+ Greater than or equal
IsSystem [#- Less than or equal
LineMumber
LoginMarme
g) 7 [+ Exclude rows that do not contain values
QK | Cancel

Figure 3-20: The "Exclude rows that do not contain values" option is data column specific.

When this filter is put into place, it only works on rows that have data columns that are actually empty.
If there is a NULL value in a data column, the row will be returned. This option should not be
combined with another filter for the same data column. If you try, the results may be unpredictable, due
to a bug in the code that has not been fixed in SQL Server 2005.

TIPS ON ORGANIZING COLUMNS FOR GROUPING AND ANALYSIS

In chapter 2, we learned that the Organize Columns window allows you to perform two major
functions:

1. Change the default order of the data columns on the screen

2. Group events based on a certain data column

This section covers some tips on how to make the most of these two features.

Tip #1: WHICH ARE THE MOST IMPORTANT DATA COLUMNS?

While you can choose any order in which to display data columns, I recommend that you put the most
useful events toward the left, and the less useful toward the right of the trace screen. This way, when you
read and analyze trace results, you will have to perform less scrolling to see the data you want to see.

There is no way to say, definitively, which are the most important columns, because it will vary
according to what you are tracing. However, some of the data columns that I like to put on the left side,
because I use them a lot, include TextData, Duration, CPU, Reads, Writes, ApplicationName, StartTime,
and EndTime.

Profiler GUI Tips and Tricks 73

I 3
Crganize Columns ﬁ

Select a column and use Up and
— Down buttons to change its
order. Move the column under
Groups to group data by that
column,

13

Groups
= Columns

EventClass
TextData
Duration
CPU e
Reads
Writes
ApplicationMame
DatabaselD
DatabaseMame
StartTime
EndTime

Fuarntaomianra

Up I Down QK Cancel

—————————————————————————————

Figure 3-21: You should order data columns in the order that is of most important to you.

m

Tip #2: DATA IS ONLY AGGREGATED IF YOU GROUP ON A SINGLE COLUMN
If you decide to group rows by a data column, keep the following in mind:

e If you group a single data column, that data column will automatically be aggregated for
you.

e If you group two or more data columns, the data will be sorted as you specity, but no
aggregations are performed.

Tip #3: CONTROLLING AGGREGATION AND GROUPING

If you have specified that data columns be grouped, or aggregated, inside of the Organize Columns
window, and are currently capturing or displaying data in Profiler, you can turn off grouping and
aggregation by going to the VIEW menu and selecting the appropriate option.

Profiler GUI Tips and Tricks 74

SQL Server Profiler
File Edit |View | Replay Tools Window Help
2 Y1 ¥ Toolbar
i Status Bar N
23 Untitle
Always on Top =
| EventC _
+ 5QL:5 Performance Monitor Graph
H; Trace Replay Data
Refresh
v Aggregated View Ctrl+V
Grouped View Ctrl+E

Figure 3-22: You can change the way events are grouped by selecting, or not selecting the Aggregated View or
Grouped View options.

You can choose to turn off both Aggregated View and Grouped View, which means that all the data will
be ungrouped and unaggregated.

If you turn the Aggregated View on and Grouped View off, then the results will be aggregated based on
what data column you are grouping by.

If you turn the Aggregated View off and the Grouped View on, then all the results will be sorted on the
data column you are grouping by.

For example, let's say that I am going to run a trace, and that I have specified that I want to group data
by EventClass. When I run this trace, I will see all the data automatically aggregated for by EventClass.
This is the default behavior.

Then I decide to change the View settings so that Aggregated View and Grouped View are turned off.
In this case, the events are ordered in the order they actually occurred:

Profiler GUI Tips and Tricks 75
[A SQL Server Profiler [(]
File Edit Wiew Replay Toocls Window Help
HOZEPae|r» v BAAMNR BDE| P

£ Untitled - 5 (PELE) [E=R[ECR(r>™)

J EvertClass | TextData | CPU I Reads I Writes I ApplicationMame |Z|
Trace Start
SQL:StmtStarting create table #tmp_sp_help_alert (i... Microsoft 50Q.
SOL: stmtCompleted create table #tmp_sp_help_alert (i... 1 u] 270 Microsoft s50.
SQL:Stmtstarting insert into #tmp_sp_help_alert exec... Microsoft 5Q.
SQL: StmtRecompile insert into #tmp_sp_help_alert exec... Microsoft 5Q.
SQL:StmtStarting insert into #tmp_sp_help_alert exec... Microsoft s5Q.
SQL: StmtCompleted insert into #tmp_sp_help_alert exec... 21 3z -3 Microsoft 5Q.
SOL: stmtstarting SELECT CASTi(tsha.enabled AS bit) AS... Microsoft 50.
SQL:StmtRecompile SELECT CAST(tsha.enabled A5 bit) AS... Microsoft 5Q.
SOL: stmtstarting SELECT CAST(tsha.enabled AS bit) AS... Microsoft s50.
SQL:stmtCompleted SELECT CAST(tsha.enabled AS bit) Aas... u] o o Microsoft 5Q.
SQL:StmtStarting drop table #tmp_sp_help_alert Microsoft 5Q. g
SqL: stmtCompleted drop table #tmp_sp_help_alert 2 o 152 Microsoft s5g.
SQL:StmtStarting use [master] Microsoft 50Q.
SOL: stmtCompleted use [master] o u] u] Microsoft s50.
SQL:Stmtstarting create table #tmp_sp_help_operator ... Microsoft 5Q.
S0L: StmtCompleted create table #tmp_sp_help_operator ... 1 u] 192 Microsoft 50.
SQL:StmtStarting insert into #tmp_sp_help_operator e Microsoft s5Q.
SQL: StmtRecompile insert into #tmp_sp_help_operator e Microsoft 5Q.
SOL: stmtstarting insert into #tmp_sp_help_operator e... Microsoft 50.
SQL: stmtCompleted insert into #tmp_sp_help_operator e 5 o 114 Microsoft 5Q.
SOL: stmtstarting SELECT tsho.name AS [Name], 'Server... Microsoft s50.
SQL:StmtRecompile SELECT tsho.name AS [wName], 'Server... Microsoft 5Q.—
SQL:StmtStarting SELECT tsho.name AS [Name], 'Server... Microsoft 5Q.
SQL:stmtCompleted SELECT tsho.name AS [Name], 'Server... u] o o Microsoft s5Q.
SQL:StmtStarting drop table #tmp_sp_help_operator Microsoft 5.«

4 m 3

Figure 3-23: Both Grouped View and Aggregated View are turned off.

If I then decide to turn Grouped View on, but leave Aggregated View off, the data columns are sorted
by EventClass:

Profiler GUI Tips and Tricks 76

54 SQL Server Profiler = | B
File Edit View Replay Tools Window Help
FN@FFaclr v AN =P
&) Untitled - 5 (PELE) = ===
J EventClass | TextData | Duration | CFPU | Reads | Writes | ApplicationName E
SaL:stmtCompleted create table #tmp_sp_help_alert (i... 1 o 270 0 Microsoft 50,
SQL:stmtCompleted insert into #tmp_sp_help_alert exec... 21 s g 0 Microsoft s5Q.
SqL:StmtCompleted SELECT CAST(tsha.enabled AS bit) AS... u] o 0 Microsoft 5Q.
SqL:StmtCompleted drop table #tmp_sp_help_alert 2 o 152 0 Microsoft 5Q.
SqL:stmtCompleted use [master] u] o 0 Microsoft 5Q.
SqL:stmtCompleted create table #tmp_sp_help_operator ... 1 o 192 0 Microsoft 5Q.
SaL:stmtCompleted insert into #tmp_sp_help_operator e... 5 o 114 0 Microsoft 50,
SQL:stmtCompleted SELECT tsho.name AS [Name], 'Server... o o o 0 Microsoft 4.
SQL:stmtCompleted drop table #tmp_sp_help_operator 4 o 116 0 Microsoft s5Q.
SqL:StmtCompleted use [master] u] o u] 0 Microsoft 5Q.
SQL:StmtRecompile insert into #tmp_sp_help_alert exec... Microsoft 5Q.
SqQL:SstmtRecompile SELECT CAST(tsha.enabled AS bit) as... Microsoft 5Q. =
SqQL:SstmtRecompile insert into #tmp_sp_help_operator e... Microsoft 5Q.
SQL:stmtRecompile SELECT tsho.name AS [Name], 'Server... Microsoft 5Q.
SQL:stmtstarting create table #tmp_sp_help_alert (i... Microsoft SQ.
SQL:sStmtStarting insert into #tmp_sp_help_alert exec... Microsoft 5Q.
SQL:sStmtStarting insert into #tmp_sp_help_alert exec... Microsoft 5Q.
SQL:stmtStarting SELECT CAST(tsha.enabled AS bit) AS... Microsoft 5Q.
SQL:stmtstarting SELECT CAST(tsha.enabled AS bit) as... Microsoft 5Q.
SQL:stmtstarting drop table #tmp_sp_help_alert Microsoft 5Q.
SQL:stmtstarting use [master] Microsoft 5Q.
SQL:stmtstarting create table #tmp_sp_help_operator ... Microsoft SQ.
SQL:sStmtStarting insert into #tmp_sp_help_operator e... Microsoft 5Q.—
SQL:stmtStarting insert into #tmp_sp_help_operator e... Microsoft 5Q.
SQL:stmtStarting SELECT tsho.name AS [Name], 'Server... Microsoft 5Q.
SQL:stmtstarting SELECT tsho.name AS [Name], 'Server... microsoft sq.«
4 1 | b

Figure 3-24: Grouped View is turned on and Aggregated View is turned off.

If Grouped View is turned off and Aggregated View is turned on, then rows are aggregated by
EventClass. This returns us to our default view:

8 SQL Server Profiler [ESREER

File Edit View Replay Tools Window Help

ANSEFac|) ne | ZANR BD=E|?

23] Untitled - 5 (PELE) = e
I EvertClass | TextData | Duration | CPU I Reads | Writes I ApplicationName

= SOL:StmtCompleted (10)

S0L: StmtCompleted create table Ztmp_sp_help_alert (i... 1 u] 270 0 Microsoft sQ..
S0L: StmtCompleted insert into #tmp_sp_help_alert exec... 31 32 -3 0 Microsoft sQ..
S0L: StmtCompleted SELECT CAST{tsha.enabled AS bit) A5... u] u] u] 0 Microsoft sQ..
SOL: StmitCompleted drop table #tmp_sp_help_alert 2 o 15z 0 Microsoft 5Q..
SQL: StmtCompleted use [master] o o o 0 Microsoft s5aq..
SQL: StmtCompleted create table #tmp_sp_help_operator ... 1 o 192 0 Microsoft s5aq..
SQL: StmtCompleted insert into #tmp_sp_help_operator e... 5 o 114 0 Microsoft s5aq..
SQL: StmtCompleted SELECT tsho.name AS [Name], 'Server... o o o 0 Microsoft s5aq..
SQL:stmtCompleted drop table #tmp_sp_help_operator 4 o 116 0 Mmicrosoft sqQ..
SQL:stmtCompleted use [master] o o o 0 Mmicrosoft sqQ..

+ SQL:StmtRecompile (4]

+ SQL:StmtsStarting (14)

+ Trace start (1)

Figure 3-25: Grouped View is turned off and Aggregated View is turned on.

Profiler GUI Tips and Tricks 77

Keep in mind that this feature only works if already have an event under Groups in the Organize
Columns window. In addition, you can switch between viewing modes as much as you like. What you
can't do is to change the event you are grouping. That can only be done before you start a new trace, not
after the trace has been created.

How THE "SERVER PROCESSES TRACE DATA" OPTION AFFECTS TRACES

In the General tab of the Trace Properties screen, if you select the "Save to file" option, an additional
option becomes available, called "Setrver processes trace data.”

Trace Properties ﬁ ‘
General | Everts Selection l
Trace name: |Unt'rt|ed -6
Trace provider name: |F‘ELE
Trace provider type: 1Micmsoﬁ SQL Server 2005 Version: 9.0.3054
Use the template: | Standard (defaut) |
¥ Savetofile: |C:\Users\Bmd\Dccuments\server_tmce.trc EJ

|

Set madmunm file size (MB):
¥ Enable file rollover

[V Server processes trace data

[~ Savetotable:] _J

-

)

[~ Enable trace stop time:]11.- 15/2007 _J

Run | Cancel Help

Figure 3-26: The "Server processes trace data" option

When this option is selected, Profiler ensures that all events are recorded, even if this means that the
SQL Server instance's performance will be hurt. To accomplish this task, two separate trace processes
are started that trace exactly the same events as each other. One trace process sends events to the
Profiler GUI, and the other trace process sends the data to a local disk file. While this ensures that all
events are captured, it also means that a significant burden may be put on SQL Server, hurting its
performance. If the SQL Server instance is not busy, then the performance hit is not a problem. But if
the instance is very busy, then the performance hit could be significant.

If this option is not selected, then Profiler does not guarantee that all events will be captured, and only
one process is used to capture events. This reduces the performance burden on SQL Server significantly.
If the SQL Server instance is not too busy, then there should be no loss of events. But if the server is
busy, and Profiler thinks that capturing all events would hurt the performance of the instance, then
events will be dropped as needed to prevent a significant performance hit.

So, should you use this option or not? In most cases, you will not want to select this option. If your
server is not too busy, then all events will be captured anyway. If the server is very busy, you most likely
don't want to add an additional performance burden to it. In most cases, missing some events won't

Profiler GUI Tips and Tricks 78

affect your analysis, so this is not a problem. In the rare case where you run into a situation where you
have a busy setvet, but you can't seem to find the events you need to resolve a problem because they are
not being captured, consider turning this option on for short periods until you get the trace results you
need. At the same time, ensure you are only collecting those events and data columns you really need, in
order to reduce the performance hit as much as possible.

How 10 SET GLOBAL TRACE OPTIONS

SQL Server Profiler allows you to control some general settings that affect how Profiler performs. In
this section, we look at these options and how they should be set.

General Options ﬁ

Dizplay Options:
Fort name: Luc:ida Consaole Choose Font... |
Fort size: IE

[Use regional settings to display date and time values
[T Show values in Duration column in microseconds (SQL Server 2005 only)

Tracing Options:
[~ Start tracing immediately after making connection

File Rollover Options:
¥ Load &ll rollover files in sequence without prompting

" Prompt before loading rollover files
™ Mever load subseguent rollover files

Replay Options:

Default number of replay threads:

4 3:
Default health maonitor wait interval (sec): 2600 3:
&0 3:

Default health monitor poll interval (sec):

Figure 3-27: The General Options screen allows you to affect some global Profiler behavior.

DispPLAY OPTIONS

If you wish, you can change the font name and size used to display events in the Profiler trace window.
By default, the font is Arial and the size is set to 8, which is about as small as you probably want to make
it. If you want to make a change, click on the "Choose Font" button.

By default, date and time values displayed by Profiler use the fixed format used by SQL Server. If you
want to use another format, you can select the "Use regional settings to display date and time values"
checkbox, which will tell Profiler to use the regional date and time settings currently used by the OS.

In SQL Server 2005, duration is measured by Profiler in microseconds, but is displayed in Profiler in
milliseconds by default. If you would prefer to see microseconds displayed instead of milliseconds in
Profilet, select the "Show values in Duration column in microseconds" checkbox.

Profiler GUI Tips and Tricks 79

TRACING OPTIONS

I am not sure why anyone would want to use this option, but if the "Start tracing immediately after
making connection" checkbox is selected, then the Default trace template is started immediately when
Profiler is started.

FILE ROLLOVER OPTIONS

This option only applies when you load a pre-existing trace file for display by Profiler. By default, the
option "Load all rollover files in sequence without prompting" is selected. This means that if you
attempt to load a trace file that includes rollover files, then all the rollover files are loaded automatically

in sequence. I prefer to use this option as it requires no extra keystrokes or mouse clicks to load a trace
file.

If you choose the option "Prompt before loading rollover files," then you will be prompted to load each
rollover file; you can choose to load it or not.

If you choose the option "Never load subsequent rollover files," this means that only the file you select
is loaded, and other associated rollover files are ignored.

REPLAY OPTIONS

Replay options affect Profiler when you replay Profiler traces to a SQL Server instance.

The "Default number of replay threads" option determines how many threads are used to play back
events. The default value if four, and should normally not be changed. Increasing this value will use
more server resources.

The "Default health monitor wait interval" option affects the amount of time that a thread is allowed to
run before it is turned off by the health monitor. The default value is 3,600 seconds, or 1 hour. The main
purpose of this option is to prevent any trace replays from taking longer than you expect, and hurting
performance.

The "Default health monitor poll interval" specifies how often the health monitor polls replays so it can
determine how long they have been running. The default value is 60 seconds, and should normally not
be changed.

How To SCHEDULE A TRACE'S STOP TIME

Up to this point, we have been manually starting and stopping traces. While the SQL Server Profiler
GUI won't allow you to schedule the start of a trace, it will allow you to schedule the stop time of a
trace.

NOTE:

In a later chapter, we will discuss how you use system stored procedures to stop and start traces
using a SQL Server Agent job.

Scheduling a trace stop time is very easy. Start by creating a trace as you normally would. At the bottom
of the General tab on the Trace Properties screen is an option called "Enable trace stop time."

Profiler GUI Tips and Tricks 80

Trace Properties ﬁ
General | Events Selection |
Trace name: I&)plication Trace
Trace provider name: IF‘ELE
Trace provider type: IMiC!‘OSOﬂ SQL Server 2005 version: 9.0.3054
Use the template: Iadvanced_slow_query_identi‘fication {user) j
¥ Save to file: IC:\ﬁppIication Trace trc

Set madmum file size (MB):

|

¥ Enable file rollover

[~ Server processes trace data

[~ Savetatable: I EI

]

[T Set masimum rows (in thousands]:

[¥ Enable trace stop time: | 342008 ~| [11:0000AM =

Figure 3-28: Check the "Enable trace stop time" checkbox to schedule a trace to stop.

Once you check this option, you can select a date and time for the trace to end automatically. After you
start the trace manually, it will end at the time you specified.

The main thing you need to consider when using this option is how much data will you collect during
this period, and will the storage location for the trace file have enough storage space for it? The last
thing you want to do is to crash some system because you ran out of space. So don't use this option
unless you are comfortable that your system won't run out of space. Otherwise, it is best to stick around
during the trace, watching the size of the trace file to ensure it doesn't get too big.

How 10 USE THE AUTO SCROLL WINDOW

When you atre running a live trace and displaying the results in Profiler, you may have noticed that the
Trace window automatically scrolls to the bottom, showing you the most recent events that have been
captured. If you use your mouse to scroll the window up to see an earlier event while the trace is
running, as soon as a new event has been captured, the screen immediately jumps down to the most
recent event. This can be quite irritating if your goal is to look at an older event while the trace is
running. This default behavior is called auto scroll.

Fortunately, there is an easy way to turn this default behavior off, which allows you to scroll anywhere
you want inside the window without having to worry about new events jumping the screen to the
bottom. There are two options available to turn off auto scroll.

Profiler GUI Tips and Tricks 81
r
4 SQL Server Profiler =)
File Edit View Replay Tools | Window | Help
BETNESE2a e Switch Pane Shift+F6
Cascade
% application trace (PELE))) ===
J EventClass Tile Horizontally | ApplicationName NTUserMName | LoginMame =
a0L:BatchCompleted Tile Vertically n') Microsoft sQ... Profil..
Audit Logout Arrange Icons Microsoft sQ.. Profil..
sqQL:eatchstarting) plla... Microsoft 5Q.. Profil..
SQL:eatchCompleted Auto Tile p1la... Microsoft sQ.. Profil..
sfL:Batchstarting Start Minimized EYS.... Microsoft 5q.. Profil..
SqL:eatchCompleted E¥S.... Microsoft 5Q.. Profil..
. v Auto Scroll . X
Audit Logout Microsoft Q.. Profil..
sQL:Batchstarting v 1 application trace (PELE) r[@N... Microsoft 50.. Profil..
sqL:eatchCompleted SECECT U. Mane As [Nane], server [@N... Microsoft sqQ.. Profil..

Figure 3-29: Going to Window | Auto Scroll allows you to turn the auto scroll feature off.

One option is to go to the Main menu and choose Windows, then click on Auto Scroll to turn it off.

Figure 3-30: Clicking on the Auto Scroll icon at the top of the screen will also turn auto scroll off.

I

|Auto Scroll Window|

The other option is to click on the Auto Scroll icon at the top of the Profiler screen. When a trace is
running, you can turn off Auto Scroll on and off as much as you like. The sad part of this is that it is not
remembered. So each time you start a new trace and you want to turn auto scroll off, you have to do so

manually.

How T0 SEARCH FOR DATA IN A TRACE FILE

Once you have created a trace file, it is often convenient to display it in Profiler for analysis. But as you
know, Profiler can capture and display a huge amount of events, often making it difficult to find the
specific event you are looking for. How do you find a single event out of thousands?

One option is to use Profilet's Find option. This primitive search tool allows you to search for a known
string within all data columns, or within a specific data column, one event at a time.

Find

Find what:

Search in column:

EventClass

I Execution Warnings

[~ Match case
[~ Match who

le word

Figure 3-31: Use the Find option to locate specific records.

Profiler GUI Tips and Tricks 82

Anytime events are displayed in Profiler, you can go to Main menu and select Edit | Find, and the above
window appears. Under "Find what," enter the string you are searching for, and under "Search in
column," select a specific data column to search in, or select "All columns." When a match is found, the
event is highlighted. You can look for additional matches by clicking on either "Find Next" or "Find
Previous."

By default, the string you enter into the "Find what" box is a wildcard search. If you want to match case
or match a whole word, you must select the appropriate option on the screen.

How To SET BOOKMARKS

Sometimes, when you are analyzing events in a Profiler trace, it would be handy to mark the event so
you can easily come back to it later. Profiler allows you to do this by bookmarking an event, and then
jumping to the bookmark whenever you need to.

A SQL Server Profiler [F=RIE
File View Replay Tools Window Help
A i Copy a-c 13 (@& P
| Finde Cul-F o= =
j Find Next F3 | ApplicationName | NTUserName | LoginName =
Find Previous Shift+F3 .name AS [Name] FROM maste... Microsoft 5Q... Profil..
Go To... CHlets .name AS [Name] FROM maste... Microsoft sQ.. Profil..
.name AS [Name], s.langid... Microsoft 5Q.. Profil.. =
Teggle Bookmark Ctrl+F2 .name AS [Name], s.langid... Microsoft 5Q.. Profil.. E
Mext Bookmark E2 .name AS [Name], s.langid... Microsoft sQ.. Profil..
.name AS [Name], s.langid... Microsoft sg.. Profil..
Clear Trace Window Ctrl+Shift+Del .name As [wame], s.langid... MWicrosoft 5g.. profil..
SgL:BatchCompleted SELECT s.name AS [Name], s.langid... Microsoft s5Q.. Profil..

] sqQL:Batchstarting SELECT s.name AS [Name], s.langid... Microsoft 5Q.. Profil..
SQL:BatchCompleted SELECT s.name AS [Name], s.langid... Microsoft 3Q.. Profil..
SgL:Batchstarting SELECT s.name AS [Name], s.langid... Microsoft sQ.. Profil..
SQL:BatchCompleted SELECT s.name AS [Name], s.langid... Microsoft sQ.. Profil.. «

I T | 3
SELECT n
s.name AS [Name], -
s.langid AS [LangID],

s.dateformat AS [DateFormat], =3
s.alias AS [Alias], T
s.days AS [Days], |
s.datefirst AS [FirstDayofweek],

s.months AS [Months],

s.shortmonths AS [ShortMonths],

s.upgrade AS [Upgrade], 7

4 T | »

|Trace is stopped. Ln 36, Coll | Rows: 113~

Figure 3-32: Use "Toggle Bookmark" to mark an event so you can easily return to it.

To bookmark an event, first click on the event you want to bookmark. Then, from the Main menu,
select Edit| Toogle Bookmark. This will cause a small blue square to appear next to the event. You can
bookmark as many events as you like. If you want to unmark an event, click on the event, then choose
Edit| Toggle Bookmark again. This toggles the bookmark off.

To jump to a bookmarked event, from the Main menu, choose Edit| Next Bookmark, and you will jump
to the next bookmarked event, and so on.

SUMMARY

At this point, you know about everything that is important to know about the mechanics of using SQL
Server Profiler. From the next chapter onwards, we focus on how to use Profiler to troubleshoot and

Profiler GUI Tips and Tricks 83

resolve specific SQL Server-related problems. In other words, while chapters 1-3 focused on the
mechanics of using Profiler, the rest of the book focuses on how to apply Profiler to identifying and
resolving common SQL Server problems.

How to Identify Slow Running Queries 85

Chapter 4

How T0 IDENTIFY SLOW RUNNING QUERIES

As DBAs, one of the problems we face on an almost daily basis is slow-running queries. These are the
ones that:

e Take 1 minute, 5 minutes, even 30 minutes to complete.
e Spike CPU utilization to 90% or more.
e Block other users from getting their work done.

e Result in your boss being called by an end-uset's boss to find out why the problem hasn't
been fixed yet.

Most of all, however, these are the kinds of queries that keep us up late at night, ruining our sleep and
turning us into zombies. What can we do to fix this problem, once and for all? The answer: employ SQL
Server 2005 Profiler, and our experience as a DBA.

One of the most powerful ways to use Profiler is to identify slow running queries; what's more, it is a
simple and straightforward process that every DBA can master very quickly. Once poortly performing
queries are identified, we need to figure out how to speed them up. This is not as easy as finding them in
the first place, but Profiler can provide a lot of information that can help diagnose and resolve these
performance problems.

So, in this chapter, we discuss the following:

e How to create a Profiler trace to capture all the information we need to identify and
analyze slow running queries

e How to analyze the poorly-performing queries identified by Profiler

CREATING A TRACE TO IDENTIFY SLOW RUNNING QUERIES

This section covers the mechanics of how to create a Profiler trace template to capture and analyze slow
running queries. The same approach can be applied to resolving many other SQL Server problems, so
what you learn here can be applied to Profiler-based troubleshooting generally.

SELECTING EVENTS

Before you can choose which events to include in your trace, you first need to decide what information
you want to capture. Well, we already have said we want to capture slow-running queries. Isn't that
enough information to go on? Not really. Queries can come to a SQL Server instance in the form of
stored procedutes, batches of queries, or individual queties, so it's essential that you include the
necessary events to capture all three forms in which a slow-running query can appear.

Also, keep in mind that stored procedures can be executed in two different ways:
1. An RPC event —i.e. as a result of a Remote Procedure Call
2. A Transact-SQL event — i.e. as a result of a call to the T-SQL EXECUTE statement

So you might need to capture both types of stored procedure events.

How to Identify Slow Running Queries 86

Last of all, you need to include any additional events that will provide clues why a particular query is slow,
such as events that provide information about how a quety petforms, and "context" events that help put
the query in perspective. Context events are those events that happen directly before and after other
events, helping us understand more fully what is going on inside SQL Server.

So which events should you select? There is no single "correct combination" of events to include in a
trace such as this. While one DBA may want to use seven different events to identify and analyze slow
running queries, another DBA might use nine events, or only five. As the DBA, you must know Profiler
events well enough in order to determine which events are needed for a particular situation.

NOTE:

See Chapter 11, Profiler Events and Data Columns Reference, for descriptions of all the events and
data columns likely to be of interest to the DBA.

In this case, I am going to describe the events I think are needed to identify long-running queries. Feel
free to modify my suggestions when performing your own traces. Just keep in mind that in order to
minimize the load the trace will put on your SQL Server instance, you should minimize the number of
events you collect.

When I troubleshoot slow-performing queries, I like to capture the following events:

e RPC:Completed

e SP:StmtCompleted

e SQL:BatchStarting

e SQL:BatchCompleted
e Showplan XML

Let's look at each one to see what the event does, and why I have chosen to collect it for this particular
trace.

RPC:COMPLETED

The RPC: Completed event fires after a stored procedure is executed as a remote procedure call.

This event includes useful information about the execution of the stored procedure, including the
Duration, CPU, Reads, Writes, together with the name of the stored procedure that ran. If a stored
procedure is called by the Transact-SQL EXECUTE statement, then this event will not fire. In addition,
this event does not fire for Transact-SQL statements that occur outside a stored procedure.

SP:STMTCOMPLETED

The SP:StmtCompleted event tells us when a statement within a stored procedure has completed.

It also provides us the text (the Transact-SQL code) of the statement, along with the event's Duration,
CPU, Reads, and Writes. Keep in mind that a single stored procedure may contain a single, or many,
individual statements. For example, if a stored procedure executes five SELECT statements, then there
will be five SP:StmtCompleted events for that stored procedure. This event does not fire for Transact-
SQL statements that occur outside a stored procedure.

SQL:BATCHSTARTING

A SQL.: BatchStarting event is fired whenever a new Transact-SQL. batch begins. This can include a batch inside or
outside a stored procedure.

How to Identify Slow Running Queries 87

I use this as a context event because it fires anytime a new stored procedure or Transact-SQL statement
fires, allowing me to better see where a new chain of query-related events begins.

SQL:BATCHCOMPLETED

The SQL.: BatchCompleted event occurs when a Transact-SQL. statement completes, whether the Transact-SQL. statement
is instde or outside a stored procedure.

If the event is a stored procedure, SQL:BatchCompleted provides the name of the stored procedure (but
not the actual Transact-SQL code), together with the Duration, CPU, Reads, and Writes of the
statement. It may seem as if this event is somewhat redundant, in that it produces very similar results to
the SP:StmtCompleted event. Unfortunately, you need to capture both events: SQL:BatchCompleted to
provide Duration, CPU, Reads, and Writes event data when a Transact-SQL statement is run outside a
stored procedure, and SP:StmtCompleted to see more easily what the code is inside a stored procedure.

SHowPLAN XML

This event displays the graphical execution plan of a query.

While ShowPlan XML is not required to identify slow running queries, it is critical to understanding why
a query is performing poorly and it needs to be included with the trace.

If you are a little confused about what each of these event do, don't worty, as we will see them in action
very soon, when their use will make much more sense.

ANALYZING CAPTURED EVENTS

Figure 4-1 shows an example trace, displaying the captured events relating to the firing of a single stored
procedure. Let's examine each event in turn and see how they "fit" together.

NOTE:

This example focuses on tracing a stored procedure called by the EXECUTE statement, and
not called as a Remote Procedure Call (RPC).

Duration | EventClass ObjectMame | TextData | CPU | Reads Writes
: i 8QL:Batchstarting axec dbo.ADGSP_SO_LOADNOTSHIP
" showplan ML ADGSP_SO_LOADNOT. .. <ShowPlamdML xmlns="http://sc...
4493 S5P:StmtCompleted ADGSP_SO_LOADMOT. .. SELECT DISTINCT so_hdr_... 3244 158114 157
4493 sQL:eatchCompleted exec dbo.ADGSP_SO_LOADNOTSHIP 3244 158120 157

Figure 4-1: Trace results of a stored procedure.

Row 1 shows the SQL:BatchStarting event. The main reason I use this context event is because it
indicates when a stored procedure is called, along with its name. In this case, the stored procedure is
dbo.ADGSP_SO_LOADNOTSHIP.

Row 2 shows the Showplan XML event, which provides a graphical execution plan of the Transact-SQL
statement shown in the next event (Row 3). We'll discuss graphical execution plans in more detail a little
later in this chapter.

Row 3 is the SP:StmtCompleted event, which shows the actual code that has run (you can see part of it
in the TextData data column in figure 4-1 above), together with the time taken by the event (Duration),
the amount of CPU time, and the number of logical Reads and physical disk Writes. While this example
has a single SP:StmtCompleted event, as noted earlier, if a stored procedure has more than one

How to Identify Slow Running Queries 88

statement in it, you will see a SP:StmtCompleted event for each individual statement within the stored
procedure.

The SQL:BatchCompleted event in Row 4 indicates that this stored procedure has completed, and that
all statements within it have fired. It also displays the name of the stored procedure (again), and the
Duration, CPU, Reads, and Writes for the entire stored procedure. Since there is only a single statement
in the stored procedure, the values for the Duration, CPU, Reads, and Writes for the
SQL:BatchCompleted event are very similar to those for SP:StmtCompleted event in row 3. If there
were multiple statements within the stored procedure, then the Duration, CPU, Reads, and Writes for
the SQL:BatchCompleted event would be the sum (or a very close approximation) of all the
SP:StmtCompleted events that occurred during the execution of the stored procedure.

Let's now look at a different example. Figure 4-2 show a captured event related to the firing of a single
Transact-SQL statement that is 7oz inside a stored procedure.

| Duration | EvertClass | ObjectMame | TextData | CPU | Reads Writes
: SqQL:eatchstarting SELECT top SO000 =, gl_...
Showplan XML Dynamic SQL <ShowP1anXML xmlns="http: //sc...
212 sqL:eatchcompleted SELECT top 50000 *, gl_... 218 2782

Figure 4-2: Traces results of a query not inside a stored procedure.

When this single T-SQL query executes, it generates three events.

Row 1 shows the SQL:BatchStarting event, but because we're looking at the execution of a single T-SQL
statement, rather than a stored procedure, the TextData data column of the SQL:BatchStarting event
shows the T-SQL code of the query that is executing, not the name of a stored procedure, as we saw in
the previous example.

Row 2 shows the Showplan XML event, which provides a graphical execution plan of the Transact-SQL
statement that was executed.

Row 3 shows the SQL:BatchCompleted event, which repeats the T-SQL code in the TextData data
column we saw in the SQL:BatchStarting event in Row 1, but it also includes the Duration, CPU, Reads,
and Writes for the event.

By this time, hopefully you are beginning to see why I have selected the events I did, and how they are
used. The more you use Profiler to analyze trace results like this, the easier it will for you to become
familiar with the various events and how they can best provide the information you need when analyzing
them.

SELECTING DATA COLUMNS

Having discussed the Profiler events needed to identify slow queries and why, it's time to do the same
for the data columns. I reiterate: it's important to select only those data columns you really need, in order
to minimize the amount of resources consumed by the trace. The fewer data columns you select, the less
overhead there is in collecting it.

As with events, the data columns regarded as necessary will vary from DBA to DBA. In my case, I
choose to collect these data columns when identifying slow queries:

e Duration

e ObjectName
o TextData

e C(CPU

e Reads

How to Identify Slow Running Queries 89

o Writes
e IntegerData
e DatabaseName
e ApplicationName
e StartTime
e EndTime
e SPID
e LoginName
e EventSequence
e BinaryData
Let's look at each one to see what it collects. While I might not use all the information found in all

columns for every analysis, I generally end up using all of them at some point in time as I analyze vatious
queries.

DURATION

This very useful data column provides the length of time in microseconds that an event takes from
beginning to end, but what is curious is than when Duration is displayed from the Profiler GUI, it is
shown, by default, in williseconds. So internally, SQL Server stores Duration data as microseconds, but
displays it as milliseconds in Profiler. If you want, you can change this default behavior by going to
Tools| Options in Profiler and select "Show values in Duration column in microseconds". I prefer to
leave it to the default display of milliseconds, as it is easier to read. All the examples in this book will be
shown in milliseconds.

Since our goal in this trace is to identify long-running queries, the Duration data column is central to our
analysis. Later, we will create both a filter and an aggregation on this data column to help with our
analysis.

Note that the Duration data column only exists for the RPC:Completed, SP:StmtCompleted and
SQL:BatchCompleted events.

OBJECTNAME

This is the logical name of the object being referenced during an event. If a stored procedure is being
executed, then the name of the stored procedure is displayed. If an isolated query is being executed, then
the message "Dynamic SQL" is inserted in this data column. This column therefore provides a quick
means of telling whether or not a query is part of a stored procedure.

Note that this data column is not captured for the SQL:BatchStarting or the
SQL:BatchCompleted cvents.

TEXTDATA

As our previous examples have indicated, the contents of the TextData column depend on the event
that is being captured and in what context.

For the SQL:BatchStarting or SQL:BatchCompleted events, the TextData column will either contain the
name of the executing stored procedure or, for a query outside a stored procedure, the Transact-SQL
code for that query.

If the event is SP:StmtCompleted, the TextData column contains the Transact-SQL code for the query
executed within the stored procedure.

How to Identify Slow Running Queries 90

For the Showplan XML event, it includes the XML code used to create the graphical execution plan for
the query.

CPU

This data column shows the amount of CPU time used by an event (in milliseconds). Obviously, the
smaller this number, the fewer CPU resources were used for the query. Note that CPU data column is
only captured for the RPC:Completed, SP:StmtCompleted, and the SQL:BatchCompleted events.

READS

This data column shows the number of /gica/ page reads that occurred during an event. Again, the
smaller this number, the fewer disk I/O resources were used for the event. Note that Reads are only
captured for the RPC:Completed, SP:StmtCompleted and the SQL:BatchCompleted events.

WRITES

This data column shows the number of physical writes that occurred during an event and provides an
indication of the I/O tesources that were used for an event. Again, Writes is only captured for the
RPC:Completed, SP:StmtCompleted and the SQL:BatchCompleted events.

INTEGERDATA

The value of this column depends on the event. For the SP:StmtCompleted event, the value is the actual
number of rows that were returned for the event. For the ShowPlan XML event, it shows the estimated
number of rows that were to be returned for the event, based on the query's execution plan. The other
events don't use this data column. Knowing how many rows a query actually returns can help you
determine how hard a query is working. If you know that a query returns a single row, then it should use
a lot less resources than a query that returns 100,000 rows. If you notice that the actual number or rows
returned is significantly different that the estimated value of rows returned, this may indicate that the
statistics used by the Query Optimizer to create the execution plan for the query is out of date. Out of
date statistics can result in poortly performing queries and they should be updated for optimal query
performance.

DATABASENAME

This is the name of the database the event occurred in. Often, you will want to filter on this data column
so that you only capture those events that occur in a specific database.

APPLICATIONNAME

This is the name of the client application that is communicating with SQL Server. Some applications
populate this data column; others don't. Assuming this data column is populated, you can use it to filter
events on a particular application.

STARTTIME

Virtually every event has a StartTime data column and, as you would expect, it includes the time the
event started. Often, the start time of an event can be matched to other related events to identify their
order of execution. It can also be compared to the stop time of events to determine the differences in
time between when one event started and another completed.

How to Identify Slow Running Queries 91

ENDTIME

The EndTime data column is used for those events that have a specific end time associated with them. It
can be used to help identify when a particular query or transaction runs at a specific point in time.

SPID

This data column is mandatory for every event, and contains the number of the server process 1D
(SPID) that is assigned to the client process creating the event. It can help identify what connections are
being used for an event, and can also be used as a filter to limit the number of events returned to those
of particular interest.

LoGINNAME

Most events include the LoginName data column. It stores the login of the user that triggered the event.
Depending on the type of login used, this column can contain either the SQL Server login 1D or the
Windows Login ID (domain\username). This very useful data column helps you identify who is causing
potential problems. It is a good column to filter on, in order to limit trace results to those of a specific
user.

EVENTSEQUENCE

Every event produced by SQL Server Profiler is assigned a sequence number that indicates the order
that events occurred in SQL Server. Much of the time, you will capture traces in default order, which
means the events are displayed in the order they occurred in the Profiler GUIL EventSequence numbers
appear in ascending order.

However, should you choose to apply a custom grouping, based on a certain data column such as
Duration, then the EventSequence data column makes it easier for you to see which events occurred
before, or after, other events.

BINARYDATA

This data column is only populated for the Showplan XML event and includes the estimated cost of a
query, which is used for displaying the graphical execution plan of the query. This data is not human-
readable, and is used by Profiler internally to help display the graphical execution plan.

CREATING A FILTER

When creating a trace to identify long-running queries, I generally include two or more filters in order to
minimize the number of rows returned in my trace.

The first, and most important, filter I create is on the Duration data column, which returns the length
of time it takes for a particular event (query) to run. I use this filter to exclude queries that execute very
quickly (which is most queries). The hard part is determining the threshold at which a query becomes
"long-running”. For example, is a long-running query one that takes mote than 1 second, more than 5
seconds, more than 15 seconds?

I generally use 5000 milliseconds (5 seconds), although this is just a personal preference and you will
want to adjust this to best meet your needs. In this example, however, I am going to use 100
milliseconds as my limit, just because it is easier to create illustrative examples using a smaller value.

In addition to the Duration filter, I generally add additional ones in order to reduce the number of
events captured. For example, I might only want to collect queries for a specific database, a specific

How to Identify Slow Running Queries 92

application, or a specific user. In this example, I have created a second filter on the DatabaseName
column, in order to limit my trace data to events raised in a specific database, as shown in Figure 4-3:

Edit Filter 5
— — ApplicationMame
icationMame *
w = Mame of the dient application that created
BinaryData the connection to SQL Server. This column is
CPU populated with the values passed by the
“F DatabaseName application rather than the displayed name
F Duration of the program.
EndTime |
IntegerData -
LoginMame - Like
ObjectMame - Mot like
Reads
SPID
StartTime N
TextData
ss T [Exdude rows that do not contain values
oK I Cancel

Figure 4-3: Create whatever filters you need to limit the amount of events returned.

ORGANIZING COLUMNS

When you use the "Organize Columns" window, you have two major decisions to make:
3. Whether or not you want to group any of the data columns and aggregate the results

4. 'The order in which you want the data columns arranged when the trace results are
returned.
Judicious column organization can make the analysis of the results much easier to perform. When

creating a trace to identify long running queries, I always group by Duration, as shown in figure 4-4, so
that I can quickly identify the longest-running queries:

How to Identify Slow Running Queries 93

Organize Columns Iﬁ

= Groups » Selecta column and use Up and
— Down buttons to change its
order. Move the column under
El Columns Groups to group data by that
EventClass column.
ObjectMame
TextData
CPU
Reads
Writes
IntegerData
DatabaseMame
ApplicationMame

StartTime
ErndTima

m

p Down | 0K I Cancel

Figure 4-4: I like to group by Duration, and arrange the other data columns in the order that makes the most
sense for me.

I also like to rearrange the order of the data columns so that the most useful columns appear to the left,
and the less useful columns to the right. Figure 4-4 above shows my personal preferences.

CREATING A TEMPLATE

I run this trace a lot, so I have created it as a custom trace template, which includes all the events, data
columns, column filters and column organization described previously. I suggest you do the same, as
described in the "Custom Profiler Trace Templates" section of Chapter 2.

RUNNING THE TRACE

Once you have created your trace template, it is time to run it. Ideally this will be on a production server,
otherwise on a test server and a stress test tool, or a simple load-generation script (see Chapter 1).

Keep the following in mind when you run this trace to identify slow running queries:

Select a day that represents a typical workload.

Run the trace for an entire day. This might seem like a long time, but if your filters are
effective, you should not collect too much data. If this is the first time you have run it,
you may want to monitor the trace file size throughout the day to ensure that it is not
using up too much space.

Before you start the trace, choose to save it to a file as the trace runs.

Start the trace manually and set it to stop automatically after 24 hours.

Up to this point, we have only discussed running traces from the Profiler GUI. However,
you can also run this same trace using system stored procedures. By doing so, you will
reduce the load on the server. You will learn how to use system-stored procedures to run
a trace later in this book, in the chapter on "How to Capture Profiler Traces
Programmatically”.

How to Identify Slow Running Queries 94

Once you have captured the trace, you are ready to analyze it.

ANALYZING THE POORLY PERFORMING QUERIES IDENTIFIED BY PROFILER

Let's assume that you have just created and run a trace similar to the one just desctibed. What do the
results look like, and how do you use this trace to identify and troubleshoot slow-performing queries?

The following sections set out my preferred way of performing an analysis on slow-performing queries.
As always, through practice, you will develop a methodology that works best for you.

THE Bi1G PICTURE

Before drilling down into statement-level analysis, I always start by looking at the big picture. When 1
ran our example trace template on my sample database, I got trace screen that looked as shown in Figure
4-5:

| Duration | EvertClass | ObjectMame | TextData
+ (157)
+ 165 (1)
+ 206 (1)
+ 206 (1)
+ 206 (1)
+ 207 (1)

Duration | EvertClass ObjectMame Teat Diata
+ 9951 (1)
+ 9952 (1)
+ 9954 (1)
+ 10220 (1)
+ 102322 (1)
+ 12592 (1)
¥ 12594 (1)
+ 14602 (1)
+ 14604 (1)
+ 15086 (1)
+ 15088 (1)

Figure 4-5: After you have completed the trace, scroll through the events to get a feeling for the results you got
back.

Note that, since the events are grouped by Duration, each event is aggregated by Duration. Also, all one
can see are the Duration times; no other data. Given the absence of any data beyond duration, you may
be tempted to drill quickly down to individual events. However, it is definitely worth spending a little
time analyzing this "big picture" screen.

In Figure 4-5, for ease of presentation, I've actually split one big screen into two smaller ones. The top
screen shows 5 events that marginally exceeded the 100-millisecond threshold and the lower screen
shows 11 events that exceeded it substantially. This information, on its own, can be informative. What if,
for example, there wetre several hundred events that "marginally" exceeded the threshold? You would
very quickly be overwhelmed with data — an indication that the Duration threshold on your filter is not
set appropriately. The next time you run this trace, you should increase the Duration threshold on your
filter so that you can focus your efforts on a manageable number of events and on those that need the

How to Identify Slow Running Queries 95

most urgent attention. Having fixed these queries you can then rerun the trace with a lower Duration
limit and start work on the slow-running queries that did not make the first cut.

Conversely, you may find that only very few events have been captured. If this is the case, then you may
want to rerun the trace using a lower Duration threshold, in order to identify more queries. Of course,
this also may be a sign that you don't have any long-running queries, which would be a good thing.

FINDING SLOW-RUNNING PROCEDURES AND QUERIES

The next step is to review each event in the trace, starting with those at the bottom — i.e. the slowest-
running events that took the most time to execute. To do this, click on the plus sign next to each of the
events you want to examine, as shown in figure 4-6:

| Duration | EvertClass | ObjectMame | TextData | CPU | Reads

= 10220 (1)
10230 SP:Stmtcompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo.po_... 12027 14595
- 10232 (1)

10232 SQL:BatchCompleted exec dbo.ADGSP_PO_Purchasord 12027 14608
E 12592 (1)

12592 sSP:stmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo.po_... 15148 14595
- 125934 (1)

12594 SgL:BatchCompleted exec dbo.ADGSP_PO_Purchasord 15148 14808
- 14602 (1)

14602 SP:StmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo.po_... 20623 14535
= 14604 (1)

14604 SQL:BatchCompleted exec dbo.ADGSP_PO_Purchasord 20623 14608
- 15086 (1)

15086 SP:StmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo.po_... 19782 14595
E 15088 (1)

15088 sgL:eatchCompleted exec dbo.ADGSP_PO_Purchasord 19782 14608

Figure 4-6: Once the events are revealed, an entirely different representation of your data may appear.

The first thing to do is analyze this screen for any obvious "patterns”.

NOTE:

The rows highlighted in blue aren't events, but aggregated results of events. The rows in white
are the actual events captured by Profiler and this is where you should focus your attention.

The most obvious pattern is that the same stored procedure, ADGSP_PO_PurchasOrd, occurs in the
ObjectName data column for each of the four SP:StmtCompleted events, including the longest running
event, which takes over 15 seconds. This is a strong indication that this stored procedure would be a
good place to start your investigations.

The second pattern, a little more subtle, is that each execution of this stored procedure appears to be
associated with two events: SP:StmtCompleted and SQL:BatchCompleted. The first SP:StmtCompleted
event in Figure 4-6, for example, is related to completion of the execution of a SELECT
DISTINCT...query within the ADGSP_PO_PurchasOrd stored procedure. Its duration was 10230, the
CPU time was 12027 and there were 14595 reads. Following that is a SQL:BatchCompleted event
relating to completion of the execution of the the ADGSP_PO_PurchasOrd stored procedure, with a
duration of 10232, CPU time of 12027 and 14608 reads.

If the Duration, CPU and Reads times for these two events look suspiciously similar. That is because, in
this case, they are in effect the same event. So, the 8 events that we see here represent the execution of 4

How to Identify Slow Running Queries 96

queries — not 8 queries, as you may initially suspect. In fact, what we are seeing here is 4 executions of a
stored procedure that contains a single T-SQL statement. The SP:StmtCompleted is fired when the
Transact-SQL statement within the stored procedure has completed; the SQL:BatchCompleted event is
fired whenever a Transact-SQL statement is firted, whether or not it is inside or outside a stored
procedure, and it also fires at the end of the execution of every stored procedure. In this case, these two
events occur more or less simultaneously.

You may be thinking that this is an unnecessary duplication of data, and we should just collect one event
or the other. However, there are several reasons why it is essential to capture both events. The most
obvious one is that, if we omitted the SQL:BatchCompleted event, then we would miss any T-SQL
statements that occurred outside of a stored procedure.

Furthermore, consider a different set of trace results, as shown in Figure 4-7:

| Duration | EventClass | ObjectMName | TextData CPU | Reads |

Trace Start
S0L:Batchstarting EXECUTE dbo.test
Showplan XML test <ShowPlanxML xmlns="http://schemas....

2809 SP:StmtCompleted test SELECT top S0000 =, [218 2782
Showplan XML test <ShowPlanxML xmlns="http://schemas....

2399 SP:stmtCompleted test SELECT top 50000 =, [218 2782
Showplan XML test <ShowPlarnxML xmlns="http://schemas....

2924 SPistmtCompleted test SELECT top &0000 =, fee 141 33339
Showplan XML test <showPlanxML xmlns="http://schemas....

4760 SP:stmtCompleted test SELECT top 70000 =, [327 38195
Showplan XML test <showPlanxML xmlns="http://schemas....

4430 SP:stmtCompleted tTest SELECT top 80000 =, [375 4456

17324 5SQL:BatchCompleted EXECUTE dbo.test 1279 17257

% Trace stop

Figure 4-7: This is an example with a stored procedure that has five queries within it.

Here, we see:

1. One SQL:BatchStarting event, relating the start of the execution of a dbo.test stored
procedure

2. Five SP:StmtCompleted events, each with a different duration, and each representing the
execution of a separate query within a single stored procedure

3. One SQL:BatchCompleted event relating the end of the execution of a dbo.test stored
procedure

If you add up the Duration, CPU, and Reads for each query within the stored procedure, the sum total
will be very close to the total found in the SQL:BatchCompleted event.

This is another example of why it is important to include both the SQL:BatchCompleted (and
SQL:BatchStarting) event as well as the SP:StmtCompleted event, when performing an analysis of slow-
performing queties. The former gives you the big picture for the stored procedure and the latter the
details.

To summarize what we have learned so far: we have identified eight events that took over 10 seconds
each to execute. We discovered that a single stored procedure was the cause of all 8 events that exceeded
10 seconds. We then drilled down into the data and discovered that there were not really eight queries
but only four, as each execution of the stored procedure was represented by two events and what we
were seeing was four executions of a stored procedure containing a single T-SQL statement.

While, for our simple example, it seemed as if we were collecting duplicate data, we also saw that for
more complex traces it was vital to collect all these events, in order to get the complete picture.

How to Identify Slow Running Queries 97

FINDING QUERIES AND PROCEDURES THAT EXECUTE FREQUENTLY

It is important not only to identify long-running queries, but also to identify those queries that execute
the most often. For example, which is worse, a query that runs once an hour and takes 30 seconds to
run, or a query that runs 100 times a second that takes 1 second to run? I think you would agree that the
shorter query would probably have more effect on the overall performance of the system than the
longer one.

So how do we determine how often a query runs? Unfortunately, the tools that accompany SQL Server
don't make this easy. One option would be use the SQL Server 2005 SP2 Performance Dashboard tool.
This tool automatically calculates the twenty most resource-hogging queries that are currently in the plan
cache. It does this by summing up the total duration of queries each time they run, which identifies
those queries that use the most resources overall. The problem with this tool is that it only accounts for
queries that are currently in the plan cache. This means that the results don't faitly represent all the
queries that have run all day on your SQL Server instance.

Alternatively, we can export our profiler trace data into a SQL Server table, as described in Chapter 2,
and use a little SQL code to produce the report we need, as shown in figure 4-8:

SELECT [ObjectName],

COUNT(*) AS [SP Count]
FROM [dbo] . [Identify_query_counts]
WHERE [Duration] > 100

AND [ObjectName] IS NOT NULL
GROUP BY [ObjectName]
ORDER BY [SP Count] DESC

ChjectName 5P Count
1 | ADGSP_EN_Salesinstr 17
2 ADGSP_PO_PurchasOrd 16
3 ADGSP_SO_LOADNOTSHIP 3
4 ADGSP_EN_BOLinstr 9
i} ADGSP_EM_Instnuctions 9

Figure 4-8: You can manually perform your own analysis on trace data stored in a SQL Server table.

NOTE:

This code sample only counts stored procedures, not other T-SQL that may have been captured
in your trace. You will need to modify the query in order to extract information on these
queries.

This code simply counts the number of times a stored procedure has run with a duration longer than
100 milliseconds. We can immediately see that the ADGSP_PO_PurchasOrd stored procedure, which
we identified as the home of our longest running queries, is the second most commonly run query in this
trace. This is a confirmation that this procedure, and the query within it, needs our attention

Once we have dealt with it, we can then use the information from figure 4-6 (long-running queries) and
tigure 4-8 (how often queries run) to help us prioritize what other queries we should focus on.

As you can see, you have many options about how to analyze your data. It is impossible to explore them
all. What I hope to accomplish is for you to be aware of your options and then, based on your current
skill set and available tools, for you decide the best approach to identify those queries that need the
greatest attention.

How to Identify Slow Running Queries

ANALYZING PROBLEM QUERIES

98

Now that we have identified a specific stored procedure, ADGSG_PO_PurchasOrd, that needs work,
let's start analyzing it so that we can identify what is the cause of its slowness, with the presumption that
it will enable us to fix the problem.

DRILLING IN TO THE TRACE DATA

At this point, within Profiler, our data has been aggregated by Duration. This is a useful way to get
started on our analysis, as we have already discovered. In the next step, what I often do is to disaggregate
the data, so that the events are displayed in the order they actually occurred. This allows me to examine

the stored procedure in question in the context of actual events occurring on the server.

To disaggregate trace data, select from the main menu, View | Aggregated View, as shown in Figure 4-9:

4 SQL Server Profiler - [Untitled - 1 (PELE]]
i3 File Edit [View | Replay Tools Window Help
H Y1 & ¥ Toolbar B
Status Bar B
= 10230 Always on Top
104 as!
- 10232 Performance Monitor Graph
107 Replay Data
- 12592
124 Refresh -
= 12534 | ¥ Aggregated View Ctrl+V
128
Grouped View Ctrl+E
- 14602

Figure 4-9: Turn off the aggregated view by unselecting the option.

This will remove the checkmark next to "Aggregated View

appearance, as shown in Figure 4-10:

" and the data you see in Profiler changes

Figure 4-10: Events are now ordered in the way they were captured.

| Duration | EventClass | ObjectName | TextData |cPu | Reads |
: . sQL:Batchstarting exec dbo.ADGSP_PO_Purch. ..
Showplan XML ADGSP_PO_Purchasord <showPlanxML xmlns="http:...
10230 SP:StmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo. .. 12027 14595
10232 SQL:BatchCompleted exec dbo.ADGSP_PO_Purch. .. 12027 146058
SQL:eatchstarting exec dbo.ADGSP_PO_FPurch...
Showplan XML ADGSP_PO_Purchasord <showPlanxML xmlins="http:...
12592 SP:StmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo. .. 15148 14535
12594 SQL:BatchCompleted exec dbo.ADGSP_PO_Purch. .. 15145 146058
SQL:eatchstarting exec dbo.ADGSP_EN_5ales...
Showplan XML ADGSP_EN_SalesInstr <ShowPlanxML xmlins="http:...
9911 SP:sStmtCompleted ADGSP_EM_SalesInstr SELECT dbo.im_localstr_tb... 7098 17327
9911 5SgL:BatchCompleted exec dbo.ADGSP_EN_5ales... 7098 17330

How to Identify Slow Running Queries 99

In Figure 4-10, I have scrolled the window to display three distinct stored procedure events. The first
one is highlighted in blue, which shows all the events we captured that are associated with the
ADGSP_PO_PurchasOrd stored procedure. We also see another four events associated with a second
execution of the same stored procedure, and we see a third stored procedure that's not related to our
current analysis. To keep our analysis simple, let's focus on the four events highlighted in blue.

Together, these four events describe what happens to the stored procedure as it is executed. In row 1,
we see that a SQL:BatchStarting event has occurred. By expanding the TextData column, or just by
clicking on the event row and examining the window in the bottom half of the Profiler screen, as shown
in Figure 4-11, we can see that it relates to the execution of our problem ADGSP_PO_PurchasOrd
stored procedure:

exec dbo.ADGSP_PO_Purchasord
go

Figure 4-11: Whenever you click on an event row, the value of the TextData data column is displayed in the
window at the bottom of the Profiler screen.

As mentioned earlier in this chapter, the SQL:BatchStarting event is a context event. It is not strictly
required for analysis of slow queries, but it helps us to keep track of where we are in an analysis.

Row 2 in Figure 4-10 is a Showplan XML event, providing a graphical execution plan of the Transact-
SQL that is about to be executed. To view the graphical execution plan, click on this row and you will
see it at the bottom of the screen, as shown in Figure 4-12:

3 - iy

Hash Match Parallalism Clusterad Index Scan
{Iner Join) (Distribute Streams) |E1g_Patabase |. ldbol. Lgl_cmp_tbll. lglcmp_t_.
Cost: O % Cost: O % Cost: 0 %
= By k£
£ E
Hash Match Parallelism Clustered Index Scan
{Inner Join) (pistribute Streams) [Eig Patabasel. [dool. [in_whs_th1]. [in_whs_t..
Cost: 0 % Cost: O % Cost: 0 %
24 34 ks
b= = =
Hash Match Parallalism Clusterad Index Scan
{Inner Join) {Repartition Streams) [Big patabase]. [do]. [im_adres_tb1]. [im_adr..
Cost: 1 % Cost: 0 % Cost: 0 %
¥ 5
= =
Parallalism - Clusteraed Index Scan
(Repartition Streams) [Big patabase]. [dol. [po_hdr_th1]. [po_hdr_t..
Cost: 1 8 Cost: 2 %

Figure 4-12: This figure only shows part of the execution plan. The entire plan would not fit on the screen.

The graphical execution plan is our main tool for determining why a particular query may be slow. For
the moment, howevet, let's hold off on how to interpret it and look at row 3 of Figure 4-10.

Row 3 shows the SP:StmtCompleted event, indicating the end of a Transact-SQL statement within a
stored procedure. It also includes the Duration, CPU, Reads and Writes for the statement. What is
useful about this event is found in the TextData column. When you click on this row, the code that just
ran is displayed at the bottom window of the screen, as shown in Figure 4-13:

How to Identify Slow Running Queries

100

dba.
dba.
dba.

dba.
dba.
dba.
dbao.
dba.
dba.
dbao.
dba.
dba.
dba.
dba.
dbao.
dba.
dba.
dbao.
dba.
dba.
dba.
dba.
dbao.
dba.
dba.
dbao.
dba.
dba.
dba.
dba.
dbao.
dba.
dba.
dbao.

SELECT DISTIMNCT

po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
thl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_hdr_tbl.
po_dt1_tbl.
po_dt1_tbl.
thl.
po_dt1_tbl.
po_dt1_tbl.
po_dt1_tbl.
po_dt1_tbl.
po_dt1_tbl.
po_dt1_tbl.
po_dt1_tbl.
thl.
in_whs_tbl.
in_whs_tbl.
in_whs_tbl.
in_whs_tbl.
in_whs_tbl.
in_whs_tbl.
in_whs_tbl.

po_hdr

po_dtl

po_dtl

gl_cmp_key AS Company,
so_brnch_key AS Branch,

po_hdr_key AS [Purchase order Mo],
ap_delfm_key AS [Vendor Noj,
po_hdr_revno AS [Change Order Noj,

po_hdr_revdt AS [Change Order Date],

po_hdr_wia AS [Ship via],
in_whs_key AS [wWhse Key],
ar_terms_key AS [Terms Key],
in_buyc AS [Buyer Key],

po_hdr_confm AS [Confirmed-by Name],

en_carr_key AS [Carrier Key],
po_dtl_key AS [Detail Line no],
in_item_key AS [Item MNo],
po_dt1_uom AS [Detail uoM],
po_dtl_cmmts AS [Detail Comments],
po_dt1_entdt AS [PO Date],
po_dtl_prqty AS Quantity,
po_dtl_quotc AS [PO Price],

po_dt1_quotcf AS [PD Price Foreign],

en_uom_pruom AS [Pricing uom],
po_dtl_taxf AS [Detail Tax Flag],
po_dt1_reqdt AS [Required Date],
in_whs_name AS [Ship To Name],
in_whs_adri AS [Shipaddress 1],
in_whs_adrz As [ShipAddress 2],
in_whs_city AS [Ship City],
in_whs_state AS [Ship State],
in_whs_postc AS [Ship Zip],
in_whs_telex AS [Tax exempt no],

in_buyc_tbl.in_buyc_desc AS [Buyer Name],

dba.
dba.
dba.
dba.
dbao.
dba.
dba.
dbao.

ar_terms_tbl.
im_adres_tbl.
im_adres_tbl.
im_adres_tbl.
im_adres_tbl.
im_adres_tbl.

ar_terms_desc AS Terms,
im_adres_name AS [Vendor Name],
im_adres_linel AS [Vendor Addri],
im_adres_1linez AS [Vendor Addrz],
im_adres_line3 AS [Vendor Addr3],
im_adres_city AS [Vendor City],
im_adres_tbl.im_adres_state AS [vendor State],
im_adres_tbl.im_adres_pczip AS [Vendor Zip],
en_carr_tbl.en_carr_desc AS [Carrier Desc],
po_hdr_tbl. en_fob_key AS FOR,
en_ftob_tbl.en_fTob_desc AS [FOB Desc]

4|

a.en_itdsc_desc

i = T —h B CL MO

dba.
dba.
dbao.
dba.
dba.
dba.

Al

.en_itdsc_desc
en_itdsc_desc
.en_itdsc_desc
.en_itdsc
.en_itdsc_desc
.en_itdsc_desc
en_itdsc_desc
.en_itdsc_desc
j . en_itdsc_desc
po_hdr_tb1. po_hdr_orddt AS [Order’ Date]
in_item_tbl.in_desc AS [Item Description],
in_item_tbl.in_type_key AS [Item Type Key],
po_hdr_tbl. po_hdr_frtf AS [PO HDR FOBF],
en_Tob_tbl. en_fob_desc AS [PD HDR FOBDSC],
po_hdr_ext. po_hdr_a_cmmt_txt AS [PO HDR Comments],

e A et mem e b=

desc

AS
AS
AS
AS
AS
AS
AS
AS
AS
AS

[EXT
(Ext
(EXT
[EXT
(EXE
[EXT
[EXT
(EXT
[EXT
(Ext

Description
Description
Description
Description
Description
Description
Description
Description
Description
Description

e i I

'q.ﬂ"I'.'ﬂ"“J"ﬂﬁ"'-"'"-h-"l-l-'"Nul-l-l 1=}

A Frilne =TT AT

L

Figure 4-13: The code for this stored procedure is so long that only a small portion of it appears in this figure.

If I did not collect this event as part of my trace, then I would have to manually go to Management
Studio, find the stored procedure code within the stored procedure itself, and then look at it there. As it
is now displayed in Profiler, I can view the full T-SQL code right alongside the execution plan, which we
will soon find is very useful.

Row 4 is the SQL:BatchCompleted event; it includes the Duration, CPU, Reads, and Writes data
columns summed for the entire stored procedure. In this case, since there is only one Transact-SQL
statement in the stored procedure, the SP:StmtCompleted and SQL:BatchCompleted events are almost

identical.

How to Identify Slow Running Queries 101

In these cases, I use the values from the SQL:BatchCompleted event as they tend to be a little larger
than the same values from the SP:StmtCompleted event. However, in reality, the differences between
them are so small it is unimportant which one you end up using.

DoEs A QUERY RUN SLowLy EVERY TIME?
Let's recap what we know for certain at this stage:

e We know that the longest-running T-SQL statement (>15 seconds) arose from the
execution of the ADGSP_PO_PurchasOrd stored procedure (Figure 4-6).

e We know for sure that this stored procedure ran 16 times over our examination period
(Figure 4-8)
¢ We know which four events make up the execution of this stored procedure

What we don't know is whether this procedure always runs slowly, ot just occasionally. Generally, we
would expect the same Transact-SQL code to run in about the same amount of time each time it runs,
although we would have to allow for variations in the overall server load.

However, what if we discovered cases where the duration was radically different? For example, we know
the longest time it ran was about 15 seconds, but what if we found that sometimes this stored procedure
only takes 1 second to run? This is important to know.

Assuming the trace is not large, one quick and dirty way to find out the 16 individual durations for each
execution of ADGSP_PO_PurchasOrd stored procedure would be to search for the stored procedure
name in the Profiler trace, using the "Find" command. For example, from the main menu, select
Edit|Find, then type in ADGSP_PO_PurchasOrd and have Profiler search the ObjectName Column,
as shown in Figure 4-14:

[Find S|

Find what:
I ADGSP_PO_PurchasOrd ;I | Find Mext

Search in column:

Ohjectilame - Cloze

[Match case Help
[Match whole word

Figure 4-14: Use the Find option to search through your trace from within Profiler.

Having found the first instance of the stored procedure, note its Duration and then click "Find Next"
until you have recorded each of the 16 durations for that stored procedure, as shown in Figure 4-15:

How to Identify Slow Running Queries

J Duration | EventClass | ObjectMame | Text Data
Showplan xML ADGSP_PO_Purchasord <=ShowPTlanxML xr
8809 SP:StmtCompleted ADGSP_PO_Purchasord SELECT DISTINC
8811 SOL:BatchCompleted exec dbo.ADGE
sqL:eatchstarting exec dbo.ADGE
Showplan xML ADGSP_PO_Purchasord <=ShowPTlanxML xr
8622 5SP:StmtCompleted ADGSP_PO_Purchasord | SELECT DISTINC

r

Find

Find what:

ADGSP_PO_PurchasOrd ~| | Fndnext

] Find Previous
Search in column:

IDbjE::tName ;I Close

[™ Match case Help
[~ Match whele word

Figure 4-15: Use "Find Next" to continue searching through the trace.

102

In my example, I recorded 8901 milliseconds as the fastest time in which the stored procedure ran, and
15088 milliseconds as the slowest. This duration range, from 8901 through 15088, may or may not be

significant. The only way to know for sure is to investigate further.

NOTE:

As traces increase in size, using "Find" becomes more labotious. It is easier to create some
Transact-SQL code yourself and run it against the trace data, stored in a database table, to

identify the duration of each execution of the stored procedure.

The next step in the investigation is to compare the CPU, Reads, Writes, Transact-SQL code and the

execution plans for the slowest and fastest durations, as shown in figure 4-16 and 4-17:

Figure 4-17: The four events that make up the shortest-running instance of the stored procedure.

| Duration | EvertClass | ObjectName | TedData |cPu | Reads [wrtes |
5QL:Batchstarting exec dbo.ADGSP_PO_Purch. ..
Showplan XML ADGSP_PO_Purchasord =<ShowPlanxML xmlns="http:...
15086 SP:stmtCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo. .. 19782 14595 o
15088 sqL:BatchCompleted exec dbo.ADGSP_PO_Purch. .. 19782 14608 o
Figure 4-16: The four events that make up the longest-running instance of the stored procedure.
S0L: eatchstarting exec dbo.ADGSP_PO_Purch...
Showplan XML ADGSP_PD_Purchasord <ShowPlanxXML xmlns="http:...
8300 SP:StmtCompleted ADGSP_PO_PurchasOrd SELECT DISTINCT dbo. .. 9280 145495 i
8901 SQL:BatchCompleted exec dbo.ADGSP_PO_PuUrch... 9280 14608 0]

How to Identify Slow Running Queries 103

The most obvious difference is in the CPU times. The CPU time for 8900-duration execution is about
half the 15088-duration. So, how do we account for these differences in Duration and CPU, and are they
significant?

Examining the data more closely, we see that the Reads in each case are identical. Though I am not
showing all the screens here, the TextData columns for the Sp:StmtCompleted event reveal the code
executed to be identical in each case, as ate the execution plans. Also, the same number of rows, 72,023,
is returned each time (more on this shortly).

Given all this, it is fair to assume that the differences in Duration and CPU time are based on different
server loads at the time of each execution, not on differences in the query, or how the query was
executed.

NOTE:

Another possible explanation why there was a difference in duration between different
executions of the same query is that blocking may be affecting some executions of a query, but
not other executions of the same query. In the next chapter, you will learn how to identify
potential blocking issues.

Now, if we had seen differences in the code (different input parameters), a different execution plan,
different numbers of logical Reads, and different numbers of rows returned, then our conclusion would
be different. These observations would indicate that SQL Server is doing different work (using different
resources) each time the stored procedure is run. This could mean that column or index statistics may
not have been updated as they should, or perhaps they were updated between runs of the instances. It
could mean that the parameters of the stored procedure affected the amount of work needed, and so on.
In other words, we would need to investigate further the root cause of these differences.

In our simple case, however, we can assume these variations in duration are insignificant and can move
on to our next step, which is evaluating the query for performance; we can also assume that the work we
do for a single instance of the stored procedure will affect all other instances of its running in a similar
way.

TUNING SLOW QUERIES

Now that we have established that we need to tune our single stored procedure, what information does
Profiler provide? For the most part, we have already talked about the most useful data, namely the
Duration, CPU, Read and Writes columns, the actual code, and the execution plan. All this information
is helpful in determining why a particular query may be slower than it needs to be.

In addition, one of the first things I look at is how many rows are returned by the query. You can obtain
this data from the IntergerData column, as shown in Figure 4-18:

| Duration | EventClass | ObjectMame | TextData | CPU | Reads | Writes | IntegerData

15086 SP:StmtcCompleted ADGSP_PO_Purchasord SELECT DISTINCT dbo. .. 19782 14595 o F2023

Figure 4-18: The IntegerData data column of the SP:StmtCompleted event shows you how many rows were
actually returned by the query.

It is important to realize that the IntegerData column shows the acfual number of rows returned by the
query, while the execution plan, which we will look at next, only provides the estimated number of rows
returned.

The next step is to figure out if the number of rows returned seems reasonable. Time and again, I see
. gu . g . .
queries that return tens, or hundreds, of thousands of rows that aren't needed by the client application.

How to Identify Slow Running Queries 104

So SQL Server has to do all this extra work returning unnecessary rows and then the client application
filters out only the handful it really needs.

In this particular example, 72023 rows are returned. On the surface, this sounds like a high number.
Rarely would you need to return this many rows to a client application; of course, there are always
exceptions.

Nevertheless, this number of rows sets alarm bells ringing and I would investigate further the purpose of
this query. In this particular case, the purpose of the stored procedure is to return all the line items for a
single purchase order. I really doubt that there are any purchase orders that have 72023 rows of detailed
information. Returning too much data tells me something very important: it tells me that the WHERE
clause of the query is not well written, allowing too many rows to being returned and slowing the query.

When too many rows are being returned, you need to look at the WHERE clause of the query to see
how it is written. Here's the WHERE clause for this stored procedure.

}ﬁHERE dbo.po_hdr_tbl.in_buyc <= "°*
Figure 4-19: This is the entire WHERE clause for this query.

If you have any experience at all with writing queries, it is obvious that this WHERE clause has
problems. It tells SQL Server to return all rows where the "in_buyc" column is not empty. This is not a
very restrictive WHERE clause because it is based on a single column, and because it is essentially
looking for an either/or condition. One way to improve the performance of this query would be to
rewrite the WHERE clause so that is it more restrictive, so fewer rows are returned.

Another major problem is that the WHERE clause is non-sargeble. This means that it cannot make use
of an index to find the data it needs to return. In other words, an index scan will be performed to return
the data. While the specifics of how to write a sargeble WHERE clause is beyond the scope of this
book, it is worth noting that any time you use a “not equals” in a WHERE clause, the query optimizer
must review every record in the table to find out whether or not each row satisfies the not equals
condition.

To support the conclusion that the WHERE clause is not sargeble, let's look at the graphical execution
plan that is provided to us from the Profiler trace.

How to Identify Slow Running Queries 105

5

Clusterad Index Scan
|E1g Catabase |. ldbol. Lgl_cmp_th 1. Lgl_cmp_t_.

Cost: O ¥
4
? T w
Parallelism Clusterad Index Scan
[(Distribute Streams) [Big patabase]. [doo]. [in_whs_tb1]. [in_whs_t_.
Costr O ¥ Cost: 0 %
= ¥ 5!
= = =
Hash Match Parallelism Clustered Index Scan
{Inner Join) {(Repartition Streams) [61g_Ppatabase]. [dbol. [im_adres _tb1]. [im_adr..
Cost: 1 % Cost: 0 % Cost: O %
P 5}
f- = =
Parallelism Clustered Index Scan
{(Repartition Streams) [Big_patabase]. [dbol. [po_hdr_tb1]. [po_hdr_t_.
Cost: 1 % Cost: 2 ¥

Figure 4-20: This is only a small portion of the entire execution plan for this query.

While figure 4-20 only shows part of the graphical execution plan, notice that there are four index scans
occurring in this small portion of the query plan. Index scans occur when a clustered index has to be
scanned, row by row, one row at a time, in order to identify the rows that need to be returned.

At this point, it may seem that analyzing why this query is performing slowly is complete. As usual, it
depends. On one hand, we have barely looked at the code or the execution plan. There is still a lot of
useful information that can be gleaned from it. How to do this is outside the scope of this book, as our
goal here is to show you how to gather the data you need help you troubleshoot slow-performing
queries, not to be able to analyze all of it. On the other hand, we have discovered two key pieces of
information that, if acted on, could greatly speed up the query without doing any further analysis. First,
we learned that too much data is being returned and that we need to make the WHERE clause more
restrictive. Second, we learned that the current WHERE clause is non-sargeble, so we need to find a way
to make it sargeble (assuming we can). With just these two pieces of data, we have a good start on what
needs to be done to optimize the performance of this query.

SUMMARY

Let's review what we have learned in this chapter.

e We learned how to create a trace that can be used to help identify slow-running queries.

e We learned how to take the results of our trace and analyze them in such a way that we
can identify which queries are slow-running.

e We have learned that Profiler can provide us with a wealth of information about our
slow-running queries that can be used to help troubleshoot and optimize them.

As you can see, while Profiler is a great tool for uncovering problems, it still requires knowledge and
experience on the part of the DBA or developer to analyze its output. The more you practice, the better
you will become.

In the next chapter, we continue our quest on how to create and analyze traces to identify a wide variety
of SQL Server problems.

How to Identify and Troubleshoot SQL Server Problems 107

Chapter 5

How T0 IDENTIFY AND TROUBLESHOOT SQL SERVER
PROBLEMS

While the previous chapter focused on a single topic, how to identify slow-running queries, this chapter
shows how to create and analyze Profiler traces that will help you uncover a multitude of different
problems — possibly ones you didn't even know you had!

Specifically, we will cover the following topics.

e How to Identify Deadlocks

e How to Identify Blocking Issues

e How to Identify Excessive Auto Stats Activity

e How to Identify Excessive Statement Compilations

e How to Identify Excessive Database File Growth/Shrinkage
¢ How to Identify Excessive Table/Index Scans

e How to Identify Memory Problems

In many of the sorts of traces presented in this chapter, you will be faced with a lot of numbers, such as
the number of statement recompiles that occurred or the number of Sort Warnings, and you will need to
decide whether these numbers are "good" or "bad". The only way you can really decide is if you know
what these numbers look like during "normal operation" of your SQL Server. In other words, it's
important that you capture these traces not just when problems have arisen, but when things are fine, so
that you have a "baseline case" for comparison.

How 10 IDENTIFY DEADLOCKS

Deadlocking occurs when two or more SQL Server processes have locks on separate database objects
and each process is trying to acquire a lock on an object that the other processes have previously locked.
For example, process one has an exclusive lock on object one, process two has an exclusive lock on
object two, and process one also wants an exclusive lock on object two, and object two wants an
exclusive lock on object one. Because two processes can’t have an exclusive lock on the same object at
the same time, the two processes become entangled in a deadlock, with neither process willing to yield
of its own accord.

Since a deadlock is not a good thing for an application, SQL Server is smart enough to identify the
problem and ends the deadlock by killing one of the processes — usually the process that has used the
least amount of server resources up to that point. The aborted transaction is rolled back and the
infamous "deadlock victim" error message is sent to the application. The other process can then
continue to run as normal.

If the application is deadlock aware, it can resubmit the killed transaction automatically and the user may
never know the deadlock happened. If the application is not deadlock aware, then most likely an error
message appears on the application’s screen and you get a call from a disgruntled user. Besides irritating
users, deadlocks can use up SQL Setvet's resources unnecessarily as transactions atre killed, rolled back,
and resubmitted again.

How to Identify and Troubleshoot SQL Server Problems 108

Deadlocks have been the bane of many a DBA. While rare for a well-designed and written application,
deadlocks can be a major problem for — how can I say this delicately? — “less efficient” application code.
What is even more frustrating is there is not much the DBA can to do prevent deadlocks, as the burden
of preventing them in the first place is on the application developers. Once an application is designed
and written, it is hard for the DBA to do anything other than identify the offending code and report it
back to the developers for fixing.

In SQL Server 2000 and eatlier, the most common way to track down deadlock issues was to use a trace
flag. In SQL Server 2005, trace flags can still be used (1204 or 1222), but it isn’t always easy to do. When
SQL Setrver 2005 was introduced, new events were added to the SQIL Server Profiler that makes
identifying deadlocks very easy. In this section, we learn how to use SQL Server Profiler to capture and
analyze deadlocks.

DEADLOCK EVENTS

While there are many different combinations of events you can use to trace deadlocks using SQL Server
Profiler, you may want to consider the following. For education purposes, I have included more events
here than you really need, but they have been included for completeness.

The events you might consider collecting include:

e Deadlock graph

e Lock: Deadlock

e Lock: Deadlock Chain
e RPC:Completed

e SP:StmtCompleted

e SQL:BatchCompleted
e SQL:BatchStarting

Events | TextData | ApplicationName | DatabaseName | ServerMame | Duration | SFID | LoginMame | CFU | Feads |
- Locks
IIIIII [v Deadlock graph v v i~ v
[v Lock:Deadlock =7 =7 [w =7 = =2 =7
[v Lock:Deadlock Chain =7 [w =7 =2
= Stored Procedures
[¢ RPC.Completed v v [v v 7 i~ i~ [
[SP:StmtCompleted v v [v v 7 i~ i~ [
- TSQL
[v SOL:BatchCompleted v v [v v v v v v v
[¥ SGL:BatchStarting v v v v v v

Figure 5-1: I like to include extra context events to help better understanding of what is happening with the
code.

I'm only going to focus here on the three lock-related events. The remaining four events were covered in
Chapter 3 and 4, so I assume you are already familiar with them.

Deadlock Graph

The only event you must have when identifying deadlocks is the Deadlock Graph event. It captures, in
both XML format and graphically, a drawing that shows you the code responsible for the deadlock. We
will examine how to interpret this drawing shortly.

Lock:Deadlock

How to Identify and Troubleshoot SQL Server Problems 109

This event is fired whenever a deadlock occurs, also every time the Deadlock Graph event is fired,
producing redundant data. I have included it here because it makes it a little easier to see what is
happening but, if you prefer, you can drop this event from your trace.

Lock:Deadlock Chain

This event is fired once for every process involved in a deadlock. In most cases, a deadlock only affects
two processes at a time, so you will see this event fired twice, just before the Deadlock Graph and the
Lock:Deadlock events fire.

SELECTING DATA COLUMNS

You don't need to select many data columns to capture enough data for analyzing deadlocks. I generally
select the following data columns, in the order they are listed below:

e Hvents

o TextData

e ApplicationName

e DatabaseName

e ServerName

e SessionloginName
e SPID

e LoginName

e EventSequence

e BinaryData

If you are in doubt about what information these data columns collect, see chapter 11.

SELECTING A COLUMN FILTER

I may or may not use column filters when I am tracing deadlocks. If I do, I may consider filters on one
or more of the following data columns:

e ApplicationName (if available)

e DatabaseName

e ServerName

e LoginName or SessionlLoginName
e SPID

COLUMN ORGANIZATION

I don't generally perform any grouping or aggregation when tracing for deadlocks, but I generally order
the data columns so that they are presented on the screen in an easily readable format. If you don’t want
to bother doing this, use the default data column organization.

RUNNING THE TRACE

One of the problems with troubleshooting deadlocks is that it is hard to predict when they will occur, so
you may have to run your deadlock trace for a substantial period of time (24 hours or more).

How to Identify and Troubleshoot SQL Server Problems 110

If you run a trace for long periods on a busy production SQL Server, you can end up collecting a huge
amount of data and the trace itself will produce some burden on the server. If you are facing this
situation, you can choose to either collect for shorter periods of time (e.g. only when deadlock events are
occurring, assuming you know when this happens), capture the trace programmatically using SQL Trace
(See chapter 9), or limit yourself to only collecting the Deadlock Graph event. You may have to
experiment to see what works best for your particular situation.

ANALYZING THE TRACE

Figure 5-2 shows example trace results, collected by running a trace template as described above:

| EventClass | TextData | ApplicationMame | DatabaseMName

Trace 5tart

SQL:Batchstarting
SgL: BatchCompleted
SQL:Batchstarting
SQL: eatchCompleted
SqL:Batchstarting
SQL: eatchCompleted
SQL:Batchstarting
SgL:Batchstarting

USE [Adventureworks]
USE [Adventureworks]
EEGIN TRAMN
EEGIN TRAMN
USE [Adventureworks]
USE [Adventureworks]
EEGIN TRAMN
--Update Two: Run 3rd

--Update One: Run 1st...
--Update One: Run 1st...

--uUpdate: Run znd (...
UPDATE sale...

Microsoft...
Microsoft...
Microsoft...
Microsoft...
Microsoft...
Microsoft...
Microsoft...
Microsoft...

Adventureworks
Adventureworks
Adventureworks
Adventureworks
Adventureworks
Adventureworks
Adventureworks
Adventureworks

Lock:Deadlock Chain Deadlock Chain SPID = 55 (010086470... Adventureworks
Lock:Deadlock Chain Deadlock Chain SPID = 54 (010086470... Adventureworks
Deadlock graph <deadlock-Tist> <deadlock wvictim=...

Lock:Deadlock (01008647 0766) Microsoft... Adventureworks
SQL: eatchCompleted BEEGIN TRAN --uUpdate: Run 2nd (... Microsoft... Adventureworks

SQL: BatchCompleted
{Trace stop

--Update Two: Run 3rd UPDATE sale... Microsoft...

Figure 5-2: These are the results of capturing a deadlock using the events recommended above.

To create a deadlock for demonstration purposes, I ran two separate transactions in two different
processes that I knew would create a deadlock. These are represented by the eight SQL:BatchStarting
and SQL:BatchCompleted events at the beginning of the above trace.

When SQL Setver determines that a deadlock has occurred, the first event that denotes this is the
Lock:Deadlock Chain event. There are two of these in the above trace, for SPID 55 and SPID 54. Next,
the Deadlock Graph event is fired. Lastly, the Lock:Deadlock event is fired.

Once SQL Server detects a deadlock, it picks a loser and a winner. The SQL:BatchCompleted event that
immediately follows the Lock:Deadlock event is the transaction that was killed and rolled back, and the
following SQL:BatchCompleted event is the one that was picked as the winner and was successfully run.

If you have trouble following the above example, don’t worry, as it will all make more sense when we
take a close look at the Deadlock Graph event.

When you click on the Deadlock Graph event in Profiler, the deadlock graph appears at the bottom of
the Profiler screen, as shown in Figure 5-3:

Adventureworks

How to Identify and Troubleshoot SQL Server Problems m

M| 10 TH08 P M TS 2
FeqUEsT Mndeo uow| Becisd bl T206IGIA00E 4T .)
e I name: AK_BseaTasRak_SxesTasRaldD TwTEr-Sadl K

Berwer procoss d: 55
Servar bevich b 0
150 1 C0r

Sanve process bt B
Sarvarzawh i:
Exiubin conkalid. 0
Dexpvdback prociy: §

Log Lsea; 1617
Crwmer b 52515
Todreh bwin dises g Ja 737 ik

Fimecse: 1 5274
18 anon disseibar a7 B0

= Dazgr Mode: X Hing Lok Erquest bndes ¥
. g

a8 1D K TS 10CH
B0 bl abpd 7206763 0E 251004
WoaE ~ame: PE_SaaTaman_TamaniD

Figure 5-3: The Deadlock Graph summarizes all the activity that caused the deadlock to occur.

You can't read the graph details in Figure 5-3, but it does give you a good sense of the general layout.
The ovals on the left and right hand side of the graph each represent a Process Node — in other words,
a process that performs a specific task, such as an INSERT, UPDATE, or DELETE. If you move the
mouse pointer over either oval, a tooltip appears. The left oval on the graph, with the blue cross,
represents the transaction that was chosen as the deadlock victim by SQL Server. The Process Node on
the right represents the successful transaction.

The two rectangular boxes in the middle are called Resource Nodes, which they represent a database
object, such as a table, row, or an index. In this case, these Resource Nodes represent the indexes that
each process was trying to get an exclusive lock on.

The arrows you see pointing from and to the ovals and rectangles are called Edges. An Edge represents
a relationship between processes and resources. In this case, they represent the types of locks each
process has on each Resource Node.

Now that you have a basic understanding of the big picture, let's drill down to the details. We'll statt
with the Process Node that represents the successful transaction, on the right side of our Deadlock
Graph:

J EventClass I TextData I ApplicationMame I DatabaseMame -

Trace start b
SqL:Batchstarting USE [Adwventureworks] Microsoft... Adventurework:
SqL: BatchCompleted USE [Adwventureworks] Microsoft... Adventurework:
SqL:Batchstarting EEGIN TRAN --Update One: Run 1st... Microsoft... Adventurework:
SqL: BatchCompleted EEGIN TRAN --Update One: Run 1st... Microsoft... Adventurework:
sqL:Batchstarting USE [Adwventureworks] Microsoft... Adventurework:
SqL: BatchCompleted USE [Adwventureworks] Microsoft... Adventurework:
SOL:Batchstarting BEEGIN TRAN --Update: Run 2nd (... Microsoft... Adventurework: 3
SOL:Batchstarting --Update Two: Run 3rd UPDATE sale... Microsoft... Adventurework:
Lock:Deadlock Chain Deadlock Chain SPID = 55 (010086470... Adventurework:
Lock:Deadlock Chain Deadlock Chain SPID = 54 (010086470... Adventurework:
Deadlock graph <deadlock-1ist> <deadlock wvictim=...
Lock:Deadlock (010086470766) Microsoft... Adventurework:
SOL: BatchCompleted BEGIN TRAN --Update: Run 2nd (... Microsoft... Adventurework:
SqL: eatchCompleted --Update Two: Run 3rd UPDATE sale... Microsoft... adventurework:
Trace sStop -

1| 1 | r

KapLock

How to Identify and Troubleshoot SQL Server Problems 112

Server process |d: 54
Server batch 1d: 0
Execution context [d: 0
Deadlock priority: 0
Log Used: 1612
Owner Id: 32737
Transaction descriptor: 0x78791c8

telD owrmer—Mode: X

Reguest Modes X

Statement:

--Update Twe: Run 3rd
UPDATE sales.[SalesTerritory]
SET salesytd = salesytd + 1
WHERE territorylD = 1;

COMMIT TRAN

Figure 5-4: This transaction was selected as the winner

As you can see in Figure 5-4, there are a number of new terms listed inside the Process Node:

1.
2.

Server Process ID: This is the SPID of the process.

Server Batch ID: This is the internal reference number for the batch in which this code is
running,

Execution Context ID: This is the internal reference number of the thread for the above
SPID. A value of 0 represents the main, or parent, thread.

Deadlock Priority: By default, no one transaction has a greater or smaller chance of
becoming a deadlock victim than the other (before they begin executing). However, if you
use the SET DEADLOCK PRIORITY command for a particular session, then this
session can be assigned a value of Low, Normal, or High, thereby determining the priority
of this session's transaction over that of another session. This allows the DBA or
developer to control which session is more important than another if a deadlock arises. A
value of 0 indicates no priority has been assigned to this process.

Log Used: This is the amount of log space used by the transaction up to the point the
deadlock occurs. SQL Server uses this information to help determine which transaction
has used up the most resources so far. Generally, the transaction that has used the least
resources is killed and rolled back, helping to minimize the overhead required to deal with
the deadlock.

Owner ID: This is the internal reference number for the transaction that is occurring,

Transaction Descriptor: This is an internal reference number that indicates the state of
the transaction.

A lot of data is provided here, but not all of it is useful, unless you have an intimate knowledge of the
internal workings of SQL Server. More immediately useful is the tooltip, which lists the Transact-SQL
code that was executed to cause the deadlock to occur and allows us to trace the event to specific
problematic code.

How to Identify and Troubleshoot SQL Server Problems

The Edges that we can see in Figure 5-4 provide further information. In this case, they tell us that this
Process Node has an exclusive lock on the top Resource Node (the X represents an exclusive lock) and
that it has requested another exclusive lock on the bottom Resource Node. When you look at this
Process Node in isolation, this is not a big deal. The problem occurs when this transactions bumps

heads with another transaction, as we find out next.

113

On the left side of the Deadlock graph (figure 5-5) is the other Process Node, tooltip, and Edges:

Server process Id; 55
Server batch Id: O

ansaction descriptor: 0x7879 766

Statement:
BEGIM TRAMN

--Update: Run 2nd (both examples)
UPDATE sales.[SalesTerritory]

SET salesytd = salesytd + 1
WHERE territorylD = 1;

--Update

UPDATE sales.[SalesTaxRate]
SET tawrate = taxrate + 0.05
WHERE taxtype = 1;

COMMIT TRAN

Qwner Mode:

Figure 5-5: This transaction is the deadlock victim.

This information tells us the following:

It was the losing transaction (indicated by the blue cross)
The Transact-SQL code that contributed to the deadlock.

1
2
3. It has an exclusive lock on the bottom Resource Node.
4

It has requested an update lock (U) on the top Resource node.

We'll talk more about the locking conflicts shortly, but for now, let's look at the two Resource Nodes

shown in Figure 5-6:

Request Mode: U

X

Indi

How to Identify and Troubleshoot SQL Server Problems 114

Key Lock

HoBt ID: 72057594046185472
associated objid: 72057594046185472

Request Mode: U
Index name; PK_SalesTaxRate SalesTaxRatalD

owrer—Mode : X

owner Mode: X Key Lock Reguest Mode: X

HoBt 1D: 72057594046251008
associated objid: 72057594046251008
Index name: PK_SalesTermritory_TerrtorylD

Figure 5-6: The resource nodes tell us what resources the transactions were fighting over.

Both of these Resource Nodes represent indexes, which the two transactions both needed access to in
order to perform their requested work. Like Process Nodes, Resource Nodes have some new terms that
we need to consider:

e HoBt ID: This number refers to a subset of data/index pages within a single partition.
These may be in the form of a heap or a B-Tree. In SQL Server 2005, the HoBt 1D is
identical to the Partition ID found in the sys.partitions table.

e Associated Objid: This is the object ID of the table associated with this index.
e Index Name: The name of the index.

The top Resource Node represents the PK SalesTaxRate SalesTaxRateID index and the bottom
Resource Node represents the PK SalesTerritory TerritoryID index.

Having discussed all the details of this Deadlock graph, let's bring all the pieces together.

1. SPID 54 started a transaction, then requested, and received, an Exclusive lock on the
PK_SalesTaxRate SalesTaxRatelD index.

2. SPID 55 started a transaction, then requested an Exclusive lock on the
PK_SalesTerritory_TerritorylD index.

3. SPID 55, as part of the same transaction, then requested an Update lock on the
PK_SalesTaxRate_SalesTaxRateID index. However, this lock was not granted because
SPID 54 already had an Exclusive lock on the index. In most cases, this means that SPID
55 has to wait its turn before it can get an Update lock on
PK_SalesTaxRate_SalesTaxRateID. At this point, SPID 54 is causing a blocking lock on
SPID 55.

4. As the above blocking lock is continuing, SPID 54 wants to complete its transaction. In
step 1 above, it had only started the transaction, not completed it. Now, SPID 54 wants to
complete the transaction. In order to do this, it must get an Exclusive lock on
PK_SalesTerritory_TerritorylD. The problem is that it can't get a lock on this index
because SPID 55 already has an Exclusive lock on it. Now we have a deadlock. Neither
SPID can continue because each transaction is preventing the other from finishing,

5. SQL Server examines the two transactions and decides to kill the one that has used up the
least amount of resources so far. In this case, SPID 55 has used up 220 units of the Log
and SPID 54 has used 1612 units of the log.

How to Identify and Troubleshoot SQL Server Problems 115

6. SQL Server kills SPID 55 and the transactions is rolled back, which releases the Exclusive
lock on PK_SalesTerritory_TerritorylD, now allowing SPID 54 to get an Exclusive lock on
it and to complete the transaction.

There is a lot of information to digest here, but once you grasp what the Deadlock Graph is telling you,
you will be in a strong position to identify and fix the code and/or objects that are causing the deadlock.

In most cases, fixing the problem will require developers to get involved. Fortunately, you now have the
information you need to share with the developers so they can remedy the problem. Below are some
suggestions on how to eliminate, or at least mitigate, deadlocking problems in your applications. This list
is only a starting point and should not be considered a complete list of the options you have to prevent
or reduce deadlocking.

e Ensure the database design is properly normalized.

e Have the application access database objects in the same order every time.
e Keep transactions as short as possible.

e During transactions, don't allow any user input.

e Avoid cursors.

e Consider reducing lock escalation by using the ROWLOCK or PAGLOCK hint.
e Consider using the NOLOCK hint to prevent locking.
e Use as low a level of isolation as possible for user connections.

How TO IDENTIFY BLOCKING ISSUES

Whereas deadlocks should be rare events, a certain level of blocking is normal for SQL Server. In other
words, SQL Server often intentionally prevents one process from accessing an object if another process
has a lock on it. This means the second process is blocked from continuing until the first process
releases the lock on the object to which the second process needs access.

Of course, the purpose of this is to prevent one process from interfering with another, in cases where
data corruption is possible. With proper database design, table indexing, and application code, blocking
is generally limited to milliseconds and users aren't even aware that it is occurring.

Nevertheless, few database designs, table indexing, and application code are perfect, and it's quite
common for a DBA to see blocking that lasts 10 seconds, 60 seconds, even 6,000 seconds. Obviously,
this kind of blocking will significantly affect the performance of SQL Server and its users. As DBAs and
developers, we need to be able to identify these types of blocking issues so they can be fixed, or their
occurrence minimized.

In SQL Server 2000 and eatlier, identifying blocking issues was not an easy task. One option was to use
Enterprise Manager to view existing connections to see if any blocking was occurring, or using the
sp_who or_sp_who2 commands. If you were really ambitious, you could write some code to extract
blocking data from system tables.

In SQL Server 2005, the situation has improved. Besides Management Studio, stored procedures, and
system tables, we also have DMVs and even the Performance Dashboard. However, most importantly,
we have a new SQL Server Profiler event, Blocked Process Report. This event does a great job of
helping you to identify blocking issues and, at the same time, provides you with much of the information
you need to help correct the problem.

The Blocked Process Report Event

You will like this. You only need one Profiler event to capture all the information you need to identify
long-running, blocked processes. The Blocked Process Report event does all the work for you and you
don't even need to captute any context events.

How to Identify and Troubleshoot SQL Server Problems 116

Events | TextData | Duration | ObjectID | IndexID | Mode | LoginSid | DatabaselD | ServerName | EndTime |
- Emors and Wamings
v Blocked process report [w 3 ~ [w [w ~ v ~ 3

Figure 5-7: Only a single event is needed to capture information on blocked processes.

However, you may not like this. Up to this point when we selected events to identify a SQL Server issue,
we just selected the event and the event was automatically collected for us when the trace ran. This is
not the case with the Blocked Process Report event. In other words, if you select this event and run a
trace, you will never collect any events. No, this is not a bug in Profiler; it has been designed to run this
way.

This is not as big a deal as it may seem, but using the Blocked Process Report event requires you do
perform an extra, non-Profiler-related task. You just have to keep this in mind, because if you forget
about it, you will be pounding your head on your desk trying to figure out why this particular event
doesn't work.

The fact is that collecting information about blocked processes in SQL Server 2005 is resource-intensive
and so, by default, the Blocked Process Report event is turned off. This way, if you don't use this event,
it is not wasting valuable server resources. Ideally, you will turn the feature on when you need it and turn
it off when you don't.

You turn the Blocked Process Report event on and off using the SP_CONFIGURE 'blocked
process threshold' command. By default, this option is set to 0, which means that the Blocked
Process Report event is turned off. The SP_CONFIGURE 'blocked process threshold’
command is an advanced SP_ CONFIGURE command, which means that the SP_CONFIGURE
'show advanced options' command must be run first in order to be able to turn on the
SP_CONFIGURE 'blocked process threshold' command, assuming this had not been
done previously. In addition, as with most SP_CONFIGURE commands, you have to run the
RECONFIGURE command afterwards to activate them.

The following code turns on the 'show advanced options' — again, assuming you have not
already done so.

SP_CONFIGURE 'show advanced options', 1 ;
GO

RECONFIGURE ;
GO

Now that the advanced options are on, the Blocked Process Report
can be turned on, using this code:

SP_CONFIGURE 'blocked process threshold', 10 ;
GO

RECONFIGURE ;

GO

After the SP_CONFIGURE 'blocked process threshold' command there is a value — in this
case, the number 10. Setting this number allows you to control how often you want to look for blocked
processes, since it determines how often the Blocked Process Report event is fired. In this example, the

How to Identify and Troubleshoot SQL Server Problems 117

Blocked Process Report event will fire repeatedly, every 10 seconds. If any blocked processes occur
within that 10 second period, they will be displayed as part of the report. Once you have finished
running the Blocked Process Report, you will want to turn it off with the following command.

SP_CONFIGURE 'blocked process threshold', 0 ;
GO

RECONFIGURE ;

GO

We will talk more about how the report works when we get to the section on how to analyze the trace.

SELECTING DATA COLUMNS

Unlike many other events, the Blocked Process Report event doesn't offer you many data columns to
choose from. At the very minimum, I select these data columns, and order them as they are ordered
below:

e Events
e TextData
e Duration

o IndexID
e Mode
e LoginSid

e DatabaselD
e ServerName
e EndTime

We have talked about all the above columns filters before, except for one, and that is Mode. The
content of the Mode data column varies depending on the nature of the event. For the Blocked Process
Report Event, here are the possible values:

e (0=NULL
e 1=Sch-S
e 2=Sch-M
e 3=§

o 4=U

e 5=X

e (6=IS

o 7=IU

e 38=IX

e 9=SIU

e 10=SIX
e 11=UIX
e 12=BU

e 13=RangeS-S
e 14=RangeS-U
e 15=Rangel-N

How to Identify and Troubleshoot SQL Server Problems 118

e 16=Rangel-S

e 17=Rangel-U
e 18=Rangel-X
e 19=RangeX-S
e 20=RangeX-U
e 21=RangeX-X

Each value represents a type of lock that was received or requested for the event.

NOTE:

If you are not familiar with lock types, you can learn about them in SQL Server 2005 Books
Online. This information might be useful to you when trying to figure out why a particular
blocking lock occurred.

SELECTING A COLUMN FILTER

You can choose to filter by any of the available data columns. In most cases the only data column I ever
filter by is DatabaselD. While not required, it does limit your trace to one database at a time, which may
be useful if your server has many databases.

COLUMN ORGANIZATION

I don't normally perform any grouping or aggregation when running this trace and I generally order the
data columns in a way that works best for me

RUNNING THE TRACE

Running a Blocked Process Report event trace can noticeably affect a server's performance, so it is
important that you after you have performed the trace, you then turn it off. On the other hand, it is
often hard to predict when blocking will occur. If you have a feel for the time of the day when blocking
problems most often arise, then that is the time you should pick for conducting your trace. If you aren't
able to pinpoint a time range, you might have to perform a trace for a 24-hour period. If you do this, be
sure that you set the time period for the Blocked Process Report to run at a large number, such as 1800
(30 minutes). This will help to minimize the load and reduce the number of times the event is fired. You
may also want to monitor the trace visually for a while to see what kind of results you are getting. 1f you
get many blocked events, you may want to change the trace collection time to one more appropriate to
your environment.

ANALYZING THE TRACE

Figure 5-8 shows the information collected in a typical trace, from the blocked process report event:

How to Identify and Troubleshoot SQL Server Problems 119

4| i

| EvertClass | TextData | Durstion | ObjectiD | IndexiD | Mode | LoginSid | DatabaselD | ServerName
Trace Start

Elocked process report g(b1ucked—prucess—repﬂrt...g 14710 722101613 0 & - IX 0X01 5 PELE
Elocked process report <blocked-process-report... 24710 722101613 0 & - IX 0X01 5 PELE
BElocked process report <blocked-process-report... 18766 126 256 4 - U 0xX0o1 5 PELE
Blocked process report <blocked-process-report... 34710 722101613 0 &8 - IX 0xX01 5 PELE
Blocked process report <blocked-process-report... 28766 126 256 4 - U 0x01 5 PELE
Elocked process report <blocked-process-report... 44709 722101613 0 8§ - IX 0x01 5 PELE
Trace Stop

<blocked-process-report monitorLoop="13635">

<blocked-process>

<process id="process2cd8898" taskpriority="0" logused="0" waitresource="DBJECT: 5:722101613:0 " waittime="14710"
owner Id="184543" transactionname="user_transaction” lasttranstarted="2007-12-07T12:17:37" XDES="0x7£95960" lockMode="IX"
schedulerid="2" kpid="3156" status="suspended" spid="54" sbid="0" ecid="0" priority="0" transcount="3"
lastbatchstarted="2007-12-07T12:24: 44.013" lastbatchcompleted="2007-12-07T12:24: 44,013"
lastattention="2007-12-07T12:23:12.787" clientapp="Microsoft SQL Server Management Studio - Query" hostname="PELE"
hostpid="5832" loginname="Profileruser"” isolationlevel="read committed (2)" xactid="184543" currentdb="5"
TockTimeout="4294967295" clientoptionl="671030784" clientoption2="330200"=

<executionStack:

<Frame Tine="4" stmtstart="838" sglhandle="0x02000000a5155c2cb85ee83a270f471ceblicedaraffaads” /'~

< /executionstack:

<inputbuf=>

—-This code is being blocked
BEEGIN TRAN
UPDATE sales.[SalesOrderHeader]
SET [DueDate] = GETDATE()
</inputbuf:=
< /processx>
= /blocked-process=>
<blocking-process:=

<process status="suspended" waittime="21777" spid="55" sbid="0" ecid="0" priority="0" transcount="2"
lastbatchstarted="2007-12-07T12:24:35. 393" lastbatchcompleted="2007-12-07T12:24:35.,3933" clientapp="Microsoft 5QL Server
anagement Studio - Query" hostname="PELE" hostpid="35832" loginname="Profileruser” isolationlevel="read committed (2)"
xactid="184430" currentdb="5" TockTimeout="4234367235" clientoptionl="671090784" clientoptionz="330200">
<executionstack:

=frame 1ine="g" stmtstart="196" sqlhandle="0x0200000041a4ce18bcdaeg7ederTds2fe3ea77bs12besgebb" />
«/executionStack:>
<inputbuf:>

—-Begin Lock of Table
|[|BEGIN TRAN

SELECT
FR.OM Sales. salesOrderHeader WITH (HOLDLOCK)
WAITFOR DELAY £apos;00:05:002apos;

< /inputbuf=

processx>
/blocking-process=

= /blocked-process-reports

Figure 5-8: This is an excerpt from a Blocked Process Report that runs every 10 seconds.

In row 2, the first Blocked Process Report event is fired. Notice that the event has a duration of 14710
(about 15 seconds). This tells us that there has been a blocking lock occurring for about 15 seconds
from(?) the time this event fired (which, in our example is once every 10 seconds). While the other data
columns can sometimes provide us with useful information, the most important data column is
TextData, which contains XML describing the blocking event, displaying both the code that is causing
the blocking and the code that is being blocked, together with a lot of other detail.

For this blocked process event, the code that is causing the blocking is shown in figure 5-9:

--Begin Lock of Table

BEGIN TRAM
SELECT =
FR.OM Sales. salesOrderHeader WITH (HOLDLOCK)

AITFOR DELAY Zapos;00:05:00£apos;
Figure 5-9: This code is causing the blocking.

This blocking code is found at the bottom of the window, near the bottom of the XML code. Since 1
was creating sample code, I added a comment to the blocking code to make it obvious in the XML code.
If you look toward the middle of the XML data, you will find the code this is being blocked, as shown in
figure 5-10:

»>

m

How to Identify and Troubleshoot SQL Server Problems

--This code is being blocked

BEEGIM TRAN
UPDATE sales. [SalesOrderHeader)
SET [DueDate] = GETDATEL]

Figure 5-10: This code is being blocked.

120

By examining the blocking and the blocked code, you should be able to eventually determine why the
blocking is occurring. It might be because too much data is being returned, which takes time; or it might
be caused by a missing index; or maybe even a poor locking choice made by SQL Server. Sometimes the
problem will be obvious; at other times it will require additional investigation. For example, you may
need to take a look at the code's graphical execution plan to figure out what exactly is going on. If you
read the XML, there is additional information that may be helpful, such as the isolation level used for
the connections, SPID, username, current state, and so on.

Now that we have looked at a single Blocked Process Report event, let's look at several others so that
you better understand what you are viewing. Take a look at the first two Blocked Process Report events
in figure 5-11:

| EventClass | TextData Duration | ObjectiD | IndexID | Mode
Trace start

Blocked process report <blocked-process-report... 14710 722101613 o 5 - IX
| Blocked process report <blocked-process-report... 24710 722101613 o 85 - IX
Blocked process report <blocked-process-report... 18766 126 256 4 - U
Blocked process report <blocked-process-report... 34710 722101613 0 8 - IX
Blocked process report <blocked-process-report... 28766 126 256 4 - U
Blocked process report <blocked-process-report... 44709 722101613 0 8 - IX

Trace sStop

Figure 5-11: Notice that the first two events are 10 seconds apatt and represent the same ObjectID.

The first of the two events has a duration of 14710 milliseconds indicating that, at the time the event
fired, there was a blocked process that had been blocked for 14710 milliseconds, and it affected
ObjectID 722101613.

The second of the two events has a duration of 24710 milliseconds indicating a blocked process for
24710 milliseconds, affecting the same object. Notice that this is exactly 10 seconds longer than for the

first event and that, in our example, the event fires every 10 seconds.

In other words, the second event is a repeat of the first event and it's just telling us that the same
blocking lock still existed 10 seconds later. If the block had cleared before the blocked process report
event fired a second time, then we would not have seen that second row in the trace. So keep the
following point in mind: at every time interval (which you set), all currently blocked events will be

displayed.

Now it gets a little more complex. Take a look at Figure 5-12:

| EventClass | TextData Duration | Object!D indexID | Mode
Trace sStart

Elocked process report <blocked-process-report... 14710 722101613 o 5 - IX
Elocked process report <blocked-process-report... 24710 722101613 o 5 - IX
Blocked process report é{b1ucked—prncess—repﬂrt...E 18766 126 256 4 - U
Blocked process report <blocked-process-report... 34710 722101613 0 58 - IX
Blocked process report <blocked-process-report... 28766 126 256 4 - U
Blocked process report <blocked-process-report... 44709 722101613 0 58 - IX

Figure 5-12: This Blocked Process Report event represents a different blocking lock.

How to Identify and Troubleshoot SQL Server Problems 121

The third row has a duration of 18766 milliseconds and affects a different object. This is actually a
second blocking event that occurred during the same time frame as the event in row two. In other
words, rows two and three are blocking(?) events that were occurring during the second 10-second cycle
of the Blocked Process Report.

When the third 10-second event fires, rows four and five appear on the trace. From the durations and
the object they affect, you can see that the same two blocking events that existed the second time are
still causing an issue the third time. You could also verity this by looking at the TextData data column.

As blocking starts and stops, each 10-second (in our example) interval may have different blocking
events. In this example there are only two. But on a production system, you could easily have blocking
events come and go, which makes reading the report quite tricky. The key is to identify those blocked
processes that are blocked the longest (Duration), identify how often this happens, and examine the
code causing the event. Once you have all this information, you should be ready to determine the cause
of the blocking lock, and hopefully resolve it.

How do you resolve blocking locks? While the way to resolve blocking lock problems vary, some of the
ones you may one to consider include:

e Identify problematic code and rewrite it.

e Ensure that all transactions are as short as possible.

e Only return the absolutely minimum amount of data needed.
e Identify and add missing indexes.

e Ensure column and index statistics are kept current.

e Use hints to modify locking behavior.

e Use the lowest isolation level acceptable.

How T0 IDENTIFY EXCESSIVE AUTO STATS ACTIVITY

In order for the query optimizer to make good decisions about what execution plans to select, the query
optimizer needs to know about the distribution of the data in the indexes and columns. In addition,
these statistics need to be frequently updated because the distribution of data in a table often changes
over time. By default, SQL Server automatically creates and updates these statistics for us.

The AUTO_UPDATE_STATISTICS database option, which is turned on by default for all newly
created SQL Server databases, is responsible for keeping statistics updated. Using an internal algorithm,
index and column statistics are automatically updated as necessary. However, like all algorithms, the auto
stats feature is not perfect. Sometimes, statistics are:

e Not updated often enough, causing poor execution plans to be used.
e Updated more often than they need to be, wasting resources.

e Updated at inappropriate times, such as during the busiest time of the day for your SQL
Server, causing queries to stall until the auto stats process completes.

Some DBAs find that auto stats causes more problems than it solves, and they turn off turn off the
AUTO_UPDATE_STATISTICS database option. If you do make this choice, bear in mind that
you must then determine a way of updating statistics that better meets your needs, such as scheduling
index rebuilds (which automatically update statistics), or updating statistics through SQL Server Agent
jobs.

Auto stats exhibits two different types of behavior, depending on how your database is configured. In
default mode, auto stats only runs when the query optimizer determines that it is time for statistics to be
updated. This occurs when a query is about to be executed, and the query optimizer determines that the
statistics needed to optimize the execution plan for the query are out of date. At this point, the query is
held back from running until the auto stats process completes. Depending on the size of the table, this

How to Identify and Troubleshoot SQL Server Problems 122

could be milliseconds, or many seconds. This default behavior is referred to as a synchronous statistics
update. In most cases, the occasional delay in executing the query while the stats are updated is a good
thing, because the query optimizer will then have all the data it needs to make a good query plan
selection. However, if the auto update process takes a long time, it may slow down the execution of
some queries. This can become frustrating if a query normally executed in milliseconds, but sometimes
takes many seconds, as statistics are being updated.

Starting with SQL Server 2005, you can now run auto stats asynchronously. This feature is turned on by
setting the AUTO_UPDATE_STATISTICS_ASYNCHRONOUSLY database option to TRUE.
In this mode, query execution is not delayed when the query optimizer determines that it is time for
statistics to be updated. Instead, the query is executed immediately, using old statistics. Auto stats runs in
the background, so that the next time a query runs that needs the same statistics, it will use an execution
plan based on the new statistics.

While asynchronous auto stats is effective in some cases, it can also present its own problems, such as
using additional SQL Server resources, and allowing queries to execute using less than ideal execution
plans.

THE AuTo STATS EVENT

Both the default synchronous and the optional asynchronous auto stats options can be monitored using
SQL Server Profiler with a single event: Auto Stats. No context events are necessary.

Events | Duration | ObjectID | DatabaseName | Event SubClass | TextData | IndexID | IntegerData | Success | SPID | StarT... |
- Performance
v Auto Stats v v v v v v v v v v

Figure 5-13: The Auto Stats event is found under the Performance Event category.

The purpose of the Auto Stats event is to determine how often statistics are updated. In other words,
the Auto Stats event fires every time database statistics are updated. If you are using asynchronous auto
stats, you can also find out about the status of the auto update. The information provided by this event
can be used to help the DBA to determine if statistics are not being updated often enough, or more
often than required. It can find out how long it takes to update statistics, if statistics are being updated at
inappropriate times, or how well asynchronous auto stats is performing,.

SELECTING THE DATA COLUMNS

You can capture a wide range of data columns for the Auto Stats event. I generally select the following:

o EventClass

e Duration

e ObjectID

e DatabaseName
e EventSubClass
o TextData

o IndexID

e IntegerData

o Success

e SPID

o StartTime

How to Identify and Troubleshoot SQL Server Problems 123

e EndTime

e ApplicationName
e LoginName

e ServerName

You will be familiar with most of the events listed above, but there are a couple that are new, or are
specific to the Auto Stats event:

e EventSubClass: This data column can have one of four different values, each indicating
a different variation of this event:

1: Statistics have been created or updated synchronously.

o

o 2: An asynchronous statistics update job was queued.
o 3: An asynchronous statistics update job was started.
o

4: An asynchronous statistics update job was finished.

e TextData: If the EventSubClass is 1, then the statistics that were created or updated are
listed. If the EventSubClass is 2, 3, or 4, the value is a NULL.

e IntegerData: Returns the number of successfully updated statistics collections.
e Success: Returns a 0 if an error occurred or a 1 if the event was successful.

SELECTING A COLUMN FILTER

You can choose to filter by any of the available data columns. Most often, I filter on the DatabaseName
data column, so that I can analyze one database at a time.

SELECTING COLUMN ORGANIZATION

I don't normally perform any grouping or aggregation when tracing this event, and I generally order the
data columns in a way that works best for me. On the other hand, sometimes you might find it beneficial
to group and aggregate by the Duration data column if you want to see how often Auto Stats events take
place in your database and how long they take.

RUNNING THE TRACE

This is a very lightweight trace and there is no problem with running it for a 24-hour period if you want
to see what is happening throughout the day. I would not recommend you run this trace when you are
rebuilding your indexes or running an update statistics job, as both of these processes automatically
update statistics and will produce a lot of activity of minimal value.

ANALYZING THE TRACE

Let's look at a typical trace of the Auto Stats event, shown in Figure 5-14:

How to Identify and Troubleshoot SQL Server Problems 124

| EventClass | Duration | ObjectID | DatabaseMame | EventSubClass | TemtData | IndexID |
Trace Start

Auto Stats 1 1461580245 sqlstiress 1 Created: CountryRegionCode

AUTO Stats 2 2133582639 sqlstress 1 Created: ProductDescriptionID

AUTO Stats 0 130099504 sqglstress 1 Created: ProductmodelID

AUTO Stats 41 34 sQlstress 1 updated: sys.sysschobjs.clst

AUTO Stats 2 34 sQlstress 1 updated: sys.sysschobjs.ncl

Auto Stats 40 34 sqglstress 1 Updated: sys.sysschobjs._WA... 11

Figure 5-14: The results of an Auto Stats trace.

Figure 5-14 shows six Auto Stats events. The first three are examples of where statistics are
automatically created (for the first time). The last three show three system tables for which statistics were
automatically updated. There appears to be nothing out of the ordinary in this trace. So what do you
look for when analyzing a trace of Auto Stats events? Here are things you should be looking for.

e How often are Auto Stats events being fired? For example, do you see Auto Stats fired
again and again for the same table, over a short time period?

e Are Auto Stats events occurring at inopportune times, for example during the busiest
time of your production day? Does this negatively affect server performance?

e How long is it taking for each Auto Stats event to run? You should expect milliseconds.
Long durations might indicate problems, especially if these events occur during busy
times during the day.

e Which databases and objects are incurring the most Auto Stats events? If you export the
trace data into a database table, you can query the data to see if any particular tables
produce more Auto Stats events than others.

e Which objects rarely, if ever, have Auto Stats events? This could indicate that a table just
doesn't change much, or it may indicate a problem with Auto Stats not working as
expected.

e What kind of Auto Stats events are occurring: synchronous or asynchronous? For any
particular database, it will be one or the other. If you are using asynchronous Auto Stats,
you can track if Auto Stats is queued, started, and completed.

e Are there any events that indicate a failure instead of a success? If so, you will need to
find out why.

Based on the information you collect, you should be able to answer these questions:

e Are statistics being updated more often than you expect?

e Are statistics not being updated when you expect?

e Are statistics updates occurring at inopportune times of the day, and is this causing
problems?

e Are statistics causing excessive utilization of server resources? To answer this, you will
also need to monitor server resources and correlate the data.

e If you are using synchronous statistics, is this better or worse than using asynchronous?
This will take careful profiling and correlation with how server resources are being used.

In most cases, SQL Server does a good job of managing statistics. If SQL Server appears to be having

statistics issues of some sort, not only do you need to investigate with Profiler, you will also need to use
other tools at the same time, in order to be able to draw appropriate conclusions.

How to Identify and Troubleshoot SQL Server Problems 125

How TO IDENTIFY EXCESSIVE STATEMENT COMPILATIONS

Whenever a query, batch file, stored procedure, or trigger is first submitted to the query optimizer, it
creates an execution plan and stores it in the Plan Cache. The next time the code is submitted to SQL
Server, the query optimizer will try to reuse the plan stored in the cache, preventing the need to
recompile the code each time it is executed. This preserves resources and helps optimize the
performance of SQL Server.

Under certain conditions, statements need to be recompiled, such as when statistics are updated for a
table. A change in statistics may render the current execution plans "obsolete", and the only way for the
query optimizer to know this is to recompile all the affected statements to ensure that the execution plan
is based on the latest statistics. This is a normal process.

Nevertheless, in some cases statements are recompiled more often than necessary, wasting SQL Server
resources and hurting SQL Server performance. Our goal, as a DBA or developer, is to identify
situations where recompiles occur more often than we would normally expect.

THE SQL:STMTRECOMPILE EVENT

The good news, again, is that you only need a single event to identify and troubleshoot excessive
statement compilations, and that is SQL:StmtRecompile. This event fires every time a statement-
level recompilation occurs.

In fact, SQL Server 2005 has two events related to recompilations: SP:Recompile and
SQL:StmtRecompile. However, SP:Recompile is discontinued and you should only use
SQL:StmtRecompile. The reason for this is that, pre-SQL Server 2005, compilation was based on the
batch or stored procedure level. In SQL Server 2005, compilation is now based on the statement level.
This is a boon for DBAs and developers because SQL Server now only has to recompile those
statements that need recompiling. In the past, if only a single statement inside a long stored procedure
needed to be recompiled, all the code in the stored procedure was recompiled. This means that
recompilations, when they are necessary, take fewer resources to complete.

While you only need to have a single event to diagnose most recompile problems, I like to include
additional context events so that I better understand what is happening. So, the "core" events I suggest
you collect are:

e SQL:StmtRecompile
e SQL:StmtStarting
e SQL:StmtCompleted

Events | EventSubClass | ObjectName | Object Type | TextData | Duration | ApplicationMame | DatabazeMame |
-1 TsaL
""" ¥ SQL:StmiCompleted v v W v

v S0L:5tmtRecompile v v r v v v

[+ SOL:StmtStarting [r [

Figure 5-15: I like to include extra context events to help me better understand what is happening with the
code.

Besides the main SQL:StmtRecompile event and the two context events listed above, you may also want
to consider adding the following events if you want to see the relationship between statements and
stored procedures, or recompiles within the context of statistics updates:

e RPC:Completed

e SP:Starting

How to Identify and Troubleshoot SQL Server Problems 126

e SP:Completed

e SP:StmtCompleted
e SQL:BatchStarting
e SQL:BatchStarting
e Auto Stats

I'm going to leave these seven events above out of this discussion, but you can add them if you find
them useful.

SELECTING DATA COLUMNS

The SQL:StmtRecompile event offers a lot of data columns to choose from, but you don't need most of
them. I generally select the following data columns, and order them as they are presented here:

o EventClass

e EventSubClass
e ObjectName

e ObjectType

o TextData

e Duration

e ApplicationName
e DatabaseName
e LoginName

e ServerName

e SPID

e EventSequence
o StartTime

e EndTime

We have covered most of these data columns previously, but there is one that acts a little differently
from what we have seen before, and one that is new to us.

EVENTSUBCLASS

While we have talked about the EventSubClass data column several times already, you need to keep
in mind that the contents of this data column vary from event to event. For this particular event,
possible values are:

e 1 = Schema changed

e 2 = Statistics changed

e 3 = Deferred compile

e 4 = Set option changed

e 5 =Temp table changed

e (6 = Remote rowset changed

e 7 = For Browse permissions changed

e 8 = Query notification environment changed
e 9 = Partition view changed

How to Identify and Troubleshoot SQL Server Problems 127

e 10 = Cursor options changed
e 11 = Option (recompile) requested

Understanding these EventSubClass options is important when determining why a particular statement
was recompiled by SQL Server. We will learn more about some of them when we analyze the results.

OBJECTTYPE

This data column specifies the type of object that has been recompiled, such as stored procedure
(designated as "8272 — P"), and so on. To find a key for all the available codes, search on "ObjectType
Trace Event Column" in Books Online.

SELECTING A COLUMN FILTER

I may or may not use column filters when I am tracing recompiles. If I do, I generally filter on the
DatabaseName data column to restrict my analysis to one database at a time.

CoLUMN ORGANIZATION

I like to group a recompile trace by the EventClass data column. This allows me to see the data
grouped by recompiled events or, if I subsequently turn off grouping, then I can see recompiles in the
context of the statement execution.

Organize Columns ﬁ

| El Groups » Selecta column and use Up and
— Down buttons to change its
order. Move the column under
El Columns Groups to group data by that
EventSubClass column,
Ohjectiame
OhjectType =
TextData
Duration
ApplicationMame
DatabaseMame
LoginMame
ServerMame
SPID

FuantCamianrs

Lp Down | Ok I Cancel

Figure 5-16: I prefer to group and aggregate by the EventClass data column.

RUNNING THE TRACE

On a busy server, recompiles could be occurting very frequently, resulting in a lot of data being captured
in a trace file. This can hurt performance and use up a large amount of disk space. So I don't
recommend doing a 24-hour trace for this analysis. Instead, I recommend instead that you identify busy
times of the day for your server instance and then capture one hout's worth of data. However, the first
time you do this, you will want to carefully watch the size of the log files. If they grow quickly, you may

How to Identify and Troubleshoot SQL Server Problems 128

have to stop the trace before the end of an hour. In order to capture a representative number of
recompiles, you may have to produce several short traces over the period of a typical production day and
analyze each one separately. This will minimize data collected by the trace and the server resources used.

ANALYZING THE TRACE

Let's check out what our trace looks like, as shown in Figure 5-17:

] SQL Server Profiler - [Untitled - 1 (PELE)]

53 File Edit View Replay Tools Window Help
HOEafaalr 3 e P

| EventClass | EventSubClass | ObjectMName | Object Type Text Data

+ SQL:StmtCompleted (91)
+ SQL:stmtRecompile (70)
+ SQL:StmtStarting (91)
+ Trace start (1)
+ Trace Stop (1)

Figure 5-17: After running the trace, you will see the results groups aggregated by EventClass.

I chose to group and aggregate the results by the EventClass, so the trace results separate all the events
into their event classes. We can see in figure 5-17 that during the time of the trace, 70 recompile events
occurred. Is this a good or a bad number? Does this indicate an excessive number of recompiles? As
noted in the introduction to this chapter, the only way to really answer these questions is to compare
these numbers to those obtained for the baseline traces for your SQL Servers.

Another way to interpret the data is to look at the SQL:StmtStarting and SQL:StmtCompleted events.
Each of these events was fired 91 times, so we can immediately see that of the 91 statements that
executed, there were 70 recompiles. In other words, about 77 percent of the time, when a statement was
executed, it was recompiled.

This appears to be a very high ratio. In theory, we want the percentage of recompiles to be a small
fraction of the total number of statements that have run. In most cases, where you see the ratio of
recompiles high compared to the number of statements, you should suspect a problem with excessive
recompiles.

Let's drill down into the data and see what is happening. If you click on the + sign next to
"SQL:StmtRecompile (70)", you'll see a screen such as that shown in Figure 5-18:

How to Identify and Troubleshoot SQL Server Problems 129

| EventClass | EventSubClass | OhjectName Ohject Type Text Data
SOL: StmtRecompile (70)
SOL:StmtRecompile 3 - Deferred compile DemoProc 8272 - P SELECT = FRi
SOL: StmtRecompile 3 - Deferred compile RowCountDhemo 8272 - P insert into #tl v
SOL: StmtRecompile 3 - Deferred compile RowCountDhemo 8272 - P select a
SOL:StmtRecompile 2 - Statistics changed RowCountDhemo 8272 - P select a
SOL: StmtRecompile 3 - Deferred compile CreateThenrReference 8272 - P insert into #rl1 v
SOL: StmtRecompile 3 - Deferred compile CreateThenrReference 8272 - P insert into #tl1 v
SOL: StmtRecompile 3 - Deferred compile CreateThenReference 8272 - P 1insert into #tZz v
SOL: StmtRecompile 3 - Deferred compile CreateThenrReference 8272 - P insert into #t2 v
SOL: StmtRecompile 3 - Deferred compile CreateThenrReference 8272 - P select x.a, x.b,
SOL: StmtRecompile 3 - Deferred compile CreateThenReference 8272 - P select = fr
SOL: StmtRecompile 3 - Deferred compile DemoProc 8272 - P SELECT = FRI
SOL: StmtRecompile 3 - Deferred compile RowCountDhemo 8272 - P insert into #tl v
SOL: StmtRecompile 3 - Deferred compile RowCountDhemo 8272 - P select a
SOL: StmtRecompile 2 - Staristics changed ROWCOUNTDemo 5272 - P select a

Figure 5-18: Drill down into the grouped and aggregated results and see exactly what kind of recompiles
occurred.

From the EventSubClass data column, we can see that there are two main causes of the recompiles: a
"Deferred compile" and a "Statistics changed." What do these mean?

A "Deferred compile" recompile event occurs because of deferred name resolution. In other words, an
object referred to in the statement does not exist at compile time. Later, when the object does exist, it
requires a recompile of the statement so that it can create an optimal execution plan. One example of
when a deferred compile will occur is if a temporary table is used in a batch and does not exist when the
first statements in the batch are compiled.

A "Statistics changed" recompile event occurs when the statistics for a table being referenced by the
statement changes. A change in statistics can affect an execution plan, so every time a statistics update
occurs for an index or column, all the related execution plans are thrown out and new ones have to be
created.

Besides these two events, there are many more reasons why recompiles happen, and they are described
in the EventSubClass data column.

It's also worth looking closely at what objects ate the cause of the recompiles. Often, you will find that
excessive recompiles are correlated with a small handful of objects. In this case, it is important to
identify these objects and investigate why they are contributing to recompile problems.

In addition, you will probably want to identify the statements that are causing the recompiles. As with
objects, you may discover that there is a relationship between specific Transact-SQL statements and
recompiles.

Another way to view and analyze the data is to disaggregate it by removing the "Aggregated View"
option from the Profiler window. This way, the events are displayed in the order they occurred and you
can see not only the recompile events, but also the context events, giving you a better idea of what is
happening. For example, in Figure 5-20, you can see that a new statement (from inside a stored
procedure) is to be executed. However, before it can be executed, it goes through two "Deferred
compiles" and one "Statistics changed" recompile, as shown in Figure 5-19:

How to Identify and Troubleshoot SQL Server Problems 130

| EventClass | Event SubClass | ObjectMame Object Type TexdData
SgL:stmtstarting exer RowCountDemo
SOL: StmtRecompile 2 - peferred compile RowCountDemo 8272 - P 1insert into #tl1 valuw
SOL: StmtRecompile 2 - peferred compile RowCountDemo 8272 - P select a
SgL: SstmtRecompile 2 - Statistics changed R.owCountDemo 8272 - P select a
SgL: stmtCompleted exec RowCountDemo

Figure 5-19: The events in blue above are all related to the same statement.

As well as running the above types of analysis, it is well worth importing the data into a database table
and running Transact-SQL against it to identify trends in any of the above areas.

So, when you are analyzing your data, your goal is to identify why your code is experiencing recompiles,
and then decide whether they can be prevented by following best coding and design practices. There
follow are some tips for reducing or eliminating excessive recompiles:

e Transact-SQL statements within batches need to be identical so the query plan can be
reused.

e Establish SET options at connection time and ensure that they do not change for the
duration of the connection.

e Use qualified object names in your T-SQL code.

e "CREATE PROCEDURE ... WITH RECOMPILE" can be used to mark stored
procedures that are called with widely varying parameters supplied during calls, but only
use if necessary.

e Don't mix Data Definition Language and Data Manipulation Language statements within
a single batch or stored procedure.

e Avoid schema changes on production databases.
e Avoid the RECONFIGURE command, which flushes the Plan Cache when it runs.
e Avoid excessive statistics updates.

How 10 IDENTIFY EXCESSIVE DATABASE FILE GROWTH/SHRINKAGE

By default, whenever a new user database is created, its data and log files are set to Auto Grow. Auto
Shrink is set to off. In almost all cases, these are the ideal settings. You want Auto Grow turned on in
case the files aren't large enough and need to grow; otherwise the database would cease functioning
when it ran out of room. Auto Shrink creates a lot of unnecessary overhead when it runs, which negates
any of the benefits it might offer.

Now, with the above said, let's take a brief look at some best practices surrounding file growth and
shrinkage. While Auto Grow should be left on for user databases, it is not a mechanism by which to
manage the growth of your user databases. It is only there to cover you for unexpected events.

The DBA is responsible for managing the growth of user databases and should create database files and
log files sized appropriately to cope with predicted growth rates. For example, if the DBA estimates that
the data file will be about 250gb in size at the end of the first year of activity, then the initial database
should be created at that size. The DBA then needs to monitor the used portion of the database and
adjust the file sizes appropriately, if the predicted growth pattern proves inaccurate, not just leave it to
the Auto Grow feature to grow the database.

One reason for this is that increasing the size of a database or log file uses server resources, so the DBA
needs to control when (and often where) database growth should take place, avoiding times when file
growth could hurt the production performance of the server. Another reason for avoid Auto Grow
events is to reduce physical file fragmentation.

How to Identify and Troubleshoot SQL Server Problems 131

Occasionally, database files are larger than they need to be and should be shrunk to avoid wasting hard
disk space. As noted above, the Auto Shrink option incurs a large resource overhead, and can also
"over-shrink" your databases. It should be turned off and all file shrinkage manually controlled by the
DBA. This way, the DBA can determine the final size of the size of the database, and can schedule the
shrinkage for when it will least affect server performance.

If you adopt these basic best practices, you should never encounter the problems that can arise from
using Auto Grow and Auto Shrink, and therefore have no cause to run Profiler traces to investigate
these issues. However, if you are using Auto Grow and/or Auto Shrink to manage file size, you can use
Profiler to see how it is affecting your SQL Setver. If your database sizes don't change much over time,
you won't see any problems. However, if your databases sizes do change significantly, you may be
surprised to see how much Auto Grow and Auto Shrink activity takes place on your server.

This section will demonstrate how to use Profiler to help identify and troubleshoot cases of excessive
file Auto Grow or Auto Shrink.

DATA AND L0G FILE AUTO GROW/SHRINK EVENTS

Four Profiler events are used to monitor data and log file Auto Grow or Auto Shrink:

e Data File Auto Grow
e Data File Auto Shrink
e Log File Auto Grow
e Log File Auto Shrink

Events | DatabaseMame | IntegerData | Duration | File Mame | ApplicationMame | SPID | LoginMame | ServerName

= Database
[v Data File Auto Grow
W Data File Auto Shrink
v Log File Auto Grow
[v Log File Auto Shrink

<l X % X
<1 %1 <«
< %A A
<l X1 <1 %]
<l X % X
< %A A
<1 %1 <«
<1 %1 <«

Figure 5-20: Four events are used to identify auto growth and auto shrinkage.

FEach of these events is self-explanatory. The only thing that is not obvious is that they only fire when
Auto Grow or Auto Shrink occur automatically. These events are not fired when the DBA manually
grows or shrinks database or log files.

SELECTING DATA COLUMNS

I generally select the following data columns, ordered as shown below:

e DatabaseName
o LEventClass

e IntegerData

e Duration

e FileName
e ApplicationName
e SPID

e LoginName
e ServerName
e StartTime

How to Identify and Troubleshoot SQL Server Problems 132

e EndTime
We have covered most of these data columns previously, but there are a couple of new ones.
INTEGERDATA

This value is the number of 8K pages that were either added or removed by the Auto Grow or Auto
Shrink process.

FILENAME

This is the logical name of the file that experienced Auto Grow or Auto Shrink.

SELECTING A COLUMN FILTER

I may or may not use column filters when I am tracing recompiles. If I do, I generally filter on the
DatabaseName data column to focus my analysis on one database at a time.

SELECTING COLUMN ORGANIZATION

I like to group an Auto Grow/Auto Shrink trace by the EventClass data column, as shown in figure 5-
21. This allows me to see the data grouped by the type of event or, if I turn off grouping, then I can see
the events in chronological order:

Organize Columns ﬁ

=l Groups Select a column and use Up and
Down buttons to change its
arder. Move the column under
=l Columns Groups to group data by that
DatabaseMame column.
IntegerData

Duration

EventClass

FileMame
ApplicationMame
SPID

LoginMame
ServerMame
StartTime
EndTime

Figure 5-21: I prefer to group and aggregate by the EventClass data column.

RUNNING THE TRACE

This is a very lightweight trace and there is no problem running it for a 24-hour period if you want to
see what is happening throughout the day, which I recommend.

How to Identify and Troubleshoot SQL Server Problems 133

ANALYZING THE TRACE

Let's check out our trace, shown in Figure 5-22:

| EvertClass | DatabaseMame | IntegerData Duration File Mame | ApplicationMame
+Data File Auto Grow (383) :
+ Data File Autc Shrink (1)
+ Log File Auto Grow ((45)
+ Trace start (1)

Figure 5-22: The results are grouped and aggregated by EventClass.

This trace is grouped and aggregated on the EventClass data column, which is a great way to start
analyzing the data. Right away, we see a huge number of Data File Auto Grow events, plus quite a few
Log File Auto Grow events, and a single Data File Auto Shrink event.

Given that this trace lasted less than 5 minutes, it would be safe to say that these numbers are excessive.
You may be thinking that I had to create some unusual Transact-SQL code to create a trace with this
many events in such a short amount of time. Not at all. What I did was something many DBAs do every
day, and that is to import a large quantity of data (20 million rows) into a table.

Hopefully this dramatic, but quite common, example demonstrates that using Auto Grow to manage
your database file sizes is not a great idea.

Let's drill down more and see what happened:

EventClass | DatabaszeMName IntegerData Duration FileMame | ApplicationMame
pData File Auto Grow (383)

Data File Auto Grow sqlstress 125 153 sqlst... Microsoft 5Q..
Data File Auto Grow sqlstress 128 170 sqlst... Microsoft sQ..
Data File Auto Grow sqlstress 128 126 sqlst... Microsoft s0Q..
Data File Auto Grow sqlstress 1258 106 sqlst... Microsoft s5Q..
Data File Auto Grow sqlstress 1258 93 sqlst... Microsoft 50Q..
Data File Auto Grow sqlstress 1258 106 sqlst... Microsoft s5Q..
Data File Auto Grow sqlstress 1258 156 sqlst... Microsoft 5Q..
Data File Auto Grow sqlstress 1258 203 sqlst... Microsoft s5Q..
Data File Auto Grow sqlstress 128 &80 sqlst... Microsoft 53..

Figure 5-23: As you can see in this example, Auto Grow requited a lot of disk I/O and time as the data file was
automatically expanded.

Expanding the Data File Auto Grow EventClass, I see each individual event. As you can see, each one
increased the size of the database by 128 x 8K pages, and the duration of each Auto Grow event varied
from 60 to 203 milliseconds. In fact, when I total all 389 events, the database grew by just under 400mb,
with a total duration of about 45 seconds.

If this had happened during a busy time of the day, the server's performance would have been affected,
due to the memory, disk I/O, and CPU resources required to expand the data file. If this growth was
managed manually, it could have been done as a single event at a time of the day when activity was
slower, so that it had less effect on users. Moreover, this doesn't even consider the resources used to
grow the log file.

If this is not enough proof of excessive file growth, we can ungroup and disaggregate the results by
clicking View | Aggregated View, as shown in Figure 5-24:

How to Identify and Troubleshoot SQL Server Problems 134

| EventClass | DatabaseMame | IntegerData | Duration FileMame | ApplicationMame |

Trace Start

pata File Aauto sShrink zqlstress L0944 186 s=sqlstress

Data File Auto Grow sqlstress 128 153 sqlstress Microsoft 50Q...
Data File Auto Grow sqlstress 128 170 sqlstress Microsoft 50Q...
Data File Auto Grow sqlstress 128 126 sqlstress Microsoft 50Q...
Log File Auto Grow sqlstress 96 186 sqlstres... Microsoft 50...
Data File Auto Grow sqlstress 125 106 sqlstress Microsoft 5Q...

Figure 5-24: The data is not disaggregated, showing the events in the order they occurred.

In its ungrouped and disaggregated view, we see each event as it happened. Notice that, by coincidence,
a Data File Auto Shrink event occurred, reducing the database by 50,944 8K pages. This event was
followed by four Data File Auto Grow events, then a Log File Auto Grow event. While we can't see the
StartTime in the figure above, these events occurred less than one second apatrt. Obviously, you don't
want your server expanding a database or log file that often. The overhead is unnecessary and easily
prevented.

With most of the problems we have identified with Profiler up to this point, Profiler provides us with
good data about a problem, but it doesn't always provide us with easy solutions. In this particular case,
the solution is simple. Follow the best practices already described and proactively manage the size of
your database files. This way, you will never see an example as bad as the one shown here.

How T0 IDENTIFY EXCESSIVE TABLE/INDEX SCANS

Table or index scans can be a good thing or a bad thing for SQL Server performance. If a table is small,
then a scan is often the fastest way to return rows. On the other hand, if the table is large and you only
need to return a few rows from it, then a table scan will be very inefficient. As DBAs or developers, we
only want to see table or index scans used where they are most efficient, so our goal is to try to identify
inefficient scan activity.

While there is no single event that will do all this for us, there are a series of events we can use to help us
identify tables or indexes that are subject to a lot of scans; we can then investigate those to see whether
or not the scans are appropriate.

THE SCAN:STARTED EVENT

The Scan:Started event fires whenever a table or an index scan occurs within a SQL Server instance
and is the primary event that will help you to identify excessive scanning. In addition, I like to capture
the following context events:

e RPC:Completed

e SP:StmtCompleted

e SQL:BatchStarting

e SQL:BatchCompleted
e Showplan XML

SELECTING THE DATA COLUMNS

Selecting the ideal combination of data columns for this trace is not particularly easy. The problem is
that the Scan:Started event lacks a lot of useful data columns, and its data columns don't overlap well
with the data columns for the context events. This requires collecting more data columns that I would
prefer, incurring greater overhead. Generally, I like to select the following data columns:

How to Identify and Troubleshoot SQL Server Problems 135

e ObjectID

e ObjectName
e Duration

o LEventClass

o TextData

e C(CPU
e Reads
o Writes

e IntegerData

e DatabaseName

e ApplicationName
e StartTime

e EndTime

e SPID

e LoginName

e EventSequence

e BinaryData

We have seen all of these data columns before, so they don't need another introduction. What you might
be asking is: why am I collecting both the ObjectID and the ObjectName data columns?

Isn't one or the other of these columns redundant? No. The ObjectID is collected for the Scan:Started
event only, and it is used to group and aggregate scans by object (table or index) ID. Unfortunately,
ObjectName is not available for the Scan:Started event. For the context events, ObjectName is available,
but it does not refer to the same object referred to in the Scan:Started event. Instead, ObjectName, in
the context events, refers to the stored procedure (assuming there is one) that was executed.

SELECTING A COLUMN FILTER

I generally filter on the DatabaseName data column in order to reduce the amount of events that are
displayed, so I can focus on one database at a time.

How to Identify and Troubleshoot SQL Server Problems

Edit Filter

“F ApplicationMame
BinaryData
CPU

b (Databaselame |
Duration
EndTime
IntegerData
LoginMame
ObjectID
OhjectMame
Reads
SPID
StartTime

S

m

—DatabaseMame

Mame of the database in which the
statement of the user is running.

El L?kE
: ‘.. big_database
- Not like

[~ Exdude rows that do not contain values

0K I Cancel

Figure 5-25: Filter on DatabaseName to focus on one database at a time.

CoLUMN ORGANIZATION

I group by the Object ID data column. This makes it much easier to identify those objects that incur
large numbers of table or index scans. In addition, I can remove the grouping later in order to see the
scan events in context with the code that created the scans. You can order the data columns any way

that works best for you.

”

Organize Columns

=

=l Columns

Duration

TextData
CPU
Reads
Writes

CHartTirna

Up

Objectiame

EventClass

IntegerData
DatabaseMame
ApplicationMame

El Groups » Select a column and use Up and
r Down buttons to change its
order. Move the column under

Groups to group data by that
columr,

m

Down | QK I Cancel

Figure 5-26: I prefer to group and aggregate by the ObjectID data column.

136

How to Identify and Troubleshoot SQL Server Problems 137

RUNNING THE TRACE

If you have a busy production setvet, this trace will capture many events, so I don't recommend that you
run this trace for more than one hour at a time. As usual, you will want to select a time period to
conduct the trace that is representative of a typical production load. If your workload varies a lot over
time, you may need to conduct multiple traces in order to capture a representative workload. If you have
a very busy setrver, then you may have to trace for a period shorter than one hour.

ANALYZING THE TRACE

Let's check out what our trace looks like, shown in Figure 5-27:

Ohject|D | OhbjectName Duration EventClass
+ 1142399239 (56)
+ 1250207604 (&)
* 1292023834 (15)
+ 1321771766 (E)
+ 1385928159 (&)
+ 1625824904 (27)
* 1657825018 (41)
+ 1769825417 (27)
+ 1770489386 (84)
+ 1785825474 (32)
* 1801825531 (17)
o 1836025772 (155) |
= 1874209827 (133'
+ 2072446507 (9)

Figure 5-27: Use this trace to identify those objects that are subject to lot of scans.

After performing a scan trace, our first goal is to identify those objects (tables or indexes) that incur the
greatest number of scans. For example, in figure 5-27, one particular object experienced 155 scans. At
this point we don't know if this is good or bad, so we need to conduct some further investigation.

One of the first things I want to know is the name of the object that corresponds to the offending
Object ID, and I find this out using the following code:

SELECT name
FROM sys.objects
WHERE object_id = 1836025772

Upon running this query, I find out that the name of the object is "ship_tbl," which is a table in the
database. Next, I like to know how many rows the table has so I can determine if the table is small or
large. Using Management Studio (or the appropriate T-SQL code), I find out that the table has 70,831
rows. This is not a small table.

Next, I like to check out the indexes on the table in order to better understand what is going on. Using
Management Studio (or the appropriate T-SQL code), I find that the table has a single index, which is a
clustered, composite index based on the first four columns of the table. In addition, I notice that the
first column of the clustered index is not selective enough to be useful if the WHERE clause filters on
this column alone. The index is only useful if the WHERE clause uses multiple columns of the index.

How to Identify and Troubleshoot SQL Server Problems 138

At this point, I am thinking that this particular table may not be well indexed because it has a single
composite index. To prove this, I need to see this object in the context of the code that runs against it.
To do this, I ungroup and disaggregate the data by selecting View | Aggregated View in order to view the
events in chronological order. Then, I use the Profiler Find option to locate the first occurrence in the
trace of ObjectID 1836025772.

Figure 5-28 shows me that this object is scanned several times during the execution of a stored
procedure:

| ObjectlD | ObjectName Duration EventClass TextData
SQL:eatchstarting exec dbo.ADGSP_SO_LOADNOTSHIP
ADGSP_S0_LOADNOTSHIP 0 SP:stmtCompleted SET NOCOUNT ON
ADGSP_S0O_LOADNOTSHIP Showplan xML <showPlanxML xmins="http://schemas....
1292023834 Scan:started
1292023834 Scan: Started

1292023834 Scan:started
i Scan: Started

77 Scan: started
1836025772 Scan:started

1836025772 Scan:started
1836025772 Scan: Started
1836025772 Scan:started
1836025772 scan: started
1836025772 Scan: started
1836025772 scan: started
1836025772 Scan: started
1836025772 Scan:started

Figure 5-28: The screen shot shows the top of the stored procedure dbo.ADGSP_SO_LOADNOTSHIP.

There are so many scan events for this stored procedure that I can't show all of them on a single screen.
However, at the top of figure 5-28, we see that the stored procedure
dbo.ADGSP_SO_LOADNOTSHIP begins executing. Next comes a SET NOCOUNT ON statement.
In the third line we see the Showplan XML event. This is the graphical execution plan for the
dbo.ADGSP_SO_LOADNOTSHIP stored procedure. After that we see many Scan:Started events
relating to our ship_tbl table (ObjectID 1836025772).

Further down the trace, in Figure 5-29, we see more scan events, including three that relate to a different
object:

| ObjectiD | ObjectName Durtion | EventClass TextData |cPU | Reads | wiite

1836025772 Scan:Started
1836025772 Scan:started
1836025772 Scan:Started
1836025772 Scan:started
1836025772 Scan:started
1836025772 Scan:Started
1836025772 Scan:started
1836025772 Scan:Started
683917558 Scan:started
683917558 Scan:started
683917558 Scan:Started

ADGSP_S0_LOADNOTSHIP 10679 SP:stmtCompleted SELECT DISTINCT so_hdr_tbl.g... 4931 158328

10679 sSqL:BatchCompleted exec dbo.ADGSP_SO_LOADNOTSHIP 4931 158334

Figure 5-29: The screen shot shows the bottom of the stored procedure dbo. ADGSP_SO_LOADNOTSHIP.

Toward the end of the trace, we see the SP:StmtCompleted event, indicating that the code inside the
stored procedure has been fired. Finally, we see the SQL:BatchCompleted event. Associated with these
final two events, we can also see the Duration, CPU, and Reads. These values are all suspiciously high.

How to Identify and Troubleshoot SQL Server Problems 139

At this point, I like to look at the graphical execution plan of the code. As this plan is much too large to
show here, trust me when I say that it contains multiple Clustered Index Scans of the ship_tbl table,
among many other problems. At this point, I would need to drill down even further to identify why the
scans are occurring and see if there is any benefit from modifying or adding indexes to the table, to turn
the scans into index seeks.

You may be thinking that the process 1 described here is a lot like the process for identifying slow
queties, and involves just as much work. You'd be right on both counts. Essentially, what we are doing
in this trace is finding slow-performing queries, albeit by a slightly different route. However, whereas the
process in Chapter 4 focused only on Duration, this one examines scans and the objects that are affected
by the scans.

How 10 IDENTIFY MEMORY PROBLEMS

Traditionally, identifying memory problems has been done using Performance Monitor, system-stored
procedures and, in SQL Server 2005 onwards, Dynamic Management Views (DMVs). Although SQL
Server 2005 Profiler is not one of the primary tools for investigating memory issues, it does offer three
events that can provide insight into these issues that we can't get from other tools.

MEMORY PROFILING EVENTS

The three Profiler events that can help us understand different types of memory pressures in SQL
Server 2005 are:

e Execution Warnings
e Sort Warnings
e Server Memory Change
When I conduct an initial trace using the above events, I use them by themselves to see if they cause

problems. If I see any problems, then I conduct follow-up traces that include additional context events,
such as:

e RPC:Completed

e SP:StmtCompleted

e SQL:BatchStarting

e SQL:BatchCompleted
e Showplan XML

Since we've encountered all the above context events previously, let's focus on the three key memory
events, as shown in Figure 5-30:

Events | EventSubClass | TextData | Duration | ImtegerData | ApplicationName | DatabaseMame |
- Emors and Wamings
----- JI? Bxecution Wamings r ~ v v r
W Sort VWamings [v [
- Server
v Server Memory Change v 2

Figure 5-30: Use these three events for your initial traces.

In previous traces, all the events were cleatly related. This trace is different. While all three events are
memory-related, they each represent a different way of measuring memory pressure on a SQL Server.

How to Identify and Troubleshoot SQL Server Problems 140

EXECUTION WARNINGS

Before a query can be executed, it must first be granted enough memory to execute. Most of the time
there is enough memory available and the memory is granted immediately. However, if the server is
under intensive memory pressure, queries may have to wait their turn in order to get the amount of
memory they need to execute. The Execution Warnings event fires whenever a query has to wait one
second or more before it is allocated the memory it needs.

SORT WARNINGS

When SQL Server is asked to perform an ORDER BY operation, it tries to perform the sort in memory
in order to provide the best performance. However, if the amount of data to be ordered is large, the data
might instead have to be written to the tempdb database as part of the sorting process. Because disk I/O
is now involved, sort performance can suffer.

SERVER MIEEMORY CHANGE

This event fires when the memory of a SQL Server instance increases or decreases by either 1mb, or by
5% of the maximum server memory allocated to it, whichever is greater. If you start up a SQL Server
instance, you would expect to see this event fire as its memory is being allocated. On the other hand,
once a server has been running for a while, you would not expect to see this event fire very often. If the
event is fired frequently over a short time period, this might indicate that SQL Setrver is fighting the
operating system, or another application, for memory.

SELECTING THE DATA COLUMNS

Fortunately, few data columns are needed to capture the required information from these three events.
These are the data columns I normally select for this trace:

o LEventClass

e LEventSubClass
o TextData

e Duration

e IntegerData

e ApplicationName
e DatabaseName
e LoginName

e ServerName

e SPID

e StartTime

We've encountered each of these data columns before, but the data returned by EventSubClass and
IntegerData varies from event to event.

EVENTSUBCLASS

If the event type is Execution Warnings, you see either of these two values:

e "1=Query wait" — indicates that a particular query had to wait at least one second
before it could be allocated enough memory to run

How to Identify and Troubleshoot SQL Server Problems 141

e '"2=Query timeout" — indicates that SQL Server killed the query instead of running it
because it was never allocated enough memory to run.

If the event type is Sort Warnings, you see either of these two values:

e '"1=Single pass" — SQL Server only had to perform a single pass to sort the data in
tempdb

e '"2=Multiple pass' — two or more passes were required to sort the data in tempdb. The
more passes taken, the more resources SQL Server must use to sort the data.

If the event type is Setver Memory Change, you see either of these two values: "1=Memory Increase"
or "2=Memory Decrease", indicating whether SQL Server is asking for more memory, or giving up
memoty.

INTEGERDATA

If the event type is Server Memory Change, the value in this data column represents the new memory
size, in megabytes, that is being used by SQL Server at the time the event is fired.

SELECTING A COLUMN FILTER

When I perform the initial trace, I don't use any filters at all. This is because memory tends to be a
server-wide problem and it's necessaty to collect all these events in order to get a broad view of how
these memory events are affecting the server. If I decide to drill down later for more detailed traces, 1
tend to filter at the DatabaseName level.

COLUMN ORGANIZATION

I group by the EventClass data column. This separates the three types of memory events and
aggregates the number of times they occurred during the trace. You can order the data columns any way
that works best for you.

How to Identify and Troubleshoot SQL Server Problems 142

Organize Columns ﬁ

= Groups » Select a column and use Up and
— Down buttons to change its
order. Move the column under

=l Columns Groups to group data by that
EventSubClass colurmr,

TextData

Error

Duration
IntegerData
ApplicationMame
DatabaseMame
LoginMame
ServerMame —
SPID

CtartTirma

m

Figure 5-31: I prefer to group and aggregate by the EventClass data column.

RUNNING THE TRACE

If you are only tracing the three memory events, the trace will be lightweight and you should be able to
run it for a 24-hour period in order to get a representative look at how memory is behaving in your
server.

ANALYZING THE TRACE

Depending on the memory problems your server has, if any, it may take some time to see any of these
events occur on your server. Figure 5-32 shows a trace that captured one Execution Warnings event, five
Server Memory Change events, and 105 Sort Warnings events:

J EvertClass | Event SubClass | TextData | Emar | Duration

+ Execution Warnings (1)

+| Server Memory Change (5]
+ Sort warnings (105)

+ Trace Start (1)

+: Trace Stop (1)

Figure 5-32: This trace is simple and easy to read.

If this was a trace collected over a 24-hour period, I would assume that there are no memory problems
with this server, at least in regard to these three memory events. On the other hand, if this was a 5-
minute trace, then I might begin to worry. Once again, however, it would largely depend on how this
trace compares to my baseline trace.

Let's drill down into the details of each event, starting with Execution Warnings, as shown in Figure 5-
33:

How to Identify and Troubleshoot SQL Server Problems 143

| EventClass | EventSubClass | Texdt Data | | Duration | IntegerData | ApplicationName | DatabaseMName |
- Execution warnings (1)

Execution warnings 1 - Query wait 15000 stress utility Eig_Database

Figure 5-33: You want as few Execution Warnings as possible on your server.

The EventSubClass data column indicates that the query was executed, but that it was delayed before it
could get enough memory to execute. The Duration data column shows that the query waited 15
seconds before it could run. Seeing a few of these events is normal, but if you see them happening often,
your server needs more memory. If memory does not become available within a reasonable amount of
time, the query can time out and you would see a time-out error in the EventSubClass. Obviously you
want to avoid having any queries timed out due to a lack of available memory.

Figure 5-34 shows the five Server Memory Change events:

| EventClass | EventSubClass | TextData | | Duration | IntegerData | Application Name
{ server Memory Change (5)

TServer Memory Change 1 - Increase 111

server Memory Change 1 - Increase 222

server Memory Change 1 - Increase 343

Server Memory Change 1 - Increase 497

server Memory Change Z - Decrease z84

Figure 5-34: SQL Server can ask for more memory, or it can give it up.

To create the above example, I stopped and then restarted the SQL Server instance, to free up memory.
Then I began running a load on the server. As noted eatrlier, for the Server Memory Change event to
fire, memory (RAM) use must increase or decrease by either Imb or 5% of the maximum server
memory allocated to SQL Server, whichever is greater. In the first four events, we see increases in
memory, from 111mb to 497mb. So, as SQL Server started processing requests after restart, it started
requesting RAM.

Later, SQL Server decided to give up some RAM and its use went down to 384mb. While the numbers
are small here, because it was done on a test server, you should see similar increases of memory of your
SQL Server after it is turned on and it begins production. At some point the amount of memory should
stabilize, with some minor changes here and there as SQL Server's activity increases or decreases. What
you do not want to see, once the server is in production, is a lot of memory increases and decreases over
a short period of time, which would indicate that SQL Server and the OS, or some other application on
the physical server, are fighting for memory. If this is the case, you should either add more RAM to the
server, or decide which applications need the memory most and allocate it accordingly.

Finally, Figure 5-35 shows some of the Sort Warnings, including many "Single pass" warnings and two
"Multiple pass" warnings:

How to Identify and Troubleshoot SQL Server Problems 144

| EventClass | EventSubClass | | | | | ApplicationName DatabaseName | LoginName | Serverhame
Sort warnings (105)
Sort warnings 1 - 5ingle pass stress utility Eig_Database pele\Brad PELE
Sort warnings 1 - single pass stress utility Big_Database pele\Brad PELE
Sort warnings 1 - single pass stress utility BEig_Database pele\Brad PELE
Sort warnings 1 - Single pass stress utility Big_Database pele\Brad PELE
Sort warnings 1 - Single pass stress utility BEig_Database pele\EBrad PELE
Sort warnings 1 - 5ingle pass stress utility Eig_Database pele\Brad PELE
Sort warnings 2 - Multiple pass stress utility Big_Database pele\Brad PELE
Sort warnings 2 - Multiple pass stress utility BEig_Database pele\Brad PELE
Sort warnings 1 - Single pass stress utility Big_Database pele\Brad PELE

Figure 5-35: More than likely, Sort Warnings will have the greatest number if events.

Ideally, all sorts would occur in RAM, but this not practical. If you see many sort warnings, you may
want to consider creating a follow-up trace that includes the statements and execution plan of the event,
so you can see what code is causing the Sort Warnings. In some cases, adding more memory might
reduce the Sort Warnings, or you may be able to rewrite queries so that less data is returned and so less
sorting has to occur. As a last resort, you can try to optimize the performance of tempdb.

SUMMARY

At this point, you should be very familiar with the key events and data columns offered by SQL Server
Profiler, and also know how to apply many of them to deal with real-world problems. Although we have
covered a lot of what Profiler has to offer, we still have not even outlined half its total capability. As you
practice using Profiler with your own servers and environment, you will eventually learn what works best

for you..

Using Profiler to Audit Database Activity 145

Chapter 6

USING PROFILER TO AUDIT DATABASE ACTIVITY

DBAs are entrusted with an organization's confidential data. It is their job to secute that data and ensure
that no one has improper access to it. In recent years, owing to new laws and regulations, company
security has meant the involvement of lawyers and auditors, who not only want to ensure that DBAs are
doing their job in keeping the data secure, but also track what they are doing and ensure that they are
honest.

While many DBAs see this as in intrusion into their territory, they have no choice but to comply. Not
only has this increased their workload, it has also required new tools that allow the DBA — and the
lawyers and auditors — to verify that security is working as it should be.

In SQL Server 2005, Microsoft added many new auditing events to Profiler that allow fine-grained
monitoring of most SQL Server-related activity. Activating these events is a bit like switching on SQL
Server's internal security cameras, and keeping an eye on who is doing what, and when.

Having said this, using Profiler to perform 24/7 auditing is not practical. Over 40 different audit specific
events can be captured, and capturing all these events would place an unacceptable resource burden on
most production databases. In addition, while the data can be collected, Profiler doesn't offer any casy
way to store or analyze the data, which makes management of the data and extraction of reports
difficult. If an organization needs this level of database auditing, it should seck a third-party tool that is
designed specifically for this purpose, or move to SQL Server 2008, which includes new auditing
functionality.

Profilet's auditing capabilities ate better used for short-term auditing — for investigating a specific
problem, such as who is accessing a particular table, who updated a specific record, or who accidently
deleted a row or a table. In other words, Profiler is a very effective tool when the audit expectations are
clearly defined. It is not designed to be a general-purpose auditing tool.

In this chapter we will focus on the following topics:
e What Audit events you can capture
e Selecting data columns
e Selecting column filters

e Organizing columns
e How to conduct an Audit Trace

CAPTURING AUDIT EVENTS

Profiler offers a total of 46 audit events, grouped into two Event Categories: Objects and Security
Audit. There are three Objects events:

e Object:Created
e Object:Altered
e Object:Deleted

And there are 43 Security Audit events:

e Audit Add DB User Event Class

Using Profiler to Audit Database Activity 146

e Audit Add Login to Server Role Event

e Audit Add Member to DB Role Event

e Audit Add Role Event

e Audit Addlogin Event

e Audit App Role Change Password Event

e Audit Backup/Restore Event

e Audit Broker Conversation

e Audit Broker Login

e Audit Change Audit Event

e Audit Change Database Owner

e Audit Database Management Event

e Audit Database Mirroring Login Event

e Audit Database Object Access Event

e Audit Database Object GDR Event

e Audit Database Object Management Event
e Audit Database Object Take Ownership Event
e Audit Database Operation Event

e Audit Database Principal Impersonation Event
e Audit Database Principal Management Event
e Audit Database Scope GDR Event

e Audit DBCC Event

e Audit Login Change Password Event

e Audit Login Change Property Event

e Audit Login

e Audit Login Failed Event

e Audit Login GDR Event

e Audit Logout

e Audit Object Derived Permission Event

e Audit Schema Object Access Event

e Audit Schema Object GDR Event

e Audit Schema Object Management Event

e Audit Schema Object Take Ownership Event
e Audit Server Alter Trace Event

e Audit Server Object GDR Event

e Audit Server Object Management Event

e Audit Server Object Take Ownership Event
e Audit Server Operation Event

e Audit Server Principal Impersonation Event
e Audit Server Principal Management Event

e Audit Server Scope GDR Event

e Audit Server Starts and Stops

e Audit Statement Permission Event

Using Profiler to Audit Database Activity 147

For the most part, the purpose of each event is self-evident from its name. For example, if you want to
find out who is modifying objects, such as stored procedures, you can use the Object:Altered event. If
you want to find out who added a user to a database, use the Audit Add DB User event. If you can't
figure out what a particular event does from its name, you can use the help available from the Events
Selection screen. Just move the cursor over the audit event, and a description of the event appears at the
bottom of the screen (see Figure 6-1):

Trace Properties ﬁ
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.
Everts | Applic... | Datab... | HostM... | Login... | Login... | NTDe... | NTUs... [SPID [Obiec... | Colum... | Serve.. «
- Objects
[V Object:Altered v 3 v v v I3 I3 v v [~
Iv Object Created I3 3 v v v v I3 I3 I3 3
[¥ Object:Deleted v 3 I3 I3 v v I v v 3
- Security Audit
[V Audit Add DB User Event I v v v v v v I v v
¥ Audit Add Login to Server Role Event I I I I 12 I I I I I
¥ Audt Add Memberto DB Role Event I~ I Ird Ird 2 I~d I~d I~ I~ I
¥ Audit Add Role Event I~ v v [w =2 I~ =3 I~ v
¥ Audit Addlogin Event I~ I Ird Ird 2 I~d I~d I~ I
¥ Audit App Role Change Password Ev ... I I I I 12 I I I I I
[VL = S = [[[[[[[[[[rer Bl
q I | }
— Objects
Includes event classes that are produced when database objects are created, dropped, or altered. [~ Show all events
[~ Show all columns
— No data column selected.
Column Filters. .. |
Organize Columns... |
Rn | Cancel | Hep |

Figure 6-1: Profiler offers 46 events just for auditing. Each has a description of the event that appears at the
bottom of the screen when you hover the cursor over the event.

So what events should you use when auditing? First, you need to be focused, and know what your goal
is; then you need to select the minimum number of events that help you accomplish this goal.

Earlier I said that almost any SQL Setver event can be audited. However, if you looked closely at the 46
events listed above, you may have noticed some events seem to be missing. For example, there don't
appear to be any events to monitor SELECT, INSERT, UPDATE, or DELETE activity on a given
table. How do you audit this kind of activity? In fact, besides the 46 audit-specific events, you can also
use any of the available Profiler events to audit activity because most Profiler events include a data
column for the user responsible for causing the event.

So, for example, if you want to identify every user who SELECTs, INSERTS, UPDATES, or
DELETES data from a table, you could use the following events and track the LoginName, LoginSID,
NTUserName data columns to see who was doing what:

e RPC:Completed
e SP:StmtCompleted
e SQL:BatchCompleted

Using Profiler to Audit Database Activity 148

By now, you may be beginning to appreciate why using Profiler for general auditing is not a good idea.
In effect, if you sought to audit every user activity, you would end up wanting to capture almost all the
Profiler events all of the time, which is just not practical.

When using Profiler for auditing, keep the scope of the audit small by using as few events as possible.

SELECTING DATA COLUMNS

Just as you want to minimize the number of events you capture, you also want to minimize the number
of data columns: you should only select those that meet the specific goals of the audit.

Thetre are many different reasons for performing an audit, so it's impossible to list all the different
combinations of data columns you might want to select. However, I would like to list those data
columns that you may want to consider when conducting a targeted Profiler audit trace. They include:

e ApplicationName

e ColumnPermissions
e DatabaseName or DatabaselD (you don't need both)
e EndTime

e Hvent

e HostName

e LoginName

e LoginSID

e NTDomainName

e NTUserName

e ObjectName or ObjectlD (you don't need both)
e OwnerName

e Permissions

e RoleName

o StartTime

e ServerName

e SessionloginName
e SPID

e Success

e TargetLoginName
e TargetLoginSID

e TargetUserName

o TextData

Some of the above data columns should be familiar to you, but there are a many new ones that we
haven’t covered yet. These include:

ColumnPermissions: This data column is available for audit events only and is used to help you track
column permission activity.

LoginName: Most events include the LoginName data column. It stores the login of the user who
caused the event. Depending on the type of login used, this column can contain either the SQL Server
login ID or the Windows Login ID (domain\username). This very useful data column helps you to
identify who is causing potential problems. It is also is a good column to filter on. This way, you can
limit trace results to those of a specific user.

Using Profiler to Audit Database Activity 149

LoginSid: This commonly-used data column contains the security identify (SID) of the user who caused
the event. In most cases you will probably not need it, as the LoginName data column provides
essentially the same data and is easier to read. If you need to find out the login name of a SID, you can
do so by querying the sys.server_principals view in the master database.

NTDomainName: This data column contains the name of the domain the user responsible for the
event resides in.

NTUserName: This data column contains the Windows user name of the user responsible for the
event. In many cases, this data duplicates the data found in the LoginName column.

OwnerName: This data column, which is used for some Audit events, lists the database user name of
the object owner.

Permissions: This data column is only available for selected Audit events. It contains values
representing the type of permissions affected by the event.

RoleName: If the event is caused by a client running under a SQL Server database role, the role name
is located in this data column.

SessionLoginName: This data column contains the login name of the account that started the session
that produced the event. This can be useful to know if the event was fired using an account other than
the one originally logged-in under.

Success: Many events indicate whether or not they were successful. A value of 1 means success, and a
value of 0 means failure.

TargetLoginName: Used for Audit events that target a login, this data column contains the name of
the targeted login. For example, if a T-SQL statement is creating a new login name, then this value
would be the name of the newly created login name.

TargetLoginSid: Used for Audit events that target a login, this data column contains the SID of the
targeted login. For example, if a T-SQL statement is creating a new login name, then this value would be
the SID of the newly created login name.

TargetUserName: Used for Audit events that target a database user, this data column contains the
name of the targeted user. For example, if a T-SQL statement grants permission to a uset, then this
value would be the name of that user who was granted that permission.

When you first begin using the above data columns, you will probably need to experiment with different
ones until you find the “best” combination of data columns that collect the data you need, but time
don’t collect more data than you need.

SELECTING COLUMN FILTERS

For audit traces, I am a big fan of using column filters. This is because the number of audit events that
occur in a busy production database can very easily run into thousands per minute. By using a restrictive
Column Filter, you can reduce the number of events that are captured and keep the amount of data to a
manageable level.

I recommend that you select as narrow a filter as you can. For example, perform the audit on a specific
database, specific application, specific object, specific user, or some combination of these, as shown in
Figure 6-2:

Using Profiler to Audit Database Activity

Edit Filter 5
W Apgicationtiome I —CulgmnPermlsmuns —
SiniDatal =i Indicator of whether a column permission
Igintlia was set, Parse the statement text to
BinaryData = determine exactly which permissions were
ColumnPermizsi... applied to which columns.
CPU
“F DatabaseMame
“F DBUserMName
Duration [#- Equals
EndTime (- Mot equal to
Errar [+ Greater than or equal
FileMame - Less than or equal
GUID
Hosti
o8 EIT-IE T [Exdude rows that do not contain values
| QK I Cancel

Figure 6-2: Be sure your Column Filters are very specific.

ORGANIZING COLUMNS

I suggest that you group and aggregate events on the EventClass. This way you will be able to more
casily see what events are occurring and how often. Then you can choose to drill down for the details.
This also gives you the option of removing the grouping and of viewing the data in the order the events

occurred. Order the data columns in any order that works well for you.

F

Crganize Columns

[

= Groups
EventClass

= Columns
ApplicationMame
ClientProcessID
DatabaseMame
HostMame
LoginMame
LoginSid
MTDomainMame
MTUserMame
SPID
ObjectMame

Ceh irmnDarmiccinme

Up | Diown I Ok Cancel

» Selecta column and use Up and
— Down buttons to change its
order. Move the column under
Groups to group data by that
column.

m

-

150

Figure 7-3: Grouping and aggregating by Event Class is a good way to present your data for later analysis.

Using Profiler to Audit Database Activity 151

How 10 CoNDUCT AN AUDIT TRACE

Once you have selected the appropriate events, data columns, column filters and column organization
that meet your targeted auditing goals, it is time to start the trace. Before you begin, though, you have a
hard decision to make: how long to run it?

Often, a problem with audit traces is that you don't know when a particular event will occur. It is
obviously very hard to predict when a user might try to access a particular table, or delete an object. As
such, audit traces may have to run a long time in order to be able to capture the desired activities.

As you might expect, long traces can produce a lot of data and impose a resource burden on SQL
Server. The trick is to balance the amount of data collected against the length of the data collection
period. For example, if you think you know that a particular event will occur within a limited time
period, then you can collect more events and data columns. On the other hand, if you have no idea
when an event might occur, you may have to run your trace for longer periods, but with a very limited
set of events and data columns, and with a restrictive column filter.

NOTE:

See chapter 10, How fo Capture Profiler Traces Programmatically, in order to learn additional ways of
running a trace that minimize the impact it makes on a server’s resources.

Figure 7-4 shows an example Profiler auditing trace, grouped on the EventClass data column:

Using Profiler to Audit Database Activity 152

“# SQL Server Profiler - [Untitled - 1 (PELE)] EREE

¥4 File Edit View Replay Tools Window Help (- | =] =]
FDNEsFac|>r v | ZANG @HE P
J EvertClass | ApplicationMame | Database Mz

+ Audit Addlogin Event (2}

+ Audit DBCC Event (1)

+ Audit Login (51)

+ Audit Logout (49)

+ Audit Object Derived Permission Event (20)
+ Audit Schema Object Access Ewvent (865)

+ Audit Schema Object Management Event (10)
+ Audit server Principal Management Ewvent (2]
+ Audit Statement Permission Event (1)

+ Object:Altered (&)

+ Object:Created (40)

+ Object:Deleted (8)

+ Trace Start (1)

+ ! Trace stop (1)

4.@ | 3

m

| i |
Trace is stopped. Ln14, Coll | Rows: 14

Figure 7-4: This audit trace shows the audit events grouped and aggregated.

I ran this trace for just under two minutes on a relatively underused test server. As you can see, a large
number of events were captured in this time, including 865 "Schema Object Access" events. Figure 7-5
shows an ungrouped view of the same data:

Using Profiler to Audit Database Activity 153

SQL Server Profiler - [Untitled - 1 (PELE)] o= B

#5 File Edit View Replay Tools Window Help [- =] x]
-3 G} b T v

HOggFag(r» o | ZANR BDE|P

J EventClass | ApplicationName | DatabaseMame | Host... | LoginName | LoginSid =
Audit Schema Object Management Ewvent Microsoft ... sqlstress PELE ProfilerUser OX748.
Audit Object Derived Permission Event Microsoft ... sglstress PELE ProfilerUser OX748.
Object:Deleted Microsoft ... sqlstress PELE ProfilerUser OX748.
EAudit Schema Object Access Event gmicrnsnft ... 5sqglstress PELE Profileruser OX?43.E]
Object:Deleted Microsoft ... sqlstress PELE Profileruser OX748. _

o« i v o ’ - B o 3

*

INSERT [dbo]. [DatabaselLog]
e

[PostTime],
[DatabaselUser],
[Event],
[Schema] ,
[object],
[Ts0L],
[Xml1Event]

)
VALUES

i

GETDATE(,

CONVERT (Sysname, CURRENT_USER],
BeventType,

CONVERT (sysname, @schema),
CONVERT (sysname, @object],

m

@data.value(' (/EVENT_INSTANCE/TSQLCommand)[1]", ‘nvarchar(max)'),

@data
' m | »
Trace is stopped. |Ln1038, Coll | Rows: 1057

Figure 7-5: This is an ungrouped view of the data. Notice that 1,057 audit events were captured.

In Figure 7-5, I've highlighted one of the Schema Object Access events, in this case a table insert. The
other data columns collected with the event show us the login of the user who made the insert, the
database on which it was executed, and so on.

If you have no choice but to run a long audit, keep a close eye on the size of the trace file, together with
how the trace is affecting your production server's performance. If the server is not too busy, then the
impact of the trace should be negligible. If you do see a negative impact on performance, you will then
have to decide if this particular audit trace is justified in terms of the value of the data you are collecting.
In some cases you may have to accept less server performance for a given time period in order to collect
the data you need. In other cases, the overhead used by a Profiler audit trace may be an unacceptable
option, and you may have to find another way to collect the audit data you are seeking.

SUMMARY

You can see why I don't recommend using Profiler for heavy auditing tasks. If you really need this level
of auditing capability, especially 24/7 auditing, you need a third-party auditing application that can not
only produce a lightweight audit, but can also store, manage, and report on the audit data collected.

However, if you have a very limited and specific auditing objective, then Profiler can be a very powerful
tool for the DBA.

Using Profiler with the Database Engine Tuning Advisor 155

Chapter 7

USING PROFILER WITH THE DATABASE ENGINE TUNING
ADVISOR

Besides Profiler, probably the most underused and misunderstood tool that comes with SQL Server
2005 is the Database Engine Tuning Advisor (DTA). Many people think that the DTA is just a reheated
version of the old Index Tuning Wizard. This is not the case. The DTA is a powerful tool that will help
you better tune your SQL Server databases.

I could easily write an entire book on the many benefits and features of DTA, but since our focus is on
Profiler, this chapter will content itself with showing how to create and capture a Profiler trace that can
be used to feed the DTA with the information it needs to make optimized tuning recommendations.

It will also describe how to run a DTA analysis of your Profiler trace and how to interpret the results. If
you are new to using DTA, this will be a good introduction. Here's how the chapter is structured:

e Features and Benefits of Using the DTA

e How to Create a Trace for Use by the DTA

e Running the Trace

e How to Perform a Simple Missing Index Analysis Using the DTA
e Understanding the Results of the DTA Analysis

FEATURES AND BENEFITS OF USING THE DTA

If you are familiar with the older Index Tuning Wizard, but have not sat down to learn the features of
the DTA, you may think that the DTA is only for novice DBAs who don't know enough about SQL
Server to tune their indexes manually. That would be wrong. The DTA provides features designed for
both the novice and experienced DBA. In fact, I would bet that the DTA can do a better job of tuning
indexes than most DBAs who perform the same task manually.

The DTA works by analyzing the execution plans behind all the statements that are included in the
workload that you supply to it. This workload can take the form of a single query or, more commonly, a
Profiler trace. Based on this workload, the DTA can perform a lot of useful analysis. For example:

e The DTA supports the analysis of heaps, clustered and non-clustered indexes, indexed
views, and partitions. In other words, it can take any of these physical structures and
identify ways they can be modified in order to boost the performance of the workload
submitted to it. It does this by analyzing the statements running against these physical
structures, then determining the optimal indexing scheme necessary to optimize their
performance.

e The DTA can analyze a single statement, batches of statements, Profiler traces stored in
native format, Profiler Traces stored in a database table, and XML input files. It can also
work with statements which have user-defined functions, reference temp tables, and
which are inside triggers. In other words, the DTA can help tune database physical
structures using statements found at any level, all the way from a single query to an entire
servet.

Using Profiler with the Database Engine Tuning Advisor 156

e The DTA can determine what physical design structures are no longer needed in a
database and should be dropped. For example, it can identify indexes that are never used.

e If you are using SQL Server 2005 Enterprise Edition, you can ask the DTA for a
recommendation on online index creation options, which can help to minimize the load
on a busy production server.

e Integrated tuning allows the DTA to consider tradeoffs between different physical design
structures, such as clustered and non-clustered indexes, indexed views, and partitions. In
addition, INSERT, UPDATE, and DELETE statements are considered, along with
SELECT statements, when selecting the ideal combination of indexes. In other words,
the overhead associated with INSERTs, UPDATESs, and DELETEs and indexes is
considered as a part of the recommended indexing scheme. The DTA also considers the
order in which columns should be arranged for composite and included indexes.

e What-if analysis can be performed to test hypothetical configurations against current
configuration, in order to identify ideal configurations. For example, the DBA can test to
see if a particular index should be clustered or not, for optimum performance.

e The DTA produces many analysis reports, allowing the DBA to delve further into how
the database is working internally.

There is also a lot of flexibility in the tool. For example, the DBA can:

e Choose exactly which physical design features to analyze.

e Sclect to tune physical structures for a single database, or multiple databases at the same
time.

e Select exactly how long to run an analysis, by setting a maximum analysis time. For
example, if a particular trace might normally take three hours to complete, but you only
have one hour to devote to the analysis, you can tell the DTA to limit itself to one hour.
While the results of the analysis might not be as ideal if you had allowed the full three
hours, you will still get back information useful for tuning your database.

e Use the DTA via the standard GUI interface or from the command prompt. The
command prompt option uses somewhat less overhead, helping to reduce the impact of
the analysis on your SQL Server.

e Save tuning sessions and reexamine them at any time, helping DBAs to compare tuning
results over different time periods.

e Offload the overhead of tuning onto a test server, even if the test server is not identical
to the production server.

It should be obvious by now just how powerful the DTA is — and this is not even an exhaustive list of
every DTA feature and benefit.

How 10 CREATE A TRACE FOR USE BY THE DTA

As noted eatlier, in order for the DTA to perform an analysis, it must be given a workload. This
workload can be as simple as a single query, but a more powerful way to use the tool is to provide a
wortkload via a Profiler Trace, containing statements that are representative of your servet's typical
activity.

The DTA will then analyze the trace to find out which statements are run, how often they are run, and
what indexes are currently being used to run them. Based on this analysis, it will determine how the
current indexing scheme might be changed in order to improve statement execution times. It presents its
findings as a series of recommendations, which can include adding, dropping or modifying indexes,

Using Profiler with the Database Engine Tuning Advisor

157

index views, and partitions. Note carefully, though: the DTA's recommendations are based on the
workload it is given. If you provide a non-representative workload, then you may well receive non-

optimal recommendations.

When creating a Profiler trace to act as our workload for the DTA, our goal is to create a workload trace
that is as lightweight as possible, while still providing the essential data that the DTA needs to perform
its analysis. Fortunately, SQL Setrver Profiler includes a trace template, called Tuning, which is (almost)
ideal for collecting events and data columns for DTA analysis. In the following sections, not only will we
examine the default Tuning template, we'll also implement a variation of this template that is even more

lightweight, and just as effective.

USING THE PROFILER DEFAULT TUNING TEMPLATE

The built-in Tuning template is shown in figure 7-1:

Events | TextData | Duration | SFID | DatabaselD | DatabaseMame | Object Type | LoginName |
- Stored Procedures
"'V RPCCompleted v v v v v v
v SP-StmtCompleted [[v [v [[v r [v
- T5QL
[¥ SQL:BatchCompleted v v [v [rd i~

Figure 7-1: The events and data columns for the Tuning template.

As you can see, this template is already very lightweight. It only includes three events and seven data
columns. It also uses no filters or column organization. We have discussed all these events and data
columns previously, so we won't talk about them again here. However, it is possible to create an even

more lightweight trace.

A SLIM-LINE TUNING TEMPLATE

The DTA requires that a Profiler trace include the following three events:

e RPC:Completed
e SP:StmtCompleted
e SQL:BatchCompleted

In fact, if you include any other events in the trace, the DTA will just ignore them. While we can't
remove any events from the default Tuning template, there is scope to trim out some of the data
columns. The difference is not large, but every little bit helps when you are creating a DTA trace on a
busy production server and you want to minimize its impact.

There follows a description of how the DTA uses the selected data columns in its analysis:

e TextData — This data column is mandatory. It is used by the DTA to identify what code

is running in each statement.

e Duration — Although not mandatory, the DTA can use this data column to more
effectively tune the workload, as it can give higher priority to those statements that take

the longest to run

e SPID — Not mandatory for the DTA, but it is mandatory when collecting the Profiler
trace. In the absence of the DatabaselD or DatabaseName columns, the DTA will use
the SPID to identify the database on which the event took place.

Using Profiler with the Database Engine Tuning Advisor 158

DatabaseID and DatabaseName — Neither of these data columns are mandatory, but
if you include at least one of them as part of the trace, then the DTA will use it to
identify the database on which the event was executed. If you include neither, then the
DTA will resort to the SPID, LoginName, or TextData columns (for example, it can
examine the USE command to find out the correct database) to identify the database. If
the DTA can't identify the database a statement has been executed in, then it will be
unable to analyze the statement.

ObjectType — Not required by the DTA, according to any documentation I could find.
LoginName: — Not mandatory, but the DTA can use LoginName to impersonate the
user who ran the code. However, if that user does not have the SHOWPLAN
permission, which enables the user to create execution plans for the statements contained
in the trace, then the DTA will not tune those statements. If the LoginName is not
included in the workload trace, then the DTA will instead run the statements by
impersonating the user who started the DTA tuning session.

As you can see, you can leave out most of the data columns if you want to. Personally, I have made a
compromise by dropping the DatabaselD and ObjectType data columns, which are either redundant or
of no use to the DTA, leaving in those that are useful, even if not mandatory, as shown in Figure 7-2:

Events | Text Data | Duration | SPID | DatabaseMame | LoginMame |

— Stored Procedures

¥ RPC:Completed v v v o v
[S5SP:StmiCompleted ™ v v ~ [
- TSAL

v SGL:BatchCompleted v v [v v

Figure 7-2: This is a lighter weight version of a DTA trace.

I also don't add any filters or arrange the columns in any special order. This allows my trace to be just a
little more lightweight than the default Tuning trace included with the SQL Server Profiler.

You can choose to use the default Tuning template, or mine, or create your own. If you create your own
template and it is not compatible with DTA, then the DTA will provide you with error message
feedback.

RUNNING THE WORKLOAD TRACE

Creating a Profiler trace for DTA analysis is no different from creating any other Profiler trace, but there
are a few points that need making:

If you decide to create your own custom workload trace, define it as a template called
"DTA trace" or similar. This way, you won't have to recreate the trace each time you want
to run it.

Save the Profiler trace results to a file and enable file rollover. The default 5mb size is
fine. Do not save the trace results directly to a database table, as this will only increase
overhead.

Check the "Server Processes Trace Data" checkbox. This will ensure that all trace events
are captured. We don't want to skip any trace events when trying to capture a
representative sample of statements.

Using Profiler with the Database Engine Tuning Advisor 159

e Pick a time of the day that is representative of your typical server load and run the trace
for as long as possible — say 8 hours, for example. If you can't run the trace for this long,
due to its negative impact on server resources, or because of disk space limitations, then
consider taking multiple, smaller traces — say 15, 30, 60 minute traces — over a period of a
day, or several days. Each DTA analysis will have to be separate, but you may not have
any choice.

e If you have no choice but to collect multiple, smaller traces, instead of one large trace,
there are two different workarounds you might want to consider that allow you to take
multiple traces and combine them into a single workload file so that it can be analyzed by
the DTA as a single unit. By performing the DTA analysis on a single, larger file, the
DTA will be able to have more data to work with and should produce better results than
from having to analyze multiple, smaller files, one at a time. In addition, you will be
presented with a single set of recommendations, instead of a different DTA
recommendation for each individual workload file. This makes analyzing the results
easief.

o The first workaround is to use the pause option, instead of starting and stopping
the trace multiple times over a day or several days. If you pause a Profiler trace, it
will stay paused until you restart the trace. When you restart the trace, Profiler will
display a dialog box asking you “Trace data saving options have been reset. Do
you want to proceed without saving the output?” Click the “No” button, and then
the “Trace Properties” dialog box appears. Click the “Run” button, and the trace
will resume, saving the trace data in the same file you specified when you created
the trace. Once you have collected several different “snapshots” of representative
workload trace data over one or more days, stop the trace, and then you can use
the resulting trace file (or rollover files if you choose that option) as the input for
your DTA analysis.

0 The second workaround is similar to the first one, but it assumes that instead of
pausing the trace, you stop it instead. When you stop a trace, there is no way to
resume it and continue to save trace data in the same trace files. To get around this
design flaw in Profiler, what you can do instead is to collect all the workload trace
file you have made over one or more days. Next, import each of the trace files into
a different SQL Server table. Unfortunately, you can’t import them into the same
table. Once you have imported all the data into multiple tables, then write some T-
SQL code to extract all the data from all the separate tables into a single, large
table. Now you have all the data located in a single location. To analyze the
workload that is now stored in a single, large table, use this table as the source of
your workload when you run the DTA analysis. This way, the DTA has access to
all the data in a single location and only one DTA analysis has to be performed.

e On busy production servers, the trace file (or rollover files, if you choose this option) can
grow big very quickly. You will want to keep a close eye on the amount of disk space
used by the trace so that you don’t accidently run out of room.

e To further minimize the workload on a production server when collecting Profiler trace
data for DTA analysis, consider using SQL Trace to capture the data. This is discussed in
the chapter, “How to Capture Profiler Traces Programmatically.”

PERFORMING A MISSING INDEX ANALYSIS USING THE DTA

Once you have captured the Profiler workload trace, you ate ready to analyze it with the DTA. Let's now
use the DTA to look for missing indexes, based on a Profiler trace I took from a very pootly performing
SQL Server. The following are the step-by-step instructions to perform the analysis.

Using Profiler with the Database Engine Tuning Advisor 160

STARTING THE DTA

You can start the DTA from either:

e SQL Server Profiler (Tools | Database Engine Tuning Advisor)
e Management Studio (Tools | Database Engine Tuning Advisor)
e The Start menu
When the DTA starts, you will be asked to log onto the server that includes the database(s) you want to

analyze, as shown in Figure 7-3. You must login with Sysadmin or dbo_owner rights to analyze a
database with DTA.

[!ﬁ Connect to Server g

Microsoft 42 Windows Server System
SQL Server 2005
Server type: Database Engine
Server name: FELE -
Authentication: [SGIL Server Authentication -

Login: ProfilerUser -

Password:

Remember password
I Connect I [Cancel] [Help] [Options =]

Figure 7-3: You must login with Sysadmin or dbo_owner rights to analyze a database with DTA.

Once you are logged in, you'll see the main screen of the DTA, shown in Figure 7-4:

Using Profiler with the Database Engine Tuning Advisor 161

il Database Engine Tuning Advisor @m

File Edit View Actions Tools Window Help X
il | @ @ | b start Analysis W AR)
.imMunitor [

4l Connect | 33 |3 J

= LB General | Tuning Options |
Profilerlser 12/13/2007 3:5

ProfilerUser 12/13/2007 10:{| | Sssion name:

PELE - ProfilerUser 12/132007 3:55:40 PM]

ProfilerUser 12/13/2007 3:55:40 PM
Workload
@ File () Table
2
Database for workload analysis: master v]

Select databaszes and tables to tune:

[T] Name Selected Tables
AdventureWorks Click to select individual tables
Big_Database Click to select individual tables
master Click to select individual tables

model Click to select individual tables
msdb Click to select individual tables
MorthCards Click to select individual tables
Marthwind Click to select individual tables
sglstress Click to select individual tables
tempdb Click to select individual tables
WidgetDev Click to select individual tables
WidgetLive Click to select individual tables
Widget Production Click to select individual tables
Widget Staging Click to select individual tables

MEEME A EE]EE]

Major Version 9
Minor Version 0 Save tuning log
Server Collatior SQL_Latin1_General_|
Server Edition Enterprise
User Name ProfilerUser @ Provide @ new session name. In the Workload section, select a database to which Database
Engine Tuning Advisor will connect for analyzing the workload. your workload includes

events or Transact-SGL statements that change the database context for example, the USE
«database statement), Database Engine Tuning Advisor will also change the database

Description

1| 1 | 3

Ready. Connections: 2 _.:

Figure 7-4: The main screen of the DTA.

At the left-hand side of the screen you see a server with the name of PELE. Under this are two different
DTA sessions. The green icon indicates a previously created DTA session, while the blue icon indicates
your current session. DTA maintains a history of DTA sessions so you can compare one session to
another. You can delete previous sessions if you want.

Starting at the top, on the right side of the screen, you'll see the default name of the current DTA
session. You can rename it if you like.

Using Profiler with the Database Engine Tuning Advisor 162

In the section below that, you must specify where the workload for the DTA analysis is located. A
workload can be a Profiler trace file or a table in a database. In our example, our workload is a Profiler
trace file.

Next, you will see the option “Database for workload analysis” This option specifies the first database to
which the DTA connects when first tuning a workload. Select the database you will be analyzing with
the DTA. If you will be analyzing more than one database, then select the first of the multiple databases
you will be analyzing.

Finally, you will see a list of all the databases on the server. You can analyze a single database, multiple
databases, or all the non-system databases at the same time. In our example, we will be analyzing a single
database.

DEFINING THE WORKLOAD AND SPECIFYING THE DATABASE

To specify the workload file, in this case, select the "File" radio button, and click on the browse icon, to
the right of the text box. The "Select Workload File" screen appears, as shown in Figure 7-5:

[i Select Workload File =
Lookin: [Documents ~ @ F @

= Name Date taken Tags Size Rating
e . Archived Data

fREEiiEEE) Camtasia Studio

[»

m

- . Execel

- J License Codes
Desktop

. LifeCam Files

J"‘ | Live Meeting Presentation on Data and ...

L . Microsoft Money

B | My Adobe Captivate Projects

Eh-h'l . My Database Documentation

o @ My Music

Computer @ My Pictures

" | My Received Files

-, @ My Videos -
Metwork

File name: tuning_dema tro -

Files of type: Al Workload files {*trc, *xml, *sql) '] [Canesl]

Figure 7-5: Select the workload file to be used by DTA.

Next, select the name of the database you want to analyze, next to the “Database for workload analysis”
option.

Then select the database against which you want to run the workload, simply by checking the
appropriate check box, see figure 7-7. You can limit the analysis to certain tables in that database by
clicking on the down-arrow icon the right of the database name. However, we want all tables in the
database to be analyzed, so we don't have to do any further steps.

Using Profiler with the Database Engine Tuning Advisor

163

ll% Database Engine Tuning Advisor

ProfilerUser 12/13/2007 35
Profilerlser 12/13/2007 10:

Majar Version
Minar Version
Server Collation

SQL_Latin1_General_|

File Edit View Actions Teools Window Help
[B3 | b Start Analysis @ B 54 0y P
|Session Monitor PELE- ProfilerUser 12/132007 355:40PM |
ﬂ(:unnect !E F| |
= [BPELE General | Tuning Optiens |

Session name:

ProfilerUser 12/13/2007 3:55:40 PM

Worlkdoad

@ File () Table

CAlUsers\Brad\Documents™tuning_demo trc

Databaze for workload analysis: master vl
Select databases and tables to tune:
[E Name Selected Tables -
I___' AdventureWorks Click to select individual tables |Z|
' Big_Database 1776 1177 [+] =
[__i master Click to select individual tables |E|
[modsl Click to select individual tables |z|
[msdb Click to select individual tables |Z|
[J MorthCards Click to select individual tables [
[J MNorthwind Click to select individual tables [w=] ~

Save tuning log

Description

@ Provide a new session name. In the Workload section, select a database to which Database
Engine Tuning Advisor will connect for analyzing the wordoad. ¥ your workdoad includes

Server Edtion Erterprise events or Transact-SOL statements that change the database context for example, the USE
User Name ProfilerUser <database> statemert), Database Engine Tuning Advisor will also change the database L
4« i | »
Ready. Connections: 2 .t

Figure 7-7: The first page of the screen is filled out and we are now ready to go to the next screen.

RUNNING THE DTA ANALYSIS

Click on the "Tuning Options "tab, shown in Figure 7-8:

Using Profiler with the Database Engine Tuning Advisor 164

ll% Database Engine Tuning Advisor E@M

File Edit View Actions Tools Window Help x
D | [& | b Start Analysis B B Uy | @
Edonitor [PELE-ProfilerUser 121132007 355:40PM |

2 Connect | 33 [
=] [3 PELE 1 General Tuning Options |

Profilerlser 12/13/2007 3.5 Limit turing fime :M‘ami
Profilerlser 12/13/2007 10:

Stopat: Thursday . December 13,2007 [E~ 455PM |2

Physical Design Structures (PDS) to use in database

) Indexes and indexed views) Indexed views
@ Indexes () Monclustered indexes

() Evaluate utilization of existing PDS onfy

Partitioning strateqy to employ
@ No partitioning 7 Full partitioning
) Aligned partitioning

m

Physical Design Structures (PDS) to keep in database

) Do not keep any existing PDS) Keep indexes only
@ Keep all existing PDS) Keep clustered indexes only
| = >) Keep aligned partitioning
M=
= General
Major Version 9 Description
Minor Version 0

5 Collatior SQL Latinl G | @ Database Engine Tuning Advisor will recommend clustered and nonclustered indexes to improv
Erverolation JaL_talind_aenersl your workload . No partitioning strategies will be considered. Newly recommended structures will
Server Edition Enterprise un-partitioned. All existing structures will remain intact in the database at the conclusion of the ty
Uzer Name ProfilerUser L&

1 m | 3

Ready. Connections 2 .t

Figure 7-8: We can leave all the options set to their default settings for our analysis.

This screen allows us to choose the type of analysis to perform. Since we are only focusing on indexing,
we want to use the Indexes option, which is already selected on the screen by default. The rest of the
screen can be left alone.

To begin running the DTA analysis, click on the "Start Analysis" button at the top of the screen. Once
you do, a screen appears showing you the progress of the analysis, shown in Figure 7-9:

Using Profiler with the Database Engine Tuning Advisor

165

-

i% Database Engine Tuning Advisor El&u
File Edit View Actions Tools Window Help x
il | B | b StartAnalysis B @ E: |5 B | @

netor PELE - ProfilerUser 12/132007 35540 PM |
ﬂCunnect !E F:| J
= [_BF‘ELE General | Tuning Options | Progress |
I0v] ProfilerlUser 12/13/2007 3:5 _ -
7 Profilerlser 12/13/2007 10:
f o 5 Total 0 Emor
s 4 Remaining 1 Success 0 Waming
Details:
Action Status Message -
@ Submitting Corfiguration Information Success
(¥ Consuming Workload In progress... =
(¥} Performing Analysis In progress...
Generating Reports
Generating Recommendations i
Tuninglog ¥
CategorylD Event Statement Frequency Reasan
I 3
=
= General
Major Version 9
Minor Version 0
Server Collatior SQL_Latin1_General_|
Server Edition Enterprize
User Name ProfilerUser
1] | »
Analyzing workload. Connections 3 .t

Figure 7-9: The Progress screen lets us know the status of the analysis.

A DTA analysis can take from a few minutes to many hours, depending on the workload used, the type
of analysis you selected, and the current load of the production server it is using to analyze the execution
plans of each of the statements captured in your workload trace.

When the analysis is complete, the Recommendations screen will appear which will display all the DTA's
recommendations for increasing the performance of our SQL Server, based on the workload it analyzed.

ANALYZING THE RESULTS

The "Recommendations" screen for the analysis I performed is shown in Figure 7-10 (this is a partial
screen shot as the entire screen too large to fit here):

Using Profiler with the Database Engine Tuning Advisor 166

General Tuning Opticns Progress Recommendations Reports

Estimated improvement - 14%

Partition R ecommendations

Index Recommendabons

Database Name ~ Object Name ~ Recommendation ~ Target of Recommendation

[J Big_Database 1 [dba].far_ship_tbl] create “h _dta_index_ar_ship_tbl_6_281763061__K2Z K1_K3

[J Big_Database = [dbo].fen_cam_thi] create “h _dta_index_en_cam_thl_G_900914231__K1_K&

[J Big_Database =l [dba).fen_cust_tbl] create “h _dta_index_en_cust_thl_&_221959867__K1_K23

[J Big_Database =l [dbo].fen_itdsc_thi] create @ _dta_stat_1770489386_4_2

[J Big_Database =l [dbo].fen_itdsc_thi] create “h _dta_index_en_tdsc_thl_6_1770489386_ K2 K41

[J Big_Database =1 [dbo].fim_adres_thi] create “h _dta_index_im_adres_tbl_§_553821085_ K1_K3

[J Big_Database =l [dbo].im_adres_tbi] create i] _dta_stat 5538210852 3 4 5679

[J Big_Database =1 [dbo].fim_adres_thi] create h _dta_index_im_adres_tbl_§_553821085_ K1_K2_K3_K4_K5
[J Big_Database = [dbel.fim_localgp_thl] create “h _dta_index_im_localop_thl_6_1625324904_ K1

[J Big_Database = [dbelfim_localstr thl] create “h _dta_index_im_localstr_thl_&_1763325417_K1_2 4

[J Big_Database = [dbelfim_locabd_thl] create @ _dta_stat_1785825474_3 2

[J Big_Database = [dbo].fin_item_thbi] create] _dta_stat_161591814_7_29

[J Big_Database =l [dba].fin_item_tbl] create h _dta_index_in_item_tbl_6_161591814__ K2 K1_K7 K29

[J Big_Database =l [dba].fin_tran_thl] create @ _dta_stat_683517558_5_23

|| Big_Database & [dbo].fin_tran_tbl] create] _dta_stat_G83917558_5_18_8_22

[J Big_Database =l [dba].fin_tran_thl] create @ _dta_stat_683517558_6_2

[J Big_Database & [dbo].fin_tran_tbl] create fi] _dta_stat_G83917558_5_8_22 23 29

|| Big_Database & [dbo].fin_tran_tbl] create fi] _dta_stat_683917558_29_23

[J Big_Database =l [dba].fin_tran_thl] create h _dta_index_in_tran_thl_G_683317558_ K23 K5 K8 K22 K
[J Big_Database = [dbe].fin_tran_thl] create “h _dta_index_in_tran_tbl_&_883%17558__K18_K23_K5 K8 Kz
[J Big_Database = [dbe].fin_tran_thl] create @ _dta_stat_683517558_23 8 5_18_22 29

[J Big_Database = [dbo].fin_tran_tbl] create] _dta_stat_683917558_23_18 5

[J Big_Database = [dbe].fin_vipsf_thl] create @ _dta_stat_738573859_19_3

[J Big_Database = [dbe].fin_vipsf_thl] create “h _dta_index_in_viped_thl_6_738973859_ K3_K1_KZ_K4_K19
[J Big_Database = [dbo].fin_wtdtl_tbl] create L] _dta_stat_2072446507_9_37 4_1_2

[J Big_Database = [dbo].fin_wtdtl_tbl] create “h _dta_index_in_wtdtl_tbl_6_2072446507_K1_KZ_K3_K9_K3
[J Big_Database = [dbo].fin_wthdr_tbl] create i] _dta_stat_GE09E5481_2 4 3 1 619

[J Big_Database =1 [dbe].fin_wthdr_thi] create @ _dta_stat_660965481_4 3

4| mn | 3

Figure 7-10: Apparently, the DTA found a lot to fix in this analysis.

At the top of the screen, DTA estimates the percentage improvement in performance that should result
from implementing all its recommendations — in this case 14%. However, keep in mind that this
estimated boost is based on the workload given, and the actual boost in performance will probably be
different (generally smaller). The more representative the workload that was analyzed by the DTA, the
more accurate the estimate will be.

The rest of the screen displays the DTA's "Index Recommendations". This title is a little deceiving. A
more accurate title would be "Index and Column Statistics Recommendations" since not every item in
this long list refers to the creation of a new index. The list also includes recommendations for the
creation of new column statistics, which can be used by the query optimizer to devise better execution
plans. A quick glance at the "Tatget of Recommendation" column in figure 7-10 will tell you which is
which. You will see the word _sndex _ as part of the name if the object to be created is an index, or
_stat_if it is a column statistic.

Now, let's jump to the Reportts tab and examine the Tuning Summary screen, shown in Figure 7-11:

L

13

m

Using Profiler with the Database Engine Tuning Advisor 167

il Database Engine Tuning Advisor E@M

File Edit View Actions Tools Window Help x

Eﬂ 3 B3 | b Start Analysis QB kP

ion Monitor

2] Connect | @3 |4

PELE - ProfilerUser 12/132007 3:55:40 PM]

= LB PELE i General | Tuning Options | Progress | Recommendations Reports
Profilerlser 12/13/2007 35| | [fining Summary -
u# ProfilerUser 12/13/2007 10: :

Date : 121372007
Time 41502 PM
Server FELE
Databaseis) to tune [Big_Database]
Workload file C:A\Uzers\Brad \Documents*tuning_demo trc
Maxdmum tuning time 40 Minutes
Time taken for tuning 4 Minutes
Expected percentage improvement 14.16
Maximum space for recommendation (ME) 32635
Space used cumently (ME) 14752
Space used by recommendation (ME) 15044
Number of events in workload 72 F
Number of events tuned 72
Number of statements tuned 7
Percent SELECT statements in the tuned set 100
Number of indexes recommended to be created 22

4| M b Number of statistics recommended to be created 40

dit Turing ot
B General
Major Version 9 Select report: Click here to select a report from a list...
Minor Version 0

Server Collatior SQL_Latin1_General_|
Server Edition Enterprise
User Name ProfilerUser I

1 1 | 3

Tuning sessicn completed successfully. Connections: 2 .:

Figure 7-11: DTA offers a large number of reports to help you fully understand how the workload interacts
with a database's physical objects.

The Tuning Summary screen provides a lot of useful information. For example:

e The trace took only 4 minutes to analyze.

e There were 72 events in the workload, of which 72 were tuned. Don’t be surprised if
every event is not tuned, as not every event captured by a Profiler trace is a query that
runs against a table.

e The DTA recommends 22 new indexes and 40 column statistics be added. This is a lot
of new indexes, considering that the trace included only 72 different statements.

If you want, you can click on the drop-down box in the "Tuning Reports" section at the bottom of the
screen and run additional reports, as shown in Figure 7-12:

Using Profiler with the Database Engine Tuning Advisor 168

‘lnde.a: detail report {recommended)
Statement cost report

1 Event frequency report

Statement detail report

Statement-index relations report {current)
Statement-index relations report (recommended)
Statement cost range report

Index usage repart (cument)

Index usage report (recommended)
Indezx detail report {cument)

Index detail report (recommended)
View-Table relations repart

Wonkdoad analysis report

Database access report

Table access report

Column access report

Figure 7-12: This is a list of the available reports you can run.

IMPLEMENTING THE DTA'Ss RECOMMENDATIONS

Of the 22 new indexes and 40 column statistics that the DTA recommends, your choices are to:
1. Accept all the recommendations and have the DTA automatically implement them for you

2. Review each individual recommendation and only implement those you agree with.

This is a tough call, but here is my advice:

e Assuming that you are confident the workload is representative of the actual statements
being run on your production server, and assuming that you don't have either the time or
experience to individually evaluate each recommendation, then I would accept all the
recommendations and have DTA create the recommended indexes and column statistics.

e If you are confident the workload is representative of the actual statements being run by
your production server, and you have the time and experience to be able to evaluate each
index recommendation, then I would recommend that you review each one, and only
take it if makes sense based on your knowledge of the overall workings of the database.
This advice is for indexes only. There is no way a DBA can easily evaluate if a column
statistics recommendation is good or not, so I would accept the DTA’s recommendations
on all column statistics.

e If you are not confident that the workload is a representative of the statements running
on your production server, then you need to run the analysis several times and compare
the results to see if you get similar recommendations. If you do, then you can either
accept them all, or be selective, depending on your time and experience.

How do you check out the code that the DTA will use to implement each index or column statistic?
Click back to the "Recommendations” screen and scroll all the way to the right. The very last column is
called "Definition" and if you click on the blue hyperlink (see Figure 7-13) a box will appeat with the
code that the DTA suggests you use to create the index or column statistic:

Index R ecommendations

Database Mame ¥ Object Name ~ Recommendation Target of Recommendation Details Partition Scheme Size (KB) Definition
| | Big_Database 1 Idbo].[ar_ship_thi] create %h _dta_index_ar_ship_thl_6_281768061__K2_K1_K3 96 ¢ (lar_ship key] asc, [al cmp key] asc arl
|J Big_Database =1 [dbo].[en_cam_tbl] create %h _da_index_en_car_tbl_6_300914281__K1_K6 16 {len car keylasc, en cam desclasc) |

Figure 7-13: Hard to see, but the furthest right column shows a blue hyperlink.

The box looks as shown in Figure 7-14:

Using Profiler with the Database Engine Tuning Advisor 169

SQL Script Preview @

CREATE NONCLUSTERED INDEX
[dta_index_ar_ship_thl_&_281768061__KZ_K1_K3] ON [dbo].
[ar_ship_thl]

{

| »

m

[ar_ship_ley] ASC,
[ol_cmp_key] ASC,
[ar_ship_name] ASC
JWITH (SORT_IN_TEMFPDE = OFF, IGNORE_DUP_KEY = OFF,

[Copy to Clipboard][Close

Figure 7-14: This is the code DTA recommends you implement for a single new index or column statistic.

As the DBA, it's your job to evaluate this code and decide whether ot not it is right for your database. If
it is, then you have the option to copy this code to the Clipboard and paste it into Management Studio
to execute.

Of course, if you have dozens of indexes or column statistics to add, you probably don't want to have to
add them one at a time, manually. DTA gives you the additional options of either adding some or all of
them at the same time.

Assuming you want to implement all or most of the recommendations, you need to ensure the checkbox
is checked next to each recommendation you want to implement (you can see this checkbox at the very
left of figure 7-13). If you remove a check, then that recommendation will not be implemented.

Then, from the Main Menu, select "Actions | Apply Recommendations" and you will see the screen
shown in Figure 7-15:

Apply Recormmendations ﬁ

@ Apply now
() Schedule for later:

Thursday . December 13, 2007 BZ2: 27 PM

Figure 7-15: You can decide to run the code now, or schedule it to run later.

At this point you can decide to implement all of the recommendations now, or schedule them to execute
at a future time. Ideally, you will want to run the recommendations when the server is not very busy, as
database users can be blocked for the duration of the process of creating new indexes.

You have now implemented your DTA recommendations. But you are not done yet. Once I implement
DTA recommendations, I like to go back (if I can), and see if the indexes are really helping. One thing 1
like to do is to compate Performance Monitor and/or Profiler traces taken before and after the DTA
recommendations were implemented. In addition, I like to run another DTA trace and analysis after the
recommendations have been put into place, just to catch anything that the first recommendations
missed.

Using Profiler with the Database Engine Tuning Advisor 170

SUMMARY

By now, you will see the benefit of creating Profiler traces and running DTA analyses. Ideally, you
should be performing this type of analysis on all your SQL Server instances at regular time intervals.
Data and queries changes over time, and so do indexing needs.

Correlating Profiler with Performance Monitor 171

Chapter 8

CORRELATING PROFILER WITH PERFORMANCE
MONITOR

In the past, when watching the % Processor Time counter in Performance Monitor on my live
production SQL Servers, I would occasionally see sudden spikes in CPU utilization, to 50, 70 or even
80%. These spikes might last several minutes or more, then disappear. In some extreme cases 1 would
see spikes that lasted 30, or even 60 minutes. I always wanted to know which SQL Server activity was
causing the spike, but the problem was that I had no way of correlating a specific statement running in
SQL Server to a specific resource usage spike.

With SQL Server 2005 Profiler, I now have the tools to identify the causes of such spikes. I can import
Performance Monitor log data and compare it directly with Profiler activity. If 1 see a spike in CPU
utilization, I can identify which statement or statements were running at the same time, and diagnose
potential problems.

This chapter will describe how to perform a correlation analysis using Profiler and Performance
Monitor, covering:

e How to collect Profiler data for correlation analysis
e How to collect Performance Monitor data for correlation analysis
e How to capture Profiler traces and Performance Monitor logs
e How to correlate SQL Server 2005 Profiler data with Performance Monitor data
e How to analyze correlated data
I assume you have a basic working knowledge of Performance Monitor (sometimes called System

Monitor) as well as Profiler, in order to focus on how to use the two tools together. If you need further
information on the basics of using Performance Monitor, check out Books Online.

How 10 COLLECT PROFILER DATA FOR CORRELATION ANALYSIS

While it is possible to correlate most Profiler events to most Performance Monitor counters, the area of
greatest correlation is between Profiler Transact-SQL events and Performance Monitor counters that
indicate resource bottlenecks.

This is where I focus my efforts, and the following sections describe how I collect Profiler data for
correlation with Performance Monitor. As always, feel free to modify my suggestions to suit your own
needs. The key, as always when using Profiler, is to capture only those events and data columns you
really need in order to minimize the workload on your production server when the trace is running.

EVENTS AND DATA COLUMNS

My favorite Profiler template, when correlating Profiler trace data with Performance Monitor counter
data, is the one I outlined in Chapter 4, on How o Identify Slow Running Queries. This template collects data
on the following events:

e RPC:Completed

e SP:StmtCompleted

Correlating Profiler with Performance Monitor 172

e SQL:BatchStarting
e SQL:BatchCompleted
e Showplan XML

In addition, I include these data columns:

e Duration
e ObjectName
e TextData

e (CPU
e Reads
o Writes

e IntegerData

e DatabaseName

e ApplicationName
e StartTime

e EndTime

e SPID

e LoginName

e EventSequence

e BinaryData

Note that in order to perform an accurate correlation between Profiler and Performance Monitor data,
you need to capture both the StartTime and EndTime data columns as part of your trace.

FILTERS

The only filter I create is based on Duration, because 1 want to focus my efforts on those SQL
Statements that are causing the most problems. Selecting the ideal Duration for the filter is not always
easy. Generally, I might initially capture only those events that are longer than 1000 milliseconds in
duration. If I find that there are just too many events to easily work with, I might "raise the bat" to 5000
or 10000 milliseconds. You will need to experiment with different durations to see what works best for
you.

In the example for this chapter, I use 1000 milliseconds. I don't filter on DatabaseName, or any other
data column, because 1 want to see every statement for the entirte SQL Server instance. Performance
Monitor counters measure the load on an instance as a whole, not just the load on a single database.

ORDERING AND GROUPING COLUMNS

I don't do any grouping, but I generally order the data columns in an order that works well for me. You
can perform any grouping or aggregation you want, but it won't affect the correlation analysis, and so 1
generally omit it.

How T0 COLLECT PERFORMANCE MIONITOR DATA FOR CORRELATION
ANALYSIS

I assume you know the basics of using Performance Monitor, but in case you don't know how to create
logs, I will describe in this section how to set up a Performance Monitor log to capture counter activity,
which can then be correlated with Profiler trace events.

Correlating Profiler with Performance Monitor 173

NOTE:

Performance Monitor comes in different versions, depending on the operating system, and the
way logs are created differs from version to version. In this example, I am using the version of
Performance Monitor that is included with Windows Vista and Windows 2008.

The activity data collected by Performance Monitor can be displayed "live" on a graph, or you can store
itin a log file, using what is called a wuser defined data collector set. In order to correlate Performance Monitor

data with Profiler trace data, you must store the activity data in a log file. This log file can then be
imported into Profiler for the correlation analysis.

Performance monitor provides a wizard to help you do this, which entails three main steps:

e Creating a new Log file definition
e Selecting Performance Counters
e Creating and saving the Log file

DEFINING A NEW PERFORMANCE IVIONITOR LoG FILE

On starting Performance Monitor, you will see a screen similar to the one shown in Figure 8-1. By

default, Performance Monitor operates in "live graphing" mode, which shows the graph being created
on the screen in real time.

@ Reliability and Performance Monitor E@g

@ File Action View Favorites Window Help HER

e 2EE=H
@# Reliability and Performance ':1 B v| gk ¥ .g?| EN=NE !| Il ’”

4 [Monitering Tools
B8 Performance Monitor

BB Reliability Monitor LLL
i+ [y Data Collector Sets
i [Reports
504

0 M

2:22:09 PM 2:22:40 PM 2:23:10 PM 2:23:47 PM

Last 1457 Average 5325

Minimum 0,000 Maximum 100.000
Duration 1:40

Instance Parent Object
' i |

Show Color 5Scale Counter

3

Figure 8-1: Start Performance Monitor. The appearance of the screen will vary somewhat from OS to OS.

Correlating Profiler with Performance Monitor 174

In Vista and SQL Server 2008, a Performance Monitor log is referred to as a Data Collector Set. To set
up a new data collector set (i.e. log file), double-click on "Data Collector Sets" then right-click on
"User Defined" and sclect "New | Data Collector Set", as shown in Figure 8-2:

[@ Reliability and Performance Monitor RIS
@ File Action View Favorites Window Help [~ =] =]
e @ o= BH=ZP

@ Reliability and Performance Mame
4 :i Menitoring Tools
B8 Performance Monitor There are no items to show in this view,
B Reliability Monitor
4 3 Data Collector Sets
4 :a Uzer Defined

Status

i [my System Mew 3 Data Collector Set
[Event Tra
Mz .
= View 3
Lz Startup Ex .
i [Reports Mew Window from Here
Mew Taskpad View...
Refresh
Export List...
Help
1| m | 3

Create a new Data Collector Set.

Figure 8-2: You need to create a new "Data Collector Set."

You will be presented with the "Create a new Data Collector Set" screen, as shown in Figure 8-3:

Correlating Profiler with Performance Monitor 175

.

= @ Create new Data Collector Set.

@

How would you like to create this new data collector set?

MName:

System Correlation

(") Create from a template [Recommended)
How do [work with templates?

@ Create manually [Advanced)
How do [choose data collectors manually?

| Ned || Finish || Cancel

Figure 8-3: Give the Data Collector Set its own name.

Assign the Data Collector Set a name, such as "System Correlation". At the bottom of the screen, select
"Create Manually" and click "Next". I recommend that you use the manual option over the template

option because you have more flexibility when selecting the events you want to collect. The screen
shown in Figure 8-4 appears:

Correlating Profiler with Performance Monitor 176

@ @ Create new Data Collector Set.

What type of data do you want to include?

@ Create data logs
Performance counter
|:| Event trace data

|:| System configuration information

{::. Performance Counter Alert

| MNet || Finish || Cancel

Figure 8-4: You want to create a "Performance Counter" data collector set.
To create our Performance Monitor log, check the box next to "Petformance Countet" and click

"Next". The other events that can be collected are of no use to us when performing our cortelation
analysis.

SELECTING PERFORMANCE COUNTERS FOR THE L0G FILE

The next screen in the wizard, shown in Figure 8-5, allows you to select the counters you'd like to record
and save in the log file.

Correlating Profiler with Performance Monitor 177

@ @ Create new Data Collector Set.

Which performance counters would you like to log?
Performance counters:
Add...
Remove
Sample interval: Units:
5 :
| Net || Finish || Cancel

Figure 8-5: You now need to select the Performance Monitor counters you want to capture as part of your log

file.

Performance Monitor offers several hundred counters, many more than there are Profiler events.
However, you don't want to select more counters than you need, as it will just make correlation analysis
that much more difficult. My goal is to select only those Performance Monitor counters I need to
identify key CPU, disk I/O, and memory bottlenecks within SQL Server. With this is mind, I generally
track two different counters for each of the three key bottleneck areas:

e LogicalDisk: % Disk Time — Indicates the activity level of a particular logical disk. The
higher the number, the more likely there is an I/O bottleneck. Be sure to select those
counters for the logical drives that contain your mdf and 1df files. If you have these
separated on different logical disks, then you will need to add this counter for each logical
disk.

e LogicalDisk: Avg. Disk Queue Length — If a logical disk gets very busy, then I/O
requests have to be queued. The longer the queue, the more likely there is an 1/O
bottleneck. Again, be sure to select those counters for each logical drive that contains
your mdf and 1df files.

e Memory: Available Mbytes — Measures how much RAM is currently unused, and so
available for use by SQL Server and the OS. Generally speaking, if this drops below 5mb,
this is a possible indication of a memory bottleneck.

e Memory: Pages/sec — Measures how much paging the OS is performing. A high
number may indicate a potential memory bottleneck.

Correlating Profiler with Performance Monitor 178

e Processor: % Processor Time: Total — Measures the percentage of available CPUs in
the computer that are busy. Generally speaking, if this number exceeds 80% for long
periods of time, this may be an indication of a CPU bottleneck.

e System: Processor Queue Length — If the CPUs get very busy, then CPU requests

have to be queued, waiting their turn to execute. The longer the queue, the more likely
there is a CPU bottleneck.

The first two are for LogicalDisk, the second two are for Memory, and the last two (although they have
different instance names) are for the Processor. I find that using two counters per area, rather than one,
provides just enough information to identify the cause of most bottlenecks. You will probably want to
modify the above list to suit your own needs and environment, but it's a good starting point.

Having selected your performance counters, the screen will look similar to Figure 8-6:

Available counters Added counters

Select counters from computer:

Counter Parent Instance Computer

<Local computer > - . .

LogicalDisk
File Data Operations sec - “ Disk Time - c
File Read Bytes/sec Avg. Disk Queue Length - C:
File Read Operationsfsec Memory
File Write Bytes/sec Available MBytes — —
File Write Operations/sec Pages/sec - -—
Floating Emulations/sec Processor
Processes [%o Processor Time - _Total
Processor Queue Length

System

System Calls/sec -

Processor Queue Length -— -—
Instances of selected object:

Search

4 m b

Add == Remove <<

[7] show description

Help] I Ok | [Cancel

Figure 8-6: Select those counters that best meet your needs.

Click "OK" to proceed, and the screen shown in Figure 8-7 returns:

Correlating Profiler with Performance Monitor 179

@ @ Create new Data Collector Set.

Which performance counters would you like to log?

Performance counters:

“LogicalDisk{C)Se Disk Time Add...
‘LogicalDisk(C)wavg. Disk Queue Length
“WemondAvailable MEBytes
‘\Wemorny\Pages/sec
‘Processor(_Total\2: Processor Time
“WSystem\Processor Queue Length

Sample interval: Units:

il = |Seconds

| Net || Finish || Cancel

Figure 8-7: Set the "Sample Interval."

The next step is to choose how often Performance Monitor counter data is to be collected. The default
value is once every 15 seconds. However, when it comes to performing a Profiler and Performance
Monitor correlation analysis, accurate timing is important, so I highly recommend that you select a
sample interval of 1 second.

The upside to this is that a 1-second interval will help you to better see the correlation between Profiler
events and Performance Monitor counters. The downside is that you will collect a lot of data very
quickly. Generally, this is not a problem if you capture a minimum number of counters and don't run
your trace for hours at a time.

CREATING AND SAVING THE LoG FILE

Once you have entered the sample interval, click "Next", and the screen shown in Figure 8-8 appears:

Correlating Profiler with Performance Monitor 180

@ @ Create new Data Collector Set.

Where would you like the data to be saved?

Root directory:

Sosystemdrivess\perflogs\Profiler Correlation Browse...

| Ned || Finish || Cancel

Figure 8-8: Specify where you want Performance Monitor logs to be stored.

Specify where you would like to store the Performance Monitor log. Any place will work, but you don't
want to forget this location as you will need to be able to retrieve the log file for importing into Profiler
later. Once you have specified the log location, click "Next" to continue and the screen shown in Figure

8-9 appears:

Correlating Profiler with Performance Monitor 181

@ @ Create new Data Collector Set.

Create the data collector set?

Run as:

< Default= | Change... I

() Open properties for this data collector set

(7 Start this data collector set now

@ Save and close

Ned | | Finish | [Cancel

Figure 8-9: You can specify if this data collector set is to be the default set or not.

If this is the only data collector set you have, then it will be set to the default data collector set. If you
have other data collector sets, you can choose one of those to be the default. From the perspective of
this analysis, the default setting is irrelevant. Either way, make sure that "Save and Close" is selected, and
then click "Finish" to save your wotk. The wizard will close, returning you to the Petformance Monitor.

You will see your new Log file, Profiler Correlation, listed under Data Collector sets, as shown in Figure
8-10:

Correlating Profiler with Performance Monitor

182
@ Reliability and Performance Monitor SRS
@ File Action View Favorites Window Help

- [=]x]
e | 2@ o= HE @

@ Reliability and Performance Marme Status
4 [Monitoring Tools _ ¥ Profiler Correlation Stopped
BE& Performance Monitor

E= Reliability Monitor
4 :3 Data Collector Sets
Pl :a Uzer Defined
7 Profiler Correlation
B :i Systemn

= Ewent Trace Sessions

===

L Startup Event Trace Sess
B :ﬁ Reports

Figure 8-10: Once you are done, your screen should look similar to this.
COLLECTING PERFORMANCE MONITOR DATA

We are now done with the hard work. The only thing left to do is to start collecting the "Profiler

Correlation" data. To do this, right-click on the "Profiler Correlation” data collection set and select
"Start", as shown in Figure 8-11:

Correlating Profiler with Performance Monitor 183
@ Reliability and Performance Monitor E@Iﬁ‘
@ File Action View Favorites Window Help =[5 =

e’ | HEIXE = HE P

> @

@ Reliability and Perfermance
4 [m Monitering Tools
B8 Performance Monitor
== Reliability Monitor
a [y Data Collector Sets
4 [3, User Defined
7 Profiler Correlation

MName

[] DataCellectordl

Type

Performance Counter

+ [my System

i Event Trace Sessio
v Startup Event Trag
- [Reports

4| m

Start the Data Collector Set.

Start

Stop

Save Template...
Data Manager...
Latest Report

MNew

View

MNew Window from Here

Mew Taskpad View...

Delete
Refresh
Export List...

Properties

Help

Qutput
C\perflogs\Profiler Correlation\000002\ DataColl

Figure 8-11: Right-click on the name of the Data Collector Set to start and stop it.

To stop collecting activity data, right-click on the "Profiler Correlation" data collection set and click
"Stop". You can also schedule Data Collection Sets to start and stop automatically, using the Vista-based
Performance Monitor main menu.

In the next section, we will look at the best ways to start and stop both Profiler traces and Performance
Monitor data collection sets.

How 10 CAPTURE PROFILER TRACES AND PERFORMANCE IVIONITOR LOGS

Now that we've created both a Profiler trace and a Performance Monitor Data Collector Set, we are
ready to start both the tools and begin collecting the data that we will later correlate. Here are some
points to keep in mind when running these tools to capture data:

Run your copy of Profiler and Performance Monitor on a computer other than the SQL
Server you are monitoring,
Both the Profiler trace and the Performance Monitor logs should be started and stopped
at about the same time. For example, if you decide to run an analysis for a two-hour
period, start both tools at the 8:00 AM and end them at 10:00 AM. If the traces don't
occur at the same time, they cannot be correlated.

Be sure that the SQL Server instance that you are monitoring, and the computer on
which you are running Profiler and Performance Monitor, are in the same time zones. If
they are not, the data cannot be correlated correctly.
Make sure that the physical server running your SQL Server instance is not doing other
work that could interfere with the analysis, such as running a different program or

Correlating Profiler with Performance Monitor 184

performing a backup. The only way to perform an accurate correlation analysis is to
ensure the SQL Server is performing only regular production activity.

e As I have said many times, be sure that you only collect the minimum necessary number
of events, data columns, and counters that you need for your analysis, especially when
collecting data every second. We want to minimize the impact that Profiler and
Performance Monitor have on the system.

e Run your trace and log files at a "representative" time of day. For example, if you find
that your servet's resoutces are peaking almost every morning between 9:00 AM and
11:00 AM, then this is the best time to capture your data.

e Monitor the size of the Profiler trace file and Performance Monitor log file during the
capture, to ensure that not too much data is being collected. If the file sizes get too big,
you may have to stop your data capture sooner than you planned.

Once you have completed capturing the data for both tools, you are ready to perform the correlation
analysis.

How To CORRELATE SQL SERVER 2005 PROFILER DATA WITH
PERFORMANCE MONITOR DATA

Correlating Performance Monitor and Profiler data is a straightforward process that simply involves
importing both sets of data into Profiler. Start Profiler and load the trace file you want to correlate. It
should be displayed on the screen, as shown in Figure 8-12, just as for any other trace:

_-ﬁ SQL Server Profiler - [C\Users\Brad\Documents\correlation_trace.trc] E@g
2 File Edit View Replay Tools Window Help [[=]]

HOS @R aR (=0 |G AA0R HE|P
| EventClass | Duration | ObjectMame | TextData |cPu | Reads | wiites | -

Trace start I
sqL:eatchstarting exec dbo.ADGSP_EN_5SalesInstr
Showplan XML ADGSP_E... <ShowPlarmxML xmlns="http://sc...

SP: StmtCompleted 11186 ADGSP_E... SELECT dbo.im_localstr_tbl.im... 7... 19516 o
SqL:eatchCompleted 11376 exec dbo.ADGSP_EN_5SalesInstr 8... 20132 o
sqL:eatchstarting SELECT top 50000 *, gl_...

Showplan XML Dynamic... <ShowPlanXML xmlns="http://sc...

SQL:eatchstarting exec dbo.ADGSP_EN_BOLINstr

Showplan XML ADGSP_E... <ShowPlanxML xmlns="http://sc...

SP:stmtCompleted 2820 ADGSP_E... SELECT dbo.im_localstr_tbl.im... 1... 13855

SQL:eatchCompleted 2933 exec dbo.ADGSP_EN_BOLINstr 1... 14023

SQL:Batchstarting exec dbo.ADGSP_S0_LOADNOTSHIP

Showplan XML ADGSP_S... <ShowPlanxML xmlns="http://sc... -
dq m | b

SELECT dba.im_Tocalstr_tbhl.im_localstr_txt As Instruction,
dbo.im_prpmst_tbl.im_prpmst_name AS PrintProfile,
dbo.im_localgrp_thl.im_localgrp_key AS GroupkKey,
dbo.im_localxf_thl.im_entmst_key AS Entitykey,
dbo.im_localstr_tbl.im_localstr_rseq AS [Sequence No],
dbo. im_Tlocalstr_thl.im_localins_key AS [Instruction Key]

IFR.DM dbo.im_prpmst_tbl INNER JOIN

bo.im_localins_tbl INNER JOIN

dbl:l im_Tocalxf_tbl INNER JOIN

dbo.im_localgrp_tbl ON

dbo.im_localxf_tbl.im_localgrp_key = dbo.im_localgrp_tbl.im_localgrp_key -

< | 1 | v

Done. Lnd, Coll | Rows: 201

»

m. |

Figure 8-12: Start Profiler and load the trace file.

Correlating Profiler with Performance Monitor 185

From the main menu of Profiler, select File | Import Performance Data, as shown in Figure 8-13:

.ﬁ SQL Server Profiler - [CAUsers\Brad\Documents\correlat
[File] Edit View Replay Tools Window Help
I_ﬁ Mew Trace... Ctrl+M ﬂ |

Open ¥ lame
1 Cloze Ctrl+F4
Save Ctrl+5
Save As F L
Properties...
Templates L
Run Trace
Pause Trace i
Stop Trace
Export 3 -
4 Import Performance Data...
SEL Exit AS
il
dbo.im_localgrp_tbl.im_localgrp_key AS aGri
dbo.im_localxf_tbl.im_entmst_key AS ENTIiT!

Figure 8-13: Select File | Import Performance Data

NOTE:

If the "Import Performance Data" option is grayed out, exit Profiler, then restart it, reload the
trace data, and try again.

The screen shown in Figure 8-14 appears:

Correlating Profiler with Performance Monitor 186

r,_ﬁ COpen File ||
%-ﬂ .. = Profiler Correlation » 000002 - | “1-| | Search P |

‘ Organize =

-~

Marne Date modified Type

Favorite Links
I DataCollector01.blg 12/18/2007 4:37 PM _ Perform
E Documents
&l Recent Places
B Desktop
More »
Folders hd
J. Boot o
1. Config.Msi
L dell
@ Documents and Settings
1. Inetpub
1 Intel
|, MSOCache Il
|\ perflogs
. Profiler Correlation
.. 000001
) 000002 > |4 in | r
File name: DataCollectorl blg - [Ferﬁnonﬁ&af‘blg.‘.csv} v]

[Open [+] [Cancel].;;

Figure 8-14: Select the Performance Monitor log you want to correlate with your Profiler data.

Locate your Performance Monitor log file and then click "Open":

Correlating Profiler with Performance Monitor 187

Performance Counters Limit Dialeg g

Choose the counters to comelate:

Elm\\PELE
-] System
- [] Processor
- [] Memory
&[] Logical Disk

Figure 8-15: You must select the counters you want to correlate with your Profiler data.

The screen shown in Figure 8-15 allows you to select which counters to display as part of the correlation
analysis. Ideally, you should include no more than about six, or the analysis screen (shown in Figure 8-
17) will get too busy and be hard to read.

In this example, only six counters were collected, so import them all by clicking on the checkbox next to
the servet's name, as shown in Figure 8-16:

Correlating Profiler with Performance Monitor 188

-

Performance Counters Limit Dialog B

Choose the counters to comelate:

el
&1 [] System
‘...] Processor Queue Length
= [w] Processor
= [+#] % Processor Time
L[] _Total

=l [w] Memary
- [#] Pages/sec
‘... [#] Mvailable MBytes
= [#*] Logical Disk

=l [+#] % Disk Time

= [#] Avg. Disk Queue Length

Figure 8-16: This is what the screen looks like if you select all the counters.

Once you have selected the counters you want to include, click on "OK." The correlation analysis screen
appears, as shown in Figure 8-17:

Correlating Profiler with Performance Monitor 189

_ﬁ SQL Server Profiler - [CAUsers\Brad\Documents\correlation_trace.trc] E@g

File Edit View Replay Tools Window Help HEE
B f

ﬁ NEEFaR|»en|[CR280R8 D@

J EventClass | Duration | ObjectNa... | Text Cascade Windows | CPU | Reads | Writes |:
Trace sStart |
SqL:Batchstarting exec dbo.ADGSP_EN_SalesInstr
Showplan XML ADGSP. .. =<ShowPlanxML xmlns="http://sc...

SP:StmtCompleted 11186 ADGSP... SELECT dbo.im_localstr_tbl.im... 7911 19516 o
SqQL:eatchCompleted 11376 exec dbo.ADGSP_EN_SalesInstr 8005 20132 o
SqL:Batchstarting SELECT top 50000 =, gl_...

Showplan XML Dynam. .. =<ShowPlanxML xmlns="http://sc...

SqL:Batchstarting exec dbo.ADGSP_EN_BOLInsSLr

Showplan XML ADGSP. .. =<ShowPlanxML xmlns="http://sc...

SP:StmtCompleted 2820 ADGSP... SELECT dbo.im_localstr_thl.im... 1294 13855 0 |=

i 0 | 3
100 — -

Il ”r
BO — \ . ‘
&0 —
. i | l hu. J 1 | l il (l
i '- Ll
o J.HL d|-'|1l'm| 1 Illll .ifl-.-' L |I J! SR L |bﬁH. i '“IIIII R d m II
1

4:25 PM 4:2? FM 4:29 PM 4:31 P 4:33 PM 4:35 PM 4:3? PM
12 /18/2007

v C. | Scale | Courter | Object | Instance | Computer =

v 0.02 Pages/sec Memory |E

w— 1.00 % Processor Time Processor _Total

Ird 0.48 Available MBytes Memory

¥ — 0.71 Avg. Disk Queue... Logicalpisk C: -
4| 1 | 3
£ 23 ¥ 24
ParallaTlism Snr:tc T ash Match Parallelism S Wash mateh

{Gather Streams) Cost: 7T % {Inner Join) {Repartition Streams) {Inner Join)

Cost: § % ' Cost: 2 % Cost: 0 % Cost: 4 %
|Rows: 201

Figure 8-17: The correlation analysis screen can be hard to read unless it is displayed on a big screen.

As you can see, despite the fact that we limited ourselves to six performance counters, the screen is still
very busy (although I did have to shrink the screen to fit this page). The next section discusses how to
read and analyze this correlated data.

How To ANALYZE CORRELATED DATA

Before we analyze the data, let's take a closer look at the screen in Figure 8-17. It's divided into foutr
sections. The top section of the screen (see figure 8-18) is one that we are already very familiar with. It

Correlating Profiler with Performance Monitor 190

lists all the captured Profiler events in the order they occurred, and data columns are ordered the way
you specified when you created the trace:

[Lﬁ SQL Server Profiler - [C\Users\Brad\Documents\correlation_trace.trc] E@g
File Edit View Replay Tools Window Help HEE
BONSEFa@(» s n|s=C02ANR FE| P
| EventClass | Duration | ObjectNa... | TextData | cPU | Reads | Wites |~
Trace Start E
SQL:eatchstarting exec dbo.ADGSP_EN_SalesInstr
i showplan >ML ADGSP... =<ShowPlamML xmlns="http://sc...
' SP:StmtCompleted 11186 ADGSP... SELECT dbo.im_localstr_tbl.im... 7311 139516
SqL: eatchCompleted 11376 exec dbo.ADGSP_EN_SalesInstr B0O0OS 20132 o
SgL:eatchstarting SELECT top 50000 =, gl_...
Showplan XML Dynam. .. <ShowPlanxML xmlns="http://sc...
SgL:eatchstarting exec dbo.ADGSP_EN_BEOLINSTF
Showplan XML ADGSP... <ShowPlanxML xmlns="http://sc...
SP:StmtCompleted 2820 ADGSP... SELECT dbo.im_localstr_tbl.im... 1294 13855 o
SgL:eatchCompleted 2933 exec dbo.ADGSP_EN_BOLINSTK 1372 14023
SQL:eatchstarting exec dbo.ADGSP_S50_LOADNOTSHIP
Showplan XML ADGSP... <ShowPlanmxML xmlns="http://sc...
SP:StmtCompleted 23974 ADGSP... SELECT DISTINCT so_hdr_... 2170 15... 161
SqL:eatchCompleted 26390 exec dbo.ADGSP_S0O_LOADNOTSHIP 4151 16... 161
SgL:eatchstarting SELECT top 50000 =, gl_... -
4 T} 3

Figure 8-18: We have seen this Profiler screen many times before.

You should also be familiar with the bottom section of the screen (figure 8-19). It displays the contents
of the TextData column for the event selected in Figure 8-18. In this case, a ShowPlan XML event was
selected, so we see a graphical execution plan for the query following this event:

Parallalism |ge—

(Gather Streams)

b =3 =
| — e | A —
Sort Hash match o Paralleli=m Hash match &=

Cost: 7T & {Innar Join) (Repartition Streams) {Innar Join)
Cost: & ¥) Cost: 2 ¥ Cost: 0% Cost: 4 ¥

<] |

Figure 8-19: The bottom screen displays the value of the TextData data column of the event selected in the top
screen.

So far, so good. Now let's examine the middle section of the screen, shown in Figure 8-20:

Correlating Profiler with Performance Monitor

191

Figure 8-20: The second and third screens are show above.

100 —
a0 —
80 —
70—
&0 —
50 -
40 —
30 -
20 —
10 -
. _!k 1 1 | 1 1 1
4:25 PM 4: 27 FPM 4:29 PM 4:31 PM 4:33 PM 4:35 PM 4:37 PM
12/18/2007
[+ .. | Scale | Cournter |Object Instance | Computer | Min Value | Max Value Awvg Value
IF 0.02 Pages/sec Memory "MWPELE 0. 00 4902 . 84
v 1.00 ¥ Processor Time Processor _Total “"WPELE 0. 00 100, 00
™ 0.48 Available MBytes Memory “"WPELE 27 .00 207 .00
v 0.71 Avg. Disk Queue... Logicalbisk C: “"WPELE 0. 00 141.56
™ 5.56 Processor Queue... System “WPELE 0. 00 18.00
™ 1.00 % Disk Time Logicalbisk C: "W PELE 0. 00 100, 00

It shows a line graph of all the counter activity for the duration of the trace, below which is a table
showing each of the counters used in the graph. This table includes lots of valuable information, such as
minimum, maximum, and average values for each counter.

If the line graph becomes too busy, you can deselect some of the counters, making the screen easier to
read. For example, if I remove all the counters except for % Processor Time, the screen looks as shown
in Figure 8-21:

Correlating Profiler with Performance Monitor 192

100 —
90 - ' I
B0 —
70— ‘
B0 —
50 -
40 — |I |
30 -
20 — |
10 —h
. T I I I [I I
4125 PM 4: 27 PM 4:29 PM 4:31 PM 4:33 PM 4:35 PM 4:37 PM
12 /1872007
v C.. | Scale Counter | Object Instance |Computer | Min Value | Max Value Awg Value
0.02 Pages/sec Memory “WWPELE 0.00 4902. 584
1.00 % Processor Time Processor _Total "MW PELE 0.00 100. 00
0.48 Available MEytes Memory WAPELE 27.00 207 .00
0.71 Avg. Disk Queue... LogicalDisk C: WNPELE 0.00 141.56
5.56 Processor gQueue... System WWPELE 0.00 18.00
1.00 % Disk Time LogicalDisk C: WWPELE 0.00 100. 00

Figure 8-21: It is much easier to view only one counter at a time.
It is much easier to view the graph one counter at a time, but bear in mind that you may then miss out
some valuable information, such as how one counter relates to another.

Another way to make it easier to view the line graph activity is to zoom in on the data, using a hidden
zoom option. For example, consider the original graph, shown again in Figure 8-23, which is very
difficult to read:

100 —

a0 —

80 -

70 —

&0 —

50 -

40 —

30 -

20 — 1

10 —

o

1 | 1 1 1 1 1 1 | 1 1 |
4:25 PM 4:26 PM 4:27 PM 4:28 PM 4:29 PM 4:30 PM 4:31 PM 4:32 PM 4:33 PM 4:34 PM 4:35 PM 4:37 PM
12/18,/2007

Figure 8-22: This screen is impossible to read.

Correlating Profiler with Performance Monitor 193

If we zoom in on a particular time range, it becomes much easier to see what is going on. To zoom in,
click on the graph at a start point, say 4:29 PM. Holding down the left mouse button, drag the mouse
pointer to an end point, such as 4:30 PM and then release the mouse button. The screen will zoom in,
displaying the time range you specified and making the screen much more readable, as you can see in
Figure 8-23:

100 —
a0 —
B0 —
70 —
&0 —

[A

40 —

. A "\\/"‘

10 -

0 -
| 1 1 | | 1 1 1 1 |
4:29:45 PM 4:29:52 PM 4:29:53 PM 4:30:06 PM #4:30:13 PM 4:30:20 PM 4:30:27 PM 4:30:34 PM 4:30:41 PM 4:30:48 PM
12,/18/2007

Figure 8-23: This line graph is much easier to read.

If you want to zoom back out again, right-click on the line graph and choose "Zoom Out". As you can
probably tell, correlation analysis is a manual process. There is nothing automated about it.

There are two different ways to approach a correlation analysis:

1. Start from Performance Monitor — identify time periods where a certain resource has
become a bottleneck, and then look for corresponding Profiler events in that period.

2. Start from Profiler — identify a long running event and then examine the performance
counter data to see if this event has caused a resource issue

We'll examine each technique in turn.

CORRELATION ANALYSIS PART ONE: STARTING FROM PERFORMANCE IVIONITOR

Of the different ways you can correlate data, I find the simplest is to identify long period of excess
resource activity and then drill down until you identify the statement or statements that are causing the
problem.

So, let's say we want to start out reviewing Performance Monitor data, looking for areas where one ot
more server resources have became a bottleneck for an extended time period. Having done this, we can
then identify those Profiler events that occurred during the same time period, and so try to locate the
cause of the stress on those server resources.

The first step I take is to maximize the screen size, in order to view the data in a much more readable
fashion. Next, I select a single performance counter at a time and look for periods of time where that
resource is maxed out (or close). In this example, I am going to focus on % Disk Time because 1 want
to identify statements that have a significant impact on disk I/O. Having deselected all counters other
than %Disk Time, and zoomed in to a short, 2-minute time period, the line graph looks as shown in
Figure 8-24:

Correlating Profiler with Performance Monitor 194

| [
4:27 PM 4128 PM
Figure 8-24: In this small amount of time, disk I/O reached 100% six times.

As you can see, there is a period of about a minute and a half where % Disk Time reached 100%.
Obviously, whenever a disk is operating at 100% of capacity, this is a very strong indication of a disk
I/0 bottleneck. Of the six times the line chart reaches 100% disk activity, the fourth has the longest
duration.

Our next job is to find out what Profiler events were running during this time period. To do this, click
on the line at the left of the fourth spike. A red line should appear where you clicked, and the event that
was executing at the time indicated by the red line should be highlighted, as shown in Figure 8-25:

Figure 8-25: When I click on the left hand side of the line graph, it turns red and also highlights the Profiler
event in the top of the screen.

Now click on the right side of the spike, and a red line should appear, indicating when the resource spike
ended, as shown in Figure 8-26:

Correlating Profiler with Performance Monitor 195
| EvertClass | Duration | ObjectMa... | TextData | CPU | Feads | Writes |
{ sQL:Batchstarting exec dbo.ADGSP_SO_LOADNOTSHIP
Showplan XML ADGSP. .. <ShowPlanxML xmlns="http://scC...
SP: stmtCompleted 28179 ADGSP... SELECT DISTINCT so_hdr_... 2946 158351 161
sqL:BatchCompleted 2B2EE exec dbo.ADGSP_SO_LOADNOTSHIP 2946 15837E 161
SOL:Batchstarting SELECT top 50000 =, gl_
showplan XML Dynam. .. <ShowPlanxML xmlins="http://sC...
SqQL:Batchstarting exec dbo.ADGSP_EN_Instructions
Showplan XML ADGSP. .. <ShowPlanxML xmlns="http://scC...
SP: stmtCompleted 5701 ADGSP... SELECT dbo.im_localstr_tbl.im... 7083 111074
SgL:EatchCompleted 6428 exec dbo.ADGSP_EN_Instructions 7270 111663
SOL:Batchstarting exec dbo.ADGSP_PO_Purchasord
Showplan xML ADGSP. .. <ShowPlanxML xmlins="http://sc...
SP: stmtCompleted 14856 ADGSP... SELECT DISTIMNCT dbo.po_... 1. 14586
SqL:BatchCompleted 22675 exer dbo.ADGSP_PO_Purchasord 2. 23309
SqL:Batchstarting SELECT top Soo00 =, gl_...
Showplan XML Dynam. .. <ShowPlanxML xmlns="http://scC...
SOL:Batchstartinag exec dbo.ADGSP PO Purchasord
100 —
90 —
20 —
70 —
60 —
O —
40 —
30 —
20 —
10 —
AR |1 I M b f
I I I [|
4:25 PM 4:26 PM 4:27 PM 4:28 PM 4:29
12/18/2007

Correlating Profiler with Performance Monitor 196

| EventClass | Duration | ObjectMa... | TextData | CPU | Reads | Wirtes
SQL:eatchstarting exeC dbo.ADGSP_S0_LOADNOTSHIP
Showplan XML ADGSP... =<ShowPlanxML xmlns="http://sc...

SP:stmtCompleted 28179 ADGSP... SELECT DISTIMNCT so_hdr_... 2946 158351 161
SgL:BatchCompleted 2B2EBE exec dbo.ADGSP_SO_LOADNOTSHIP 2946 158375 161
SQL:eBatchstarting SELECT top 50000 =, gl_...

Showplan XML Dynam. .. «<ShowPlanxML xmlns="http://sc...
SQL:eBatchstarting exec dbo.ADGSP_EN_Instructions

Showplan XML ADGSP... «<ShowPlanxML xmlns="http:// sc...
SP:StmtCompleted 5701 ADGSP... SELECT dbo.im_localstr_tbl.im... 7083 111074
SqL:BatchCompleted 6428 exec dbo.ADGSP_EN_Instructions 7270 111663
SQL:Batchstarting exec dbo.ADGSP_PO_Purchasord

Showplan XML ADGSP... «<ShowPlanxML xmlns="http://scC...
SP:stmtCompleted 14856 ADGS5P... SELECT DISTINCT dbo.po_... 1... 14586
S0L:BatchCompleted 22678 exeC dbo.ADGSP_PO_Purchasord ... 23309
SgL:Batchstarting SELECT top 50000 =, gl_...

Showplan XML Dynam. .. <ShowPlamxML xmlins="http://scC...
SoL:Batchstartinag exec dbo.ADGSP PO Purchasord

100 —

a0 —
B0 —
70 —
&0 —
B0 —
40 —
30 —
20 —
10 —
o-— \I'r'\J H L h "4 L r
| | | [|
4:25 PM 4:26 PM 4:27 PM 4:28 PM 4:29
12 /18/2007

Figure 8-26: The red line is now at the right side, or the end of, the peak.

Notice also that the highlighted line at the top of the screen is now reflecting a different event (or row)
on the Profiler screen. This indicates the event that was running when the spike ended. To make this
clearer, Figure 8-27 shows an expanded section of the Profiler trace, with the events that mark the start
and end of the resource spike highlighted in blue:

Correlating Profiler with Performance Monitor 197

| Event(Class | Duration | CbjectNa... | Text Data | CPU | Reads Writes | IntegerData
SQL:eatchsStarting exec dbo.ADGSP_S0_LOADNOTSHIP
Showplan XML ADGSP. .. =ShowPlanxML xmlns="http://sc... 127
SP: stmtCompleted 28179 ADGSP... SELECT DISTINCT so_hdr_... 2946 158351 161 BL
SqL:eatchCompleted 28288 exec dbo.ADGSP_S0_LOADNOTSHIP 2946 15B837E 161

Figure 8-27: The two rows highlighted in blue indicate the top and bottom boundaties of the events that were
running during the spike in % Disk Time. Using Profiler, you can only see one blue line at a time. I have
cheated here to make my point more obvious.

By selecting the beginning and ending points of our resource spike on the line graph, we have identified
the events that occurred during this time period. Hopefully these events will look familiar to you, as we
have seen them before in this book. Essentially, we see four events that represent the execution of a
single statement within a stored procedure:

e Row oneis a SQL:BatchStarting event and indicates that a stored procedure is about to

execute

e Row two shows the execution plan for the statement within the stored procedure.

e Row three is the execution of the statement within the stored procedure. This is where
the actual work takes place.

e Row four, while shown to be outside the time line, is actually a part of this single query.
The SQL:BatchCompleted event indicates that the stored procedure has completed.

As you can see with this example, the timing correlation may not always be 100% perfect, but it will be
close.

So what did this exercise tell us? Essentially, we now know why the %Disk Time spiked as it did. Not
only can we see that the statement within the stored procedure was the cause of the spike, we can also
see from the Profiler data that the statement had to read a total of 158,375 pages total and make 161
page writes, in order to return 85 rows of data. In addition, we can look at the graphical execution plan
for the statement, and consider ways to rewrite the query so that it is more efficient.

Although this is not a dramatic example, it shows you how you can correlate a spike in server resource
activity in the line graph, with specific events running inside SQL Server.

CORRELATION ANALYSIS PART TWO: STARTING FROM PROFILER

For this analysis, we'll start from the Profiler data then drill down into the Performance Monitor activity.
For example, let's say that you are reviewing the Profiler trace data and find an event that takes 11190
milliseconds to run. Eleven seconds is a long time for a query to run, so you want to find out if running
this particular query harms Server performance.

The first step is to identify the beginning and ending events that comprise the statement. In this
example, the events are shown in Figure 8-28:

| EvertClass | Duration | ChjectName | TextData | CPU | Reads Writes IntegerData

i sQL:Batchstarting exec dbo.ADGSP_PO_Purchasord

| Showplan XML . ADGSP_P... =ShowPlanxML xmlns="http://schemas.... 48977
SP:stmtCompleted 11167 ADGSP_P... SELECT DISTINCT dbo. po_hdr_tb. .. 9438 14610 0 72023
SQL:eatchCompleted 1313190 exec dbo.ADGSP_PO_PurchasoOrd 9438 14623 o

Figure 8-28: To begin this analysis, first identify all the events that comprise a single statement.

We see that a stored procedure has executed a single statement and that this is encapsulated within four
events. We can also see that the statement executed within the stored procedure took 14,623 page reads
to return 72,023 rows of data. Now let's see how this particular statement affected server resource usage,
as indicated by our Performance Monitor counters.

Correlating Profiler with Performance Monitor

198

The process is simply the "reverse" of that described in the previous section. When you click on the first
event, SQL:batchStarting, a red line will appear on the line graph, indicating the point in time where that
event occurred, as shown in Figure 8-29:

EvertClass | Duration | ObjectMame TextData | CFU | Reads | \
ESQL:BatchStart'ing exec dbo.ADGSP_PO_Purchasord

Showplan XML ADGSP_P... <ShowPlanXML xmlns="http://schemas.... |
SP:StmtCompleted 11167 ADGSP_P... SELECT DISTINCT dbo.po_hdr_tb... 9.. 14610
SqQL:eatchCompleted 11130 exec dbo.ADGSP_PO_Purchasord 9.. 14623
SqQL:Batchstarting SELECT top S0000 =, gl_cmp_lo...

showplan XML Dynamic... <ShowPlanxML xmlns="http://schemas....
SQL:Batchstarting exec dbo.ADGSP_PO_Purchasord

Showplan XML ADGSP_P... <ShowPlanxML xmlns="http://schemas....
SP:stmtCompleted 9808 ADGSP_P... SELECT DISTINCT dbo.po_hdr_th... 9.. 14646
SQL:BatchCompleted 9810 exec dbo.ADGSP_PO_Purchasord S9... 14859
SqL:Batchstarting exec dbo.ADGSP_EN_5SalesInstr

showplan XML ADGSP_E... <ShowPlanxML xmlns="http://schemas....
SP:StmtCompleted 12985 ADGSP_E... SELECT dbo.im_localstr_tbl.im_local... 9.. 20256
SqQL:eatchCompleted 12985 exec dbo.ADGSP_EN_SalesInstr 9.. 20259

_ sqL:eatchstarting SELECT top S0000 =, gl_cmp_To... |
1l n | r

100 —

a0 —

B0 —

70 —

B0 —

50 —

40 —

30 —

20 —

10 —

N U L ’

| 1 1 | | 1 1 | | | 1 |

4:25:48 PM:26:03 PMEZ6:13 PAtZ26:33 PHM:Z6:48 PM:27:03 PMI27:18 RME27:33 PALZ27:48 PM:ZB:03 PM:Z28:18 PM 4:28:40 PM

12/18/2007

Figure 8-29: I have zoomed in on the line graph to make it easier for you to see where the statement starts.

You can immediately see that this Profiler event preceded a spike in disk I/O activity. When you click of
the fourth of the four events, SQL:BatchCompleted, a red line appears at the point in time this event

occurred (i.e. when the statement completed executing), as shown in Figure 8-30:

Correlating Profiler with Performance Monitor

199

| EvertClass | Duration | OhjectName TextData | CPU | Reads | | -

sqL:eBatchstarting exec dbo.ADGSP_PO_Purchasord

Showplan XML ADGSP_P... <ShowPlanXML xmlns="http://schemas.... l—-

SP: stmtCompleted 11167 ADGSP_P... SELECT DISTINCT dbo.po_hdr_tb... 9... 14610
SOL:BatchCompleted 11150 exec dbo.ADGSP_PO_Purchasord 9... 14623

sqL:eatchstarting SELECT top 50000 =, gl_cmp_lo...

Showplan XML Dynamic... <ShowPlanXML xmlns="http://schemas....

sqL:eatchstarting exec dbo.ADGSP_PO_Purchasord

Showplan XML ADGSP_P... <ShowPlanxXML xmlns="http://schemas....

SP: StmtCompleted 9808 ADGSP_P... SELECT DISTINCT dbo.po_hdr_tb... 9... 14646

SqL:eatchCompleted 9810 exec dbo.ADGSP_PO_Purchasord 9... 148659

SQL:Batchstarting exec dbo.ADGSP_EN_SalesInstr

Showplan XML ADGSP_E... =<ShowPlanxML xmlns="http://schemas....

SP: StmtCompleted 12985 ADGSP_E... SELECT dbo.im_localstr_tbl.im_local... 9... 20256

sqL:eatchCompleted 12985 exec dbo.ADGSP_EN_SalesInstr 9... 20259
_ sgL:Batchstarting SELECT top 50000 *, gl_cmp_lo... | B
all 1 | 3
100 —

a0 —

B0 —

70—

B0 —

50—

40 —

30 -

20 —

10 —

ot L L r

| I I I | | I I I | I I
4:25:48 PM:26:03 RM26:18 PM-26:33 PM:26:48 PM:27:03 PM:27:18 RM27:33 PR 2748 PMI2B:03 PM:28:13 PM 4:28:40 PM

12/18/2007

Figure 8-30: By looking at figure 8-29 and 8-30, you can see the activity that occurred when the statement

executed.

You can see that the completion of execution of the statement marks the end of the 100% spike in disk
activity. This is strong evidence that this statement is having an impact on server resources. Now it is up
to you to decide if the impact is big enough to merit action and, if so, what steps you will take to fix the
query so that is runs more efficiently in the future.

SUMMARY

In this chapter, you learned how to correlate Profiler events with Performance Monitor activity. This
gives you the ability to find out what statement might be causing a spike in server resource usage, or to
examine a single statement and find out how running it affects resource utilization.

Cotrelation analysis is a manual process, so it can be time-consuming and needs practice. However, once
y > g s
you master it, you will find it an invaluable tool for identifying relationships between Profiler events and

actual physical server activity.

How to Capture Profiler Traces Programmatically 201

Chapter 9

How 170 CAPTURE PROFILER TRACES
PROGRAMMATICALLY

So far in this book we have used the Profiler GUI, exclusively, to create and capture traces. However,
SQL Server also offers the ability to create and capture Profiler traces programmatically, using Transact-

SQL.

In most cases, the Profiler GUI and Profiler system stored procedures offer the same features, but there
are a number of pros and cons to consider when choosing which tool to use. The advantages of using
the GUI are the ones we've enjoyed throughout the book:

e It's easy to use, with a shallow learning curve.
e You don't have to write any Transact-SQL code to create or run traces.

e All events and data columns are displayed on the screen, making it easy to pick and
choose the ones you need.

e You can select column order, and perform grouping and aggregation of data, directly
from the Profiler screen.

In many cases, especially if you are a novice DBA, you will probably want to use the GUI to create and
collect your traces. However, that method does have a few drawbacks. It adds additional resource
overhead when collecting traces and it doesn't offer any programmatic control over when the trace data
is collected. You can schedule an end time, and that's about it.

So, if there are occasions when you really need to minimize overhead, or need an extra level of control
over how a trace is captured, then using Transact-SQL_is an option. This chapter will demonstrate how
to create and capture Profiler traces using Transact-SQL and system-stored procedures, specifically
covering these topics:

e Pros and cons of capturing traces programmatically.

e An overview of how to capture trace data programmatically.

e The system-stored procedures used for capturing traces.

e DPutting the pieces together: writing your own trace capture scripts.
e How to use the Profiler GUI to create Transact-SQL trace scripts.

e How to use a trace function to perform SELECT queries directly against a physical trace
file.

PRO AND CONS OF CAPTURING TRACES PROGRAMMATICALLY

As noted in the introduction, there are a couple of advantages of collecting trace data using Transact-
SQL rather than the Profiler GUI, namely:

e It uses less overhead than the Profiler GUI.
® You can programmatically start and stop Profiler traces.
¢ You can create, modify, and analyze traces from programs you write yourself.

However, there are also a few limitations to be aware of — for example:

How to Capture Profiler Traces Programmatically 202

e You will need to write Transact-SQL code to create and control traces, which incurs a
steeper learning curve than using the Profiler GUI However, you can get round much of
this by creating trace definitions in the Profiler GUI and then exporting them as
Transact-SQL.

e You can't perform grouping and aggregation for display by the Profiler GUI.

With all this in mind, let's take an ovetview of how you capture traces programmatically.

CAPTURING TRACE DATA PROGRAMMATICALLY: AN OVERVIEW

There are several steps involved in capturing traces using system-stored procedures, so before we jump
into the details, it's useful to look at an ovetview of the process.

When creating and running a Profiler trace using Transact-SQL, you will need two separate scripts: one
to create and start the trace (let's call it szart_trace), and one to stop it (stop_trace).

In the start_trace script, you will use four different system-stored procedures to create and start the trace.
The script will perform the following steps:

Create a New Trace, using sp_trace create. This signifies that a new trace is being created.

Select the trace events and data columns for the new trace, using sp_trace setevent.

1
2
3. Select the filters (if any) to be used by the new trace, using sp trace setfilter.
4

Start the trace, using sp trace setstatus.

At this point, the trace is started and is running in the background on your SQL Server instance (this is
sometimes referred to as a server-side trace). It will continue to run until stopped. When you are ready to
stop the trace, you run the second script, stop_trace. By executing a single system stored procedure
(sp_trace_setstatus) twice, with a different parameter each time, this script will:

1. Stop the trace.
2. Close the trace.

At this point, the trace is ended. The result is a trace file, which you can load into the Profiler GUI for
analysis, view directly using a Transact-SQL trace function, or import into a SQL Server database. You
can also use the trace as the source for the Database Engine Tuning Advisor (DTA).

REQUIRED SYSTEM STORED PROCEDURES

As discussed in the previous section, four system stored procedures are used to create and run Profiler
traces programmatically:

® sp_trace_create
® sp_trace_setevent
e sp_trace_setfilter
® sp_trace_setstatus
All four of them are used when you create and start the trace in the start_trace script, and when

sp_trace_setstatus is used to stop and close the trace in the stop_trace script. The following sections
describe the syntax for each stored procedure, and explain how each works.

SP_TRACE_CREATE

The sp_trace_create system-stored procedure creates the trace definition. The syntax for the
command is as follows:

How to Capture Profiler Traces Programmatically 203

sp_trace_create [@traceid =] trace_id OUTPUT
, [@Goptions =] option_value
, [@tracefile =] '"trace_file'
[, [@mnaxfilesize =] max_file_size]
[, [@Gstoptime =] 'stop_time']

[, [@ilecount =] "max_rollover_files']

where:

TracelD is a number assigned by SQL Setrver to uniquely identify the trace being created. You don't
have to enter any value, as this is done for you automatically. The TracelD created by this stored
procedure is used by the other three stored procedures, as we shall soon see.

Options allows you to specify certain behaviors, while collecting the trace, according to the value you
assign:

e Option Value 2—- TRACE_FILE_ROLLOVER: Specifies that when the max_file_size
of the trace file is reached, it will be closed and a new file created. This is identical to the
Profiler GUI setting used to specify whether or not you want file rollover.

e Option Value 4 - SHUTDOWN_ON_ERROR: Instructs the SQL Server instance to
shut down if the trace cannot be written to a file. In other words, if anything prevents
the trace from being written, the SQL Server service will shut down, turning your
instance off.

e Option Value 8 - TRACE_PRODUCE_BLACKBOX: Specifies that the trace file
maintain 2 maximum size of 5MB, and if more events occur than can be stored in the
5mb file, then old events will be discarded to make room for newer events. In other
words, the last 5Smb of trace events are always stored, while older events are removed.

In some cases you may want to leave Options set to 0, which means that none of the above behaviors
are invoked.

TraceFile is the physical path and filename of the trace file. Generally, you will want to store this on the
same physical box as the SQL Server instance being traced, although it should be saved on a separate
drive from the one used to store SQL Server data or log files.

MaxFileSize specifies the maximum size to which a trace file can grow. The default value is 5mb. This
option can be used with or without use of the TRACE_FILE_ROLLOVER option.

StopTime specifies the time at which the trace is to stop. A value of NULL indicates no stop time. If
you decide to turn traces on and off programmatically, then you won't need this option.

Filecount specifies the maximum number of trace files to be kept with the same base filename, and is
used in combination with the TRACE_FILE_ROLLOVER option, assuming you use it.

SP_TRACE_SETEVENT

Once the trace definition is created, we need to specify which events and data columns we want to
capture, using sp trace setevent. What may not be immediately obvious is that this stored procedure
must be executed once for every event-data column combination that you want to trace. For example, if you
want capture one event with 15 data columns, you must execute the stored procedure 15 times. If you
want to capture 10 events, each with 15 data columns, you must run the stored procedure 150 times. We
will see an example of this a little later in the chapter.

The syntax for the command is:

How to Capture Profiler Traces Programmatically 204

sp_trace_setevent [@traceid =] trace_id
, [@eventid =] event_id
, [@columnid =] column_id

, [@Gon =] on

where:

TracelD is the trace identifier created by the sp trace create stored procedure. The TracelD value,
generated by sp_create_trace, can be stored in a variable and then automatically assigned here, when the
sp_trace setevent stored procedure is executed.

EventlID is a code that represents the event you want to capture. You must look up this value from a
table listed in Books Online.

ColumnlD is a code that represents the data column for the event you want to capture. You must look
up this value from a table listed in Books Online.

On specifies whether to turn an event on (1) or off (0). A value of 1 also turns the column on for this
event (assuming ColumnlID has a non-null value). Likewise, a value of 0 turns both the column and the
event off.

SP_TRACE_SETFILTER

Execution of the sp_trace setfilter stored procedure is optional and only required if you want to create
a filter for your trace. If you do use this stored procedure, it must run after the first two above.

You can only create one filter per stored procedure execution. Therefore, if you want to add multiple
filters to the trace, you must execute the sp_trace setfilter command once for each filter.

The syntax for the command is:

sp_trace_setfilter [@traceid =] trace_id
, [@columnid =] column_id
, [@logical_operator =] logical_operator
, [@comparison_operator =] comparison_operator

, [@Gvalue =] value

where:

TracelD is the trace identifier created by the sp trace create stored procedure. Again, using variables,
you can automatically assign the TracelD value for this stored procedure.

ColumnlID is the ColumnID, used in the sp_trace setevent stored procedure, of the column on which
you wish to set the filter.

LogicalOperator specifies an AND (value 0) or an OR (value 1) relationship between this filter and any
others created in the trace.

ComparisonOperator specifies the type of comparison to be undertaken in the filter. Again, you must
use a special code to represent a given operator:

e 0-=(Equal)

e 1-—<>(NotEqual)

e 2 —> (Greater Than)

e 3 —<(Less Than)

e 4 —>= (Greater Than Or Equal)

How to Capture Profiler Traces Programmatically 205

e 5— <= (Less Than Or Equal)
e (6-LIKE
e 7-NOTLIKE

Value is the value on which you want to filter. You may have to specify the value's data type as part of
this stored procedure, as parameters are strongly typed.

SP_TRACE_SETSTATUS

The sp_trace_setstatus stored procedure performs three different functions: to start, stop, and close
a trace. The syntax for the command is:

sp_trace_setstatus [@traceid =] trace_id , [@status =] status

where:

TracelD is the trace identifier created by the sp_trace_create stored procedure. Again, using
vatiables, you can automatically assign the TracelD value for this stored procedure.

Status is used to specify the required action on the trace. The three options are:

e (- Stops the specified trace.
e 1 —Starts the specified trace.
e 2 — Closes the specified trace and deletes its definition from the server.

Now that we have a basic understanding of the four system-stored procedures used to create Profiler
traces programmatically, let's put it all together into two working sctipts.

PUTTING THE PIECES TOGETHER: WRITING YOUR OWN TRACE CAPTURE
SCRIPTS

Before we can write a trace capture script, we first need to decide what kind of trace we want to
perform. Any of the traces we have talked about up until this point in this book can be captured using a
script. For this example, we'll reproduce programmatically (as closely as possible) the trace we used in
Chapter 4, to identify slow running queries.

To save you referring back, this trace captured five events:

e RPC:Completed

e SP:StmtCompleted

e SQL:BatchStarting

e SQL:BatchCompleted
e Showplan XML

With these events, we recorded data for fifteen data columns:

e Duration
e ObjectName
e TextData

e CPU
e Reads
o Writes

e IntegerData

How to Capture Profiler Traces Programmatically 206

e DatabaseName

e ApplicationName
e StartTime

o EndTime

e SPID

e LoginName

e EventSequence

e BinaryData

We created one trace filter:

e DatabaselD = "AdventureWorks"

We also performed some grouping and aggregation for this trace, when we used the Profiler GUI, but
those options are not available when creating traces using Transact-SQL.

A frustrating aspect of creating a trace using stored procedures is that their parameter values are strongly
typed. For example, MaxFileSize has to be a ‘bigint’ and the TraceID has to be an ‘int’. If you don't
use these stored procedures often, it is hard to remember the datatypes used by each parameter.

Another issue we have to deal with is handling the TracelD. The value of TracelD is output by the
sp_trace_create stored procedure, and used as an input by the other three stored procedures. We need
to create a variable to store the TracelD value produced by sp_trace_create and feed it to the other
stored procedures. Lastly, we need to consider the issue of adding some error-trapping code, to help us
identify possible problems.

With all this in mind, let's start creating the start_trace script, which will create, define and start the
Profiler trace.

THE START_TRACE SCRIPT: CREATING, DEFINING AND STARTING THE TRACE

To make this discussion easier to follow, I will break this script into several parts. In this example I try
not to ovet-elaborate. I keep the code to a minimum so that we don't get distracted by side issues ot
waste a lot of time discussing topics that are outside the scope of this book.

DECLARING VARIABLES
The first thing we do is declare a number of variables, which will allow us to:

e Define our strongly typed parameters in a single location.

e Store values to some of the parameters, so we only have one place to go in our script to
make a change to them.

e Store values that we need to pass along from one part of the script to another (such as
the TracelD or error codes).

Here are the variables that need to be declared for the start_trace script:

Declare Variables

DECLARE @em INT ;

DECLARE @TraceID INT ;

DECLARE @maxFileSize BIGINT ;
DECLARE @fileName NVARCHAR(128) ;

DECLARE @on BIT ;

How to Capture Profiler Traces Programmatically 207

where:

® (@em is used to capture error codes produced by the sp trace create stored procedure.

We will use this variable several times in the script, for the error-handling code.

e @TracelD is used to capture the TracelD assigned by SQL Server to the trace being
created. This value is created by the sp _trace create and then passed to the other stored
procedures as needed.

e (@maxFileSize is used to assign the maximum file size of the trace file.
e (@fileName is used to assign the physical path and filename of the captured trace.

® (@on is used by the sp_trace_setevent stored procedute to turn on the event and its
data column.

The first two variables are used to pass information from one part of the script to another. The last
three variables are used to represent three of the parameters used by the stored procedures. They have
been declared here to make it easier to manage their data type. If you create your own script and use
different parameters than I have used, you may want to define some additional variables to deal with
their unique data types.

ASSIGNING VALUES TO PARAMETERS

The next section of the start_trace script assigns values to the @maxFileSize, @fileName and @on
parameters, stored in our variables:

-- Set Trace values

SET @maxFileSize = 5 ;

SET @fileName = N'C:\ProfilerTrace' ;
SET @on = 1 ;

Where:

@maxFileSize has been assigned a value of "5", which also happens to be the default value for this
parameter. In this example, I am not using the TRACE_FILE_ROLLOVER option, so the trace
would end when the trace file reaches 5mb in size. In reality, you would either want to make this value
much greater, or activate the TRACE_FILE_ROLLOVER option so that when the file reaches 5mb
it would be close and a new file created.

@fileName is the path and filename for the saved trace file. Notice that you do not need to append an
extension to the filename. This is done for you automatically. In this example 1 use:
'C:\ProfilerTrace'.

@on has been set to 1, which means that the event, and its data column, are turned on for the trace.

Creating parameters as variables makes your scripts much more flexible than if you had "hard-coded"
these values in the stored procedures themselves.

CREATING THE TRACE

With the variables declared and the parameters set, it's time to implement the first of the four system-
stored procedures, sp_trace_create:

-- Create Trace

EXEC @em = sp_trace_create @TraceID OUTPUT,
0,

@fileName,

How to Capture Profiler Traces Programmatically 208

@maxFileSize,
NULL ;

We start with the standard EXEC (execute) command:

EXEC @em = sp_trace_create @TraceID OUTPUT,

As part of this command, we assign to the @em variable the return value generated by the execution of
the sp_trace_create stored procedure. If an error is encountered during execution of this stored
procedure, an integer value will be returned, indicating the nature of the error. Any value not equal to 0
indicates an error. The @em variable is used later in the script for error-trapping.

In the same line of code, we also assign to the @TracelID variable the output value of the stored
procedure: @ TraceID OUTPUT, the unique identifier for the trace. This value is used later in the
script for the other three stored procedures.

The remainder of the code sets the parameters for the stored procedure, as follows:

e 0- no options are being used

e (@fileName — the physical path and filename of the trace file, as defined in the previous
section

e (@maxFileSize — the maximum file size of the trace file, as defined in the previous
section

e NULL - we are not setting a stop time for the execution of the stored procedure

ERROR HANDLING

If the execution of the sp_trace_create returns any error code, this statement traps it and sends it to the
error-handling code found later in the script. This code is optional, but useful.

-- Error Handling
IF (@em != 0)
GOTO error

SPECIFYING THE TRACE EVENTS AND DATA COLUMNS

Having created the trace definition, it's time to assign the events to be traced, together with the data
columns to be collected for each one. This section of code is long, as it essentially repeats the same line
of code for every event-data column combination. Since we have 5 events and 15 data columns, we have
to run the sp_trace_setevent stored procedute a total of 75 times:

-- Set the Trace Events and Data Columns to Collect

--Collect RPC:Completed Event and Selected Data Columns
EXEC sp_trace_setevent @TraceID, 10, 13, @on ;
EXEC sp_trace_setevent @TraceID, 10, 34, @on ;
EXEC sp_trace_setevent @TraceID, lO, 1, @on ;
EXEC sp_trace_setevent @TraceID, 10, 18, @on ;
EXEC sp_trace_setevent @TraceID, 10, 16, @on ;
EXEC sp_trace_setevent @TraceID, 10, 17, @on ;
EXEC sp_trace_setevent @TraceID, 10, 25, @on ;
EXEC sp_trace_setevent @TraceID, 10, 35, @on ;
EXEC sp_trace_setevent @TraceID, 10, 10, @on ;

How to Capture Profiler Traces Programmatically

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent

--Collect SP:StmtCompleted Event

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

Ssp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
sp_trace_setevent

Se1ected Data Columns

--Collect sQL:BatchStarting Event and Se]ected Data Columns

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

Sp_trace_setevent
sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent

--Collect sQL:BatchCompleted Event and Se]ected Data Columns

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

Sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent

--ColTlect Showplan XML

@TraceID, 10, 14, @on
@TraceiID, 10, 15, @on
@TraceID, 10, 12, @on
@TraceID, 10, 11, @on
@TraceID, 10, 51, @on
@TraceiD, 10, 2, @on
and

@TraceID, 43, 13, @on
@TraceID, 43, 34, @on
@TraceID, 43, 1, @on
@TraceID, 43, 18, @on
@TraceID, 43, 16, @on
@TraceID, 43, 17, @on
@TraceID, 43, 25, @on
@TraceID, 43, 35, @on
@TraceID, 43, 10, @on
@TraceID, 43, 14, @on
@TraceID, 43, 15, @on
@TraceID, 43, 12, @on
@TraceID, 43, 11, @on
@TraceID, 43, 51, @on
@TraceID, 43, 2, Q@on
@TraceID, 13, 13, @on
@TraceID, 13, 34, @on
@TraceID, 13, 1, @on
@TraceID, 13, 18, @on
@TraceID, 13, 16, @on
@TraceID, 13, 17, @on
@TraceID, 13, 25, @on
@TraceID, 13, 35, @on
@TraceID, 13, 10, @on
@TraceID, 13, 14, @on
@TraceID, 13, 15, @on
@TraceID, 13, 12, @on
@TraceID, 13, 11, @on
@TraceID, 13, 51, @on
@TraceID, 13, 2, Q@on
@TraceID, 12, 13, @on
@TraceID, 12, 34, @on
@TraceID, 12, 1, @on
@TraceID, 12, 18, @on
@TraceID, 12, 16, @on
@TraceID, 12, 17, @on
@TraceID, 12, 25, @on
@TraceID, 12, 35, @on
@TraceID, 12, 10, @on
@TraceID, 12, 14, @on
@TraceID, 12, 15, @on
@TraceID, 12, 12, @on
@TraceID, 12, 11, @on
@TraceID, 12, 51, @on
@TraceID, 12, 2, Q@on
Event and

Selected Data Columns

209

How to Capture Profiler Traces Programmatically 210

EXEC sp_trace_setevent @TraceID, 122, 13, @on
EXEC sp_trace_setevent @TraceID, 122, 34, @on
EXEC sp_trace_setevent @TraceID, 122, 1, G@on
EXEC sp_trace_setevent @TraceID, 122, 18, @on
EXEC sp_trace_setevent @TraceID, 122, 16, @on
EXEC sp_trace_setevent @TraceID, 122, 17, @on
EXEC sp_trace_setevent @TraceID, 122, 25, @on
EXEC sp_trace_setevent @TraceID, 122, 35, @on
EXEC sp_trace_setevent @TraceID, 122, 10, @on
EXEC sp_trace_setevent @TraceID, 122, 14, @on
EXEC sp_trace_setevent @TraceID, 122, 15, @on
EXEC sp_trace_setevent @TraceID, 122, 12, @on
EXEC sp_trace_setevent @TraceID, 122, 11, @on
EXEC sp_trace_setevent @TraceID, 122, 51, @on
EXEC sp_trace_setevent @TraceID, 122, 2, @on

Let's consider just one of these stored procedute executions and examine its component patts:

--Collect RPC:Completed Event and Selected Data Columns
EXEC sp_trace_setevent @TraceID, 10, 13, @on ;

The sp_trace_setevent stored procedure takes four input parameters:

e TracelD — the unique identifier for the trace to which the selected events and data
columns belong. As discussed, we assign to this parameter the value of the output
parameter generated by sp_trace create, which we stored in our @TracelD variable

e EventID — in which we define the event to be captured. As noted eatlier, rather than use
the name of the event (RPC:Completed), we need to refer to this event via an integer
code, in this case "10".

e ColumnID - this is the integer code that represents the data column to be captured for
this EventID. In this case, "13" refers to the Duration data column.

e On — we assign this parameter the value stored in the @on variable, which is "1",
indicating that we wish to turn this event and data column combination on for this trace
definition.

If you want to collect many events or data columns, be prepared to look up a lot of codes, and write a
lot of repetitive T-SQL code. As you might guess, this procedure is tedious and error-prone, so be
careful.

SETTING FILTERS

You will need to run the sp_trace_setfilter stored procedure once for each filter you want to add to
your trace. The next line of code in the script creates a single filter on DatabaselD.

-- Set Filters _
EXEC sp_trace_setfilter @TraceiD, 3, 0, 0, 6 ;

The sp_strace_setfilter stored procedute has five input parameters:

How to Capture Profiler Traces Programmatically 211

e TracelD — again, we associate the filter with a specific trace by assigning to this
parameter the value of the output parameter generated by sp_trace create, stored in our
@TracelD variable

e Column id —"3"is the ID of the column on which the filter is applied, referring to the
DatabaselD data column.

e Logical operator — the value "1" denotes that this filter has an “OR” relation to any
other filters defined in the trace.

e Comparison operator — "0" represents the "equals" comparison operator and defines
the comparison to be made between Column id and Value.

e Value — we only wish an event to be recorded if it originates from the database with a
DatabaselD of "6", the database ID of AdventureWorks database on my SQL Server
instance.

As you can see, you must look up many codes for the parameters. None of this is intuitive, and it can be
tedious to set up.

STARTING THE TRACE

Having created the trace definition, added events and data columns, and defined any necessary filters, we
are ready to start the trace. Once the trace is started, it will remain running until either:

e You stop it.
e A preset stopping point is reached (such as file size).
¢ You run out of disk space.

The code to start the trace is as follows:

-- Start the Trace
EXEC sp_trace_setstatus @TraceID, 1 ;

We simply execute the sp_trace_setstatus stored procedure, providing values for the two input

pPly p > P g P
parameters: the TracelD, as described previously, and the Status parameter, to which we assign the
value "1", in order to start the trace.

FINISHING THE SCRIPT

To finish out the start_trace script, we need to include the following code.

-- Display trace 1id for Tater use
SELECT TraceID=@TraceID ;
GOTO finish :

-- Error Trap
error:
SELECT ErrorCode = @em ;

— |::X'it
finish: ;

GO

How to Capture Profiler Traces Programmatically 212

This code returns any error code, and ends the script. In addition, the TracelD code is displayed. You
will need to include this code in the sfp_trace script, which is used to stop and close the trace.

THE STOP_TRACE SCRIPT: STOPPING AND CLOSING THE TRACE

The trace is now running. In most cases, you will want to manually stop and close the trace using a
second script. The sfop_trace script contains two simple steps: stopping the trace and closing the trace.
Both steps ate accomplished by using the sp_trace_setstatus stored procedure. Stopping and closing
are two separate steps because that gives you the flexibility to stop and start a trace repeatedly without
have to close and recreate it each time.

The code to stop and close the trace is simple and straightforward:

-- Stop the trace
EXEC sp_trace_setstatus 2, 0 ;

-- Close the trace */

EXEC sp_trace_setstatus 2, 2 ;

As before, the sp trace setstatus stored procedure accepts two input parameters, TracelD and
Status. Since we have already completed running the start_trace script, the @TracelD vatiable we defined
there is out of scope. This means that we have to manually enter the TraceID for the stgp_trace script,
and is the reason we displayed the value of the @TracelD variable at the end of the start_trace script. The
value of the variable @TracelD in our example is "2".

In the first execution of the procedure we assign Status a value of "0" to stop the trace, and in the
second execution a value of "2" to close it.

Once we have run this code, the trace is gone, but our trace file is ready for use. At this point, we can
load the trace file into the Profiler GUI, import it into a database table, view it directly using a trace
function, or use it to feed the DTA.

NOTE:

Many DBAs schedule the start and stop scripts as SQL Server Agent jobs. This way, they can
easily schedule when a trace begins and ends.

CREATING T-SQL TRACES FROM THE PROFILER GUI

In the previous section I explained how to use Transact-SQL to create a trace programmatically. I also
described how much effort it is to create such code. Well, I have been saving a surprise for you, and here
it is: most of the coding above doesn't have to be written by hand. In other words, you can use the
Profiler GUI to generate most of the code for you.

"Why didn't you tell us about this feature sooner?" Well, if you had known about this eatlier, you may
have never taken the opportunity to fully understand how the code works! It's never a good idea to
generate code blindly, without knowing exactly what it is doing. However, now you fully understand the
code, it's safe to move on and find out how to auto-generate it.

First, you must create a Profiler trace from within the Profiler GUI, just as we've done throughout the
book. Alternatively, you can use a pre-defined trace template. For this example, I am going to use the
template I created in chapter 4 to identify long-running queties.

How to Capture Profiler Traces Programmatically 213

Next, load the trace into the Profiler GUI, and then select: File | Export | Script Trace
Definition | For SQL Server 2005. You will be prompted to enter a path and filename for the
Transact-SQL file that will be created, containing the code needed to create and run the trace
programmatically. Once you have entered a path and filename, click on the "Save" button and you
should get a message telling you that the Transact-SQL script file was saved successfully.

Open up the script file in SSMS and view the code. In this example, it looks like this:

D D o Yl vl vl Yl Yl Yl Yl Yl Y ol T o o o D D R N vl Yl Yl L Tl T o D T o o il D vl D T T N v
/"“"mx"nnnx Yeddeddef Rk Yedded ARk T Rk hhy

/* Created by: SQL Server 2005 Profiler
/% Date: 12/15/2008 02:28:55 PM
/********************************

PR R AR RO A I R S R AR A A R OO
PR e T T T i A T T T T i A I R A T L i

-- Create a Queue

declare @rc 1int

declare @TraceID 1int
declare @maxfilesize bigint
set @maxfilesize = 5

-- Please replace the text InsertFileNameHere, with an appropriate
-- filename prefixed by a path, e.g., c:\MyFolder\MyTrace. The
.trc extension

-- will be appended to the filename automatically. If you are
writing from

-- remote server to local drive, please use UNC path and make sure
server has

-- write access to your network share

exec @rc = sp_trace_create @TraceID output, O,
N'InsertFileNameHere', @maxfilesize, NULL
if (@rc != 0) goto error

-- Client side File and Table cannot be scripted

-- Set the events

declare @on bit

set @Gon = 1

exec sp_trace_setevent @TraceID, 122, 1, @on
exec sp_trace_setevent @TraceID, 122, 25, @on
exec sp_trace_setevent @TraceID, 122, 2, @on
exec sp_trace_setevent @TraceID, 122, 10, @on
exec sp_trace_setevent @TraceID, 122, 14, @on
exec sp_trace_setevent @TraceID, 122, 26, @on
exec sp_trace_setevent @TraceID, 122, 34, @on
exec sp_trace_setevent @TraceID, 122, 11, @on
exec sp_trace_setevent @TraceID, 122, 35, @on
exec sp_trace_setevent @TraceID, 122, 12, @on
exec sp_trace_setevent @TraceID, 10, 15, @on
exec sp_trace_setevent @TraceID, 10, 16, @on
exec sp_trace_setevent @TraceID, 10, 1, @on
exec sp_trace_setevent @TraceID, 10, 17, @on
exec sp_trace_setevent @TraceID, 10, 25, @on
exec sp_trace_setevent @TraceID, 10, 2, @on
exec sp_trace_setevent @TraceID, 10, 10, @on
exec sp_trace_setevent @TraceID, 10, 18, @on
exec sp_trace_setevent @TraceID, 10, 26, @on
exec sp_trace_setevent @TraceID, 10, 34, @on
exec sp_trace_setevent @TraceID, 10, 11, @on

How to Capture Profiler Traces Programmatically

214

exec sp_trace_setevent
exec sp_trace_setevent

exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent
exec sp_trace_setevent

-- Set the Filters
declare @intfilter int
declare @bigintfilter b

exec sp_trace_setfilter
- 3d71b363-c360-491f-a3
set @bigintfilter = 100
exec sp_trace_setfilter

exec sp_trace_setfilter
-- Set the trace status
exec sp_trace_setstatus

-- display trace id for
select TraceID=@TraceID
goto finish

error:
select ErrorcCode=@rc

@TraceiD, 10, 35,
@TraceiD, 10, 12,

@TraceID, 10, 13,
@TraceiD, 10, 14,
@TraceID, 45, 16,

@on
@on

@on
@on
@on

@TraceID, 45, 1, @on

@TraceID, 45, 17,
@TraceID, 45, 25,
@TraceID, 45, 10,
@TraceID, 45, 18,
@TraceID, 45, 26,
@TraceID, 45, 34,
@TraceID, 45, 11,
@TraceID, 45, 35,
@TraceID, 45, 12,
@TraceID, 45, 13,
@TracelID, 45, 14,
@TracelID, 45, 15,
@TraceID, 12, 15,
@TraceID, 12, 16,

@on
@on
@on
@on
@on
@on
@on
@on
@on
@on
@on
@on
@on
@on

@TraceID, 12, 1, @on

@TracelID, 12, 17,
@TraceID, 12, 10,
@TracelID, 12, 14,
@TraceID, 12, 18,
@TraceID, 12, 26,
@TraceID, 12, 11,
@TraceiD, 12, 35,
@TracelID, 12, 12,
@TracelID, 12, 13,

@on
@on
@on
@on
@on
@on
@on
@on
@on

@TraceID, 13, 1, @on

@TraceID, 13, 10,
@TraceID, 13, 14,
@TraceID, 13, 26,
@TraceID, 13, 11,
@TraceiID, 13, 35,
@TraceID, 13, 12,

igint

@TraceiDb, 10, O,
08-1966ab502dad"
0000

@TraceiD, 13, O,

@TraceiD, 35, O,
to start
@TraceID, 1

future references

@on
@on
@on
@on
@on
@on

7, N'SQL Server Profiler

4, @bigintfilter

6, N'Big_Database'

How to Capture Profiler Traces Programmatically 215

finish:

go

As you can seg, it looks a lot like the code we wrote manually. All you need to do is modify the code so
that it includes the physical location where you want the trace results to be written, and then you can run
it as is, or you can modify it to suit your needs. In any event, having the Profiler GUI create the
Transact-SQL code for you can save you a lot of time.

However, note that this code is only for creating and starting the trace. You will still need to create the
appropriate Transact-SQL code to turn it off, as that is not generated for you.

USING A TRACE FUNCTION TO QUERY A TRACE FILE

A couple of times in this chapter I have referred to something called a trace function. SQL Server
offers a function you can use to extract trace data directly from a physical trace file, using Transact-SQL,
without having to import the data into a SQL Server table. The function is called fn_trace_gettable,
and its syntax is as follows:

fn_trace_gettable (filename, number_of_files)

where:

e filename is the path and filename of the physical trace file you want to query.

e number of files is the number of rollover files you want to be read (assuming you have
any). For example, if you want to read all rollover files, you can enter "default” as your
value. If you only want to read a single file, then enter "1", and so on.

Now, let's see this command in action. Let's say we want to return all the events (rows) in a trace file. To
perform this task, you can run the following Transact-SQL from SSMS:

SELECT

FROM FN_TRACE_GETTABLE('c:\profiler_trace.trc', DEFAULT)

Or, if you want to return only those events that have a databaseid of "4", you could run this Transact-

SQL code:

SELECT
FROM FN_TRACE_GETTABLE('c:\profiler_trace.trc', DEFAULT)

WHERE databaseid = '4'

In other words, you can treat any physical trace file as if it were a database table, and you can run
virtually any Transact-SQL SELECT statements against the file. This way, you don't have to worry
about first importing the trace file into a real database table before you run any Transact-SQL against it.

Of course, it is also easy, if you prefer, to load everything into a central database repository and build
your reports from there. You can then either load the trace into a new database table:

-- Specify Location of Database
USE ProfilerbDatabase
' GO

How to Capture Profiler Traces Programmatically 216

-- Load Trace into a New Database Table
SELECT * INTO sqlTraceTable

FROM ::fn_trace_gettable('c:\ProfilerTrace.trc', DEFAULT)

ot you can load the trace file into an existing table:

-- Specify Location of Database

USE ProfilerDatabase

GO

-- Load Trace into an Existing Database Table
INSERT INTO sqlTraceTable

SELECT * FROM ::fn_trace_gettable('c:\ProfilerTrace.trc', DEFAULT)

SUMMARY

While creating traces programmatically has many benefits, it is a much more time-consuming and
complicated procedure than using the Profiler GUIL If you are new to Profiler, I suggest you use the
Profiler GUI until you become comfortable with it. Once you have gained experience using the Profiler

GUI, then you can decide if the extra effort required to create traces using Transact-SQL is justified by
the benefits it provides.

Profiler Best Practices 217

Chapter 10

PROFILER BEST PRACTICES

In this chapter we will explore some of the best and most effective ways to use the Profiler. While some
of the suggestions simply reinforce important points already made in the book, others are new. Consider
this chapter a knowledgebase for using SQL Server Profiler. We cover these topics:

e General Profiler Best Practices

e Creating Traces

e Running Traces

e Analyzing Traces

e Performance Monitor

e Database Engine Tuning Advisor

Once you master the best practices in this chapter, you will be well on your way to becoming a Profiler
Master.

GENERAL PROFILER BEST PRACTICES

This section deals with best practices that apply to Profiler usage in almost any scenario.

PROFILER IS NOT JusT FOR DBASs

This book has focused on how Administrative/Production DBAs can use Profiler in their day-to-day
tasks. However, Profiler is not just for DBAs. Developers, database designers, business intelligence
specialists, I'T professionals — even accountants — can all make valuable use of the tool. If you are a DBA
who knows how to use Profiler, share this knowledge with others in your organization. By sharing your
knowledge and helping others, you can become a valued team member, instead of that cranky DBA
everybody blames for the slowness of their applications.

PROFILER MAY NOT BE THE BEST CHOICE TO ANALYZE A PARTICULAR PROBLEM

Although I have spent a lot of time in this book recommending that you use Profiler to help you identify
and troubleshoot many different kinds of SQL Server problems, sometimes Profiler is not the best tool
for the job. One example we have already discussed is using Profiler to perform auditing. While Profiler
can certainly do auditing, it is an inefficient and resource-hogging way to perform it. In other cases,
System monitor counters (some of which overlap Profiler events) are better than using the
corresponding Profiler events. So, while Profiler is a great tool for many tasks, it is not the only tool
available to DBAs. Some times another tool will offer you a more efficient and less resource-intensive
way to perform the same task.

UsSE PROFILER TO LEARN How APPLICATIONS WORK

Many DBAs use Profiler to perform detective work. In other words, Profiler allows you to see what
commands are being sent from a client to SQL Server. This can provide useful information, especially if
you are trying to figure out why a particular third-party application is performing a task the way it does.
This also applies to applications written in-house, but with which you are not familiar. In other cases, 1

Profiler Best Practices 218

know DBAs who use Profiler to observe how SQL Server client tools, such as SSMS, communicate with
SQL Server, so they can better learn how SQL Server works. Reviewing Profiler traces can often be a
very educational experience.

USE PROFILER FOR TRANSACT-SQL, SSIS, AND ANALYSIS SERVICES

While the focus of this book has been on how to use Profiler to capture traces of any code that is sent
from a client to the SQL Server Engine, it is not the only way Profiler can be used with SQL Server.
Profiler also has the ability to capture traces of SSIS activity (using the same events and data columns as
when tracing Transact-SQL code) and Analysis Services activity (using a different set of events and data
columns, not covered in this book). As you become more proficient using Profiler, keep all its
capabilities in mind. There is nothing more frustrating than troubleshooting a problem the hard way,
only remembering later that you could have resolved the problem much faster if you had used Profiler.

UsSE PROFILER TO MONITOR LIVE ACTIVITY

The most common way to use Profiler is run time-limited traces to troubleshoot a specific problem, and
so the examples in this book have reflected this. Another way to use Profiler is to monitor live,
production activity on a 24/7 basis. Wait just a moment. Did I just recommend using Profiler 24/7?
Isn't this contrary to the advice you've read throughout this book, recommending you do everything you
can to minimize the tracing overhead on your servers?

Well, as with every rule, there are exceptions. Generally speaking, if your production server does not
show any signs of performance bottlenecks, and you configure a lightweight trace with judicious use of
filters to minimize the number of events returned, Profiler can be a very useful real-time monitoring
tool.

Here's why. Many SQL Server-related problems occur unexpectedly, or appear to be random. Often, it is
not until a problem has recurred numerous times that you notice that it even exists. Once you've
identified an issue, you'd like to run a trace and get to the bottom of the problem. However, if the
problem occurs randomly, how do you decide when to run the trace? This is not always an easy task.

If you configure Profiler to perform on-going, real-time monitoring of your server, you can catch and
identify problems when they first occur, gathering the data you need to resolve the problem quickly,
instead of chasing them after the fact. For example, you might have an on-going trace that looks for any
query that takes longer than 60 seconds, or a trace to identify blocking and deadlocking, and so on. As
long as you keep the trace lightweight, and the server is not over-burdened, then the impact of the
Profiler trace will not noticeable to your users.

If you decide to use Profiler for 24/7 monitoring, remember that you will need to make time to review
the data, looking for problems. If you don't have that time, then don't waste your effort — and server
resources — creating Profiler traces you will never look at or use.

CREATE PROFILER BASELINES

Many times, when analyzing Profiler data, it is useful to compare current activity with past activity, so
that you can more easily determine what is "normal" and what is not. The only way to do this is to create
Profiler baseline traces and save them for later analysis.

Unfortunately, SQL Server Profiler does not make it easy to compare trace files; it is essentially a manual
process and involves quite a bit of work. As such, many DBAs don't bother. However, having taken the
time to create baseline trace files of your production servers, and saved the results to a SQL Server
database, you have information that can help you make better decisions today and potentially save you a
lot of time.

Profiler Best Practices 219

For example, you might decide to collect baseline Profiler traces for the four most critical production
SQL Servers. This might entail performing an 8-hour trace on each server once each month, during a
typical production day. The trace would capture key events and data columns and be stored in a SQL
Server database. You can then write T-SQL scripts to analyze this data, identifying which queries run the
most often, their average duration, and how often they run. By comparing this data from baseline to
baseline, you can plot the variation in activity on your servers, over time.

WHEN (AND WHEN NOT) TO TRACE DATA

The time at which you capture a particular trace will vary depending on the purpose of the trace. If you
are performing a baseline trace, then you will want to run it over a typical production day to ensure that
it reflects normal production activity. If you are tracing audit activity to see who is accessing what, you
may have to audit for long petiods of time, if not 24/7. If you want to perform real-time monitoring,
then you may be tracing 24/7. If you are troubleshooting a specific problem, you will want to run the
trace when the problem is occurring, or most likely to occur. The point here is obvious: you only want
to run traces when the activity you are seeking to capture is occurring. Capturing trace data any other
time is a waste of resources.

Conversely, there are times when you won's want to capture a Profiler trace. For example, when:

e The server is not performing as it normally does.
e The server is very busy and the use of Profiler might impact user performance.

e Scheduled jobs are running (such as imports or backups), unless you are trying to capture
a trace of the scheduled job.

How OFTEN T0 TRACE DATA

Again, the frequency with which you collect a certain type of trace data will depend on its purpose. For
example, you may want to run monthly baseline traces. On the other hand, you may want to run
monthly or quarterly traces for the purposes of feeding the DTA in order to ensure that your indexes are
up to date. There are many reasons why you might want to conduct traces on a periodic basis. Plan these
traces and schedule them into your work schedule so they won't be forgotten.

WHERE TO STORE TRACE DATA

This is actually a two-part question. First, you must decide where you will store the original trace file as it
is being captured. Second, you must decide where to store historical traces, assuming you want to keep
them.

When I perform a Profiler trace using the GUI, I prefer to run the trace from a computer other than the
SQL Server being traced. This helps to reduce the load on the production server as the trace is being
run. As such, trace files are stored on the local computer, not on the SQL Server being profiled.

If I am performing a Profiler trace programmatically (a server-side trace), I store the data locally, ideally
on a disk drive that does not store the mdf or Idf files.

Once I am done with a trace file, I delete it. There is no point on keeping data that won’t be reused. On
the other hand, if I decide to keep the trace file for historical or baselining purposes, 1 prefer to move
the data from the original trace file format into SQL Server tables, stored in a database designated for
this specific purpose. Once the data has been imported into SQL Server tables, I then delete the original
files, as there is no point in keeping two copies of the same data.

Profiler Best Practices 220

PROFILER GUI vs. PROFILER SYSTEM STORED PROCEDURES

In chapter 9, we discussed the pros and cons of using the Profiler GUI versus Transact-SQL for
collecting Profiler traces. If you have not read this chapter, or have read it but still can't make up your
mind which approach to take, here are my recommendations, distilled into two simple points:

e If the SQL Server instance you want to trace is not regularly exceeding its resource
capacity, then using the Profiler GUI to capture well-designed traces should not affect the
servet's performance at a level noticeable to usets.

e If the SQL Server instance you want to trace is at, or exceeding, its capacity most of the
time, then you should capture your well-designed trace programmatically, in order to
minimize any further impact on Server performance.

A well-designed trace is defined as a trace that only includes the minimum number of events and data
columns required to gather the data needed to troubleshoot the problem at hand.

ENSURING ADEQUATE DISK SPACE FOR A TRACE

Before you start a trace, check to ensure you have enough disk space to store the events you capture.
Ensure that the drive on which you intend to store the trace file has adequate capacity. If space is tight,
and it is hard for you to predict how much disk space the trace will need, consider limiting the size of
the trace file. Alternatively, you will have to manually monitor the trace file size to ensure that you don't
run out of disk space.

If you are using the Profiler GUI, you need to ensure that the amount of free space available to the
temp directory, on the machine where the Profiler is running, has at least 10mb of available disk space.
While a trace is running, the Profiler GUI uses the temp directory to temporarily store trace data.
Depending on the nature of the trace, the size of the temp file can become large. If the drive housing
the temp directory has less than 10mb of free space, Profiler will stop working.

PRACTICE MAKES PERFECT

Profiler can sometimes seem like quite a complex tool to use but, as with all things, practice makes
perfect. The more you use and experiment with Profiler, the more proficient you become. As 1
mentioned in Chapter 1 of this book, Profiler is one of the most useful tools available to the DBA, for
troubleshooting SQL Server problems. Time invested in mastering Profiler is time well spent. I've met
very few exceptional DBAs who were not very proficient at using this tool.

CREATING TRACES

This section reviews the optimum ways to create traces.

UseE TEMPLATES OR SCRIPTS

To save time, create a series of your own GUI-based Profiler templates that you can use over and over.
If you prefer to use Transact-SQL to perform traces, then create a collection of reusable scripts. Not
only will you save time, you will also reduce the potential for introducing errors into your traces. Don't
forget that these scripts and templates are not set in stone — you can modify them anytime you want.

Profiler Best Practices 221

CoLLECT ONLY RELEVANT DATA

Throughout this book 1 have recommended that you collect only the minimal number of events and
data columns required to perform the task at hand. Admittedly, this is a very general statement. Here are
some specific recommendations to help you follow this general guideline:

e Keep the focus of each trace as narrow as possible. For example, create a trace that
only looks for blocking locks, or deadlocks, or long running queries. Don't create traces
that attempt to look for more than one problem at a time. There are some exceptions to
this rule, such as when you collect baseline traces, where your goal is to identify typical
activity, not to troubleshoot specific problems.

e Don't collect duplicate events or data columns. Some activities have both a starting
and a completed event. While it can often be useful to include both, it is not always
necessary. You may have to experiment a little to determine if you need only the starting
event, the completed event, or both events. Similarly, certain data columns — for example
DatabaselD and DatabaseName — provide redundant data. You should collect one or the
other, not both.

e Avoid selecting events that occur frequently. Some events, such as the Statistics
Update event, occur rarely. Others, such as many of the Lock events, occur very
trequently. Unfortunately, there is no general rule that can tell you which events are
common or uncommon in your particular environment, so you may have to experiment
to find out how often particular events are captured. Try to avoid selecting events that
occur frequently, unless you can limit the trace to a very short duration.

The more experience you gain working with Profiler, the easier it will be for you to pick only those
events and data columns that you need.

UsE FILTERS TO REDUCE THE NUMBER OF EVENTS COLLECTED

Filters can help reduce the number of events that are collected and stored as part of a trace file. In many
cases, this will reduce the load on the server being traced. Below are listed some specific filters you may
want to include in your traces:

e Duration — this will help you focus on long-running events, ignoring fast-running events
that may not be relevant to your troubleshooting,
e LoginName — if you know that the problem is limited to a single user.

e DatabaseName or DatabaselD — if you know that the problem is limited to a single
database.

e SPID - if you know the application is limited to a specific SPID.

e ApplicationName — to collect only events from a specific application. Or, you can filter
on the application name to exclude events from applications you don't want to trace. For
example, you might want to create a filter to exclude any events from SQL Profiler or
Management Studio.

This list could continue until every data column available was discussed. However, I think you get the
idea. Only return those events that are relevant to resolving the problem at hand.

RUNNING TRACES

This section reviews how to minimize the performance impact of capturing Profiler data.

Profiler Best Practices 222

RUN ONLY ONE TRACE AT A TIME

It is not generally recommended — and so we haven't discussed it in this book — but it is possible to run
multiple traces at the same time. As you can imagine, each instance of a trace uses up a finite amount of
resources and running multiple traces simultaneously exacerbates the problem. If you need to run
multiple traces, generally it is better to combine them into a single trace, or to run the traces one at a
time.

THE SQL SERVER 2005 DEFAULT TRACE

Did you know that SQL Server 2005 is always running a default trace? Yes, by default, SQL Server 2005
runs a default trace of 32 mostly lightweight events, and each event captures every available data column.
DBAs can directly access the default trace file by going to \Program Files\Microsoft SQL
Server \MSSQL.I\MSSQL\LOG\ folder and opening up the most recent *.trc file. SQL Setrver keeps
this log file to a minimal size and it rolls over frequently.

This default trace file can sometimes be useful. For example, if the SQL Server instance crashes, the
default trace might contain data useful for determining the cause of the crash. In addition, SSMS uses
these trace events for some of its management reports.

The question you may be asking is: does this default trace produce much overhead, and should it be
turned off? The overhead associated with the default trace is minimal and can generally be ignored.
However, if you want, the default trace can be turned off (or on) by using this command:

sp_configure 'default trace enabled', 0

whete:

e (0 = turn default trace off

e 1 = turn default trace on

If you do turn the default trace off, you won't be able to see the events that occurred preceding a SQL
Server crash, should one occur, and you won't be able to run some SSMS reports.

DoN'T RUN PROFILER WHEN OTHER ACTIVITY IS HAPPENING

It is recommended that you don't run Profiler when any non-standard activity on the SQL Server is
occurring. For example, if you are performing a backup job, or reindexing indexes, or importing data,
don't run a Profiler trace until the event is over. This helps to reduce the overall load of the server and
ensutes that Profiler results you do receive aren't skewed by the abnormal activity. The exception to this
recommendation would be if it is your goal to Profile the abnormal activity.

STORE TRACE FILES ON Disk, THEN IMPORT INTO A SQL SERVER TABLE

While the Profiler GUI allows you to save trace events directly into a SQL Server database table, it is not
a good idea. Doing so causes a lot of unnecessary overhead. It is much more efficient from a resource
perspective to capture a trace to a trace file, and then import it into a database table once the trace is
complete.

Profiler Best Practices 223

TURN TRACES OFF AND ON AUTOMATICALLY

Take advantage of the ability to turn traces off and on automatically. Not only can this save you time, it
might prevent you from leaving a trace running much longer than necessary, wasting disk space and
server resources.

If you are using the Profiler GUI, you must start a trace manually, but you can set the trace to end
automatically. If you ate using Transact-SQL to capture a trace, you can use SQL Server Agent to start
and stop traces automatically.

ANALYZING TRACES

This section describes some ways to make analyzing Profiler trace data a little easier.

Limit DATA COLLECTED

By now, you may be getting a sense of déja vu. Didn't I just talk about the importance of limiting events
and data columns a few pages agor Yes, but here is another good reason to limit how much trace data
you collect. The more data you collect, the harder it is to analyze. Analyzing trace data is not easy, given
the tools available with SQL Server 2005, so any way in which you can reduce the amount of data there
is to analyze is worth pursuing.

USE GROUPING AND AGGREGATION

If you are using the Profiler GUI, you can group and aggregate results from the Profiler window. If you
have not investigated this option carefully, please do so. While the grouping and aggregation function is
not very sophisticated, it can be very useful, such as when you want to order long-running queries from
the longest running to the shortest running.

ANALYZE TRACE DATA USING TRANSACT-SQL

As just noted, the tools provided by SQL Server 2005 aren't great for analysis, so you may want to
become creative and create your own queries, or Reporting Services reports, to analyze trace results.

PERFORMANCE IVIONITOR

This section sets out some ways in which to better integrate the use of Performance Monitor with
Profiler.

DON'T PERFORM A CORRELATION ANALYSIS WHEN THE SERVER IS Busy

It is important that there are no external events or services running that might disrupt the correlation
analysis between a Profiler trace file and a Performance Monitor counter log file. For example, if you are
running 1IS on the same server as SQL Server, then it will be hard to show any accurate correlation
between Profiler traces and Performance counter logs because you won't know how IIS activity is
affecting the Performance Monitor counters. In addition, if you are backing up or restoring a database
on a server, this will also interfere with the correlation of data because disk I/O counters will be affected
by the backup or restore activity.

Profiler Best Practices 224

RUN PERFORMANCE MONITOR AND PROFILER OFF THE SQL SERVER INSTANCE

Collecting a Profiler trace and a Performance Monitor counter log file simultaneously is likely to incur a
significant amount of overhead. As such, it is recommended that you run both tools on a computer
other than the server you are monitoring, in order to minimize the performance impact.

ENSURE BOTH CLIENT AND SERVER ARE IN SAME TIME ZONES

When you use Profiler to display a correlation graph between trace and counter data, the time stamp of
each event is used to synchronize the activity. Therefore, it is important that the server being monitored,
and the client computer used for the monitoring, be in the same time zones.

RESTRICT THE AMOUNT OF PERFORMANCE MONITOR COUNTER DATA COLLECTED

Just as you should limit the amount of Profiler trace data collected, you should also limit the amount of
Performance Monitor counter data collected. The fewer counters selected, the lower will be the
overhead of collecting the data.

REesTRICT THE NUMBER OF COUNTERS DISPLAYED IN PROFILER GUI

When you import Performance Monitor counter data into the Profiler GUI, limit the number of
counters added. While adding many counters won't affect performance, it will make the correlation
graph much too busy and hard to read. Keep in mind, though, that if you do add a lot of counters, you
can turn them off and on as needed to make the correlation graph easier to read.

USE THE ZooM FEATURE TO DRILL DOWN INTO TIME INTERVALS

If the correlation graph is still hard to read, even after limiting the number of counters displayed, don't
forget that you can zoom into small time intervals, which can make it easier for you to see all the activity.

DATABASE ENGINE TUNING ADVISOR

This section focuses on suggestions for how to make the Profiler and The Database Engine Tuning
Advisor (DTA) work more efficiently together.

ONLY INCLUDE ESSENTIAL EVENTS AND DATA CoLUMNS IN DTA TRACE

As we discussed in Chapter 7, the DTA only needs a very limited set of events and data columns to
produce a trace file that can be used by the DTA. There is little point in collecting any more data than
the minimum required to run the DTA analysis, as it will just be ignored. An exception to this rule is if
you are combining a baseline and a DTA Trace into a single trace.

RuUN DTA ANALYSIS DURING TIMES OF Low ACTIVITY

When you perform a DTA analysis, the DTA has to connect to the production server in order to run its
analysis (unless you elect to run a DTA analysis on a different server). This produces a lot of overhead
for the production server. To minimize the impact of this overhead on the production setrver, try to
schedule DTA analysis during times of the day when server activity is at its lowest.

Profiler Best Practices 225

MAKE DTA TRACES A REGULAR PART OF YOUR SCHEDULED TASKS

Making a DTA trace and running a DTA analysis on it is not a one-time event for a database. It is
something that should be done periodically, as data and query needs change over time. As the DBA, you
need to schedule into your regular activity the periodic DTA trace, and analysis of all your production
SQL Servers.

SUMMARY

As we've discovered throughout the book, SQL Server Profiler is a powerful tool that can be used to
help you identify and troubleshoot many SQL Server problems. Hopefully, this chapter has summarized
some guidelines that will help you use the tool in the most efficient way.

Profiler Events and Data Columns Explained 227

Chapter 11

PROFILER EVENTS AND DATA COLUMNS EXPLAINED

Throughout this book, we have been rather selective in terms of the events and data columns we have
considered. We have only covered ones necessary for solving the problem at hand. As such, we have
only scratched the surface in terms of the full range of events and data columns that can be traced with
Profiler.

In fact, SQL Server Profiler can capture over 170 different events, arranged into 21 different event
categories. Each event can have up to 64 data columns associated with it. Assuming every event had
every available data column associated with it (not the case, fortunately), then there would be over
10,000 different pieces of data to work with. Think of a large spreadsheet with over 170 rows and 64
columns.

Because it is not practical to describe all 170 events and 64 data columns in detail, the intent of this
chapter is to provide a reference source for each of the 21 event categories, how they can be used to
troubleshoot specific SQL Server problems, and the events in each that will be of the most interest to
the DBA. In each section I try to describe not only the events that comprise that category, but the
additional "context events" that might help you when troubleshooting a SQL server problem in that
category. As well as this, the chapter also provides a description of the most important data columns.

I left this chapter to last because, unlike the other 10 chapters, it's not one I expect anyone to read from
beginning to end, in one go. That's not to say that it doesn't contain some very useful information. Some
of the event categories described in this chapter, such as "Errors and Warnings", "Stored Procedures”
and "Performance", among others, need to be understood by all DBAs. However, I expect that you will
use this as a reference chapter when you need information on a given event or data column, or advice on
troubleshooting in one of the areas covered by a given event category.

EVENT CATEGORIES

We begin our journey by discussing the twenty-one event categories into which SQL Server Profiler
divides the 170+ events:

e Broker Events

e CLR Events

e Cursors

e Database

e Deprecation

e Errors and Warnings

e Full Text
e Tocks

e OLEDB
e Objects

e Performance
e Progress Report
e Query Notifications

Profiler Events and Data Columns Explained 228

e Scans

e Security Audit

e Server

e Sessions

e Stored Procedures
e TSQL

e Transaction

e User Configurable

Trace Properties n

General Events Selection l

Review selected events and evenk columns to trace. To see a complete list, select the "Show all events" and "Show all columns" options,
Events | | Read: | Requ... | RoleM... | RowC. . | SFID | Serve.. | Sessi.. | Severity | Sourc... | SqgHa.. | Star &
+ Broker :
+ CLR
+ Cursors
+ Database
+ Deprecation
¥ Errare and ' arnings
+ Full text
+ Locks
+ OLEDE
¥ Objects
+ Performance =
.ﬂ Drmmrmnn (=) LIJ
—Broker
Includes event classes that are produced by Service Broker, ¥ show all events
¥ shaow all calurmns
Mo data columnn selected.
Column Filters... |
Crganize Columns. .. |

Run Cancel | Help |

Figure 11-1: Profiler events are divided into twenty-one categories, and are selected from the Events Selection
tab of the Trace Properties screen.

BROKER EVENTS

If you are like most DBAs, you probably don't use the SQL Server Service Broker, and so will have no
reason to use any of the thirteen events available in this category. On the other hand, if you do support
the Service Broker, or write code for it, then some of these thirteen events can be worth their weight in
gold. They are:

e Activation

e Connection

e Conversation

e Conversation Group

e Corrupted Message

e Porwarded Message Dropped
e Porwarded Message Sent

e Message Classify

Profiler Events and Data Columns Explained 229

e Message Undeliverable

e Mirrored Route State Changed

¢ Queue Disabled

e Remote Message Acknowledgement
e Transmission

Trace Properties H

General Events Selection l

Review selecked events and event columns ta trace. To see a complete list, seleck the "Show all events" and "Shaow all columns” optians.

Ewvents | | Fead: | Requ... | FioleM... | FowC... | SFID | Serve... | Sezsi.. | Severity | Sourc... | SgiHa.. | Star &

- Broker

...... I~ BrokerActivation
I~ Broker Correction

I~ BrokerCorversation

-

I~ Broker Corwersation Group

I~ BrokerConupted Message

I~ BrokerForwarded Message Dropped
I~ BrokerForwarded Message Sent

I~ BrokerMessage Classify

I~ BrokerMessage Undeliverable

I~ BrokerMirored Route State Changed

Decleme Mhvmnm Prin—bled
I

—Broker
Includes event classes that are produced by Service Broker. W Show all events

B e e e P e e |
T

U

-
I
d
.
;
:
;
.
;
]—V

U e e e e e R e e U |
U e e e e R e e i |

1

i

|

¥ Show all calumns

—RowCounts {no filkers applied)
The number of rovs in the batch, Calurnn Filkets. ..

Crganize Columns. ..

Fun Cancel | Help |

Figure 11-2: SQL Server includes thirteen Service Broker events.

Besides the above key events, Profiler also has the ability to capture two broker-related audit events,
which include:

e Audit Broker Login
e Audit Broker Conversation

While one of the most obvious use of Broker events is to debug Service Broker-related code, they can
also be used to provide on-going monitoring of Service Broker activities (assuming the application
doesn't do this already).

Rather than to try and pick out specific broker-related events, I tend to create a trace to capture all
thirteen events, including all the related data columns for each event. You would start the trace just
before the start of the Service Broker activity you want to examine and stop the trace just after it
completes. While this captures a lot of data, you shouldn't have to run the trace for long periods of time,
preventing any excess resource usage on your SQL Server instance.

NOTE:

The purpose of collecting a lot of data at first is to get the "big" picture of what is happening.
Having said this, if you are a Service Broker expert, then you may want to pick only those
events you think are related to the problem at hand.

Profiler Events and Data Columns Explained 230

Once you identify the big picture, you should be able to determine which events and data columns are
relevant, and if you need to perform additional traces to gather more information, then create traces
with only the events and data columns relevant to your current problem. This way, you won't have to
worry about using excessive service resources when capturing a trace.

Besides these specific Service Broker events, you may also want to capture additional events from other
categories when troubleshooting Server Broker problems. For example, there are some events that,
when captured with Service Broker events, can make it easier to see exactly how your code is working.
These include:

e RPC:Completed

e SQL:BatchStarting

e SQL:BatchCompleted
e SQL:StmtCompleted

Seeing Server Broker events in context with the T-SQL code running in your application can make
troubleshooting problems much easier.

CLR EVENTS

SQL Server provides the ability to execute .Net Common Language Runtime (CLR) objects inside SQL
Server. This allows developers to use any .Net programming language to create custom functionality
within SQL Server that doesn't exist by default. CLR objects are created outside SQL Setver and saved
in a file called an assembly. Essentially, an assembly is packaged in the form of a DLL or executable file.
In order for SQL Server to use an assembly, it must be registered with a SQL Server instance, where it is
hosted. Once it is hosted, T-SQL code can be used to load the assembly and execute it.

Given that Microsoft has put a lot of effort into developing the ability of SQL Server to execute CLR
objects, it is odd that there is only a single CLR event that can be captured by Profiler.

The event is called "Assembly Load". Essentially all it does is tell you if a patticular request to load a
CLR object has successfully or unsuccessfully executed.

S
[T Aszembly Load B B [[~

Figure 11-3: The CLR event category has a single, lonely event.
Used by itself, the Assembly Load event is not particularly useful. However, when combined with other
Profiler events, it will help you troubleshoot CLR objects running in SQL Server.

For example, if your goal is to test, debug, performance tune, or troubleshoot CLR objects interacting
with T-SQL code, you might want to consider capturing all the following events.

e CLR: Assembly Load: to see if assembly load requests are succeeding or failing,

e RPC:Completed

e SQL:BatchStarting

e SQL:BatchCompleted

e SQL:StmtCompleted
By using all of these events together, you will not only be able to see if a particular assembly fails to load,
but you will also get additional information about the Transact-SQL used to execute the assembly. All

this information, in context, paints a better picture of what is happening in your code and makes it easier
to identify and resolve CLR object-related problems.

Profiler Events and Data Columns Explained 231

CURSORS

There are exceptions to every rule, but my general philosophy is: "Cursors ate evil. Don't use them".
Here's why:

e They use excessive server resources to execute, compared to set-based methods.

e They reduce data concurrency, contributing more to blocking and other nasty problems.

e They increase network traffic.

e They significantly hurt application scalability.

e Virtually any server-based cursor can be rewritten to be set-based, boosting performance.
In other words, using a cursor is the lazy way to retrieve and manipulate data.

The focus of virtually all Transact-SQL code is set-based operations. In other words, your code grabs a
set of records, and then does something to all of them in one fell swoop. It's fast, it's efficient, and it's
the way SQL Server is designed to run. By default, Transact-SQL is a set-based programming language.

However, many developers are not familiar with set-based coding techniques and prefer to use the more
familiar procedural coding techniques, where data is dealt with row-by-row, instead of as a set. This is
not the default way Transact-SQL works, but default behavior can be changed as the developer sees fit
and SQL Server allows developers to manipulate data one row at a time, using an object called a server-
based cursor.

SQL Server supports two different ways to create a server-based cursor. One option is to use Transact-
SQL code to create and manipulate the server cursor. The second option is to use a database application
programming interface (API) to create and manipulate the server cursor directly from an application.

So how does all the above fit in with Profiler cursor events? Essentially, Profiler events track API-
created cursors, not Transact-SQL cursors. Profiler provides the following dedicated events for
monitoring API-created, server-based cursors

e CursorClose

e CursorExecute

e CursorlmplicitConversion
e CursorOpen

e CursorPrepare

e CursorRecompile

e CursorUnprepare

Events | applic. | Bigint . | Bigint . | Binary | cPU | Client . | Colum. | DBUs. | Datab. | Datsb. | Durati | EndTi |
- Cursors
r CursarClose [[~ [~ [~

[CursarE secute I r I r

I~ CursorlmplicitCoreersi... I [I I I

[~ Curzar0pen I I I I

I~ CursarPrepare [[I I

[~ CursorRecompile B [B [

I~ Cursarlnprepare I I I I

Figure 11-4: While there are a lot of cursor events, but they only work with API-created, server-based cursors.

Essentially, the above Profiler events tell you when an API-created, server-based cursor is created,
compiled, executed, and destroyed. This information can be used to help debug problematic code when
cursor-related problems (error messages) are occurring.

Profiler Events and Data Columns Explained 232

If you want to monitor the activity of Transact-SQL cursors, you won't be able to use the above Profiler
events. Instead, as Transact-SQL cursor code is executed, you can monitor it using one or more of the
following events:

e RPC:Completed

e SQL:BatchStarting

e SQL: BatchCompleted
e SQL: StmtCompleted

These standard events can be used to monitor any Transact-SQL code used to create and execute
cutsofs.

DATABASE

The Database event category name is somewhat of a misnomer. Firstly, virtually every Profiler event has
something to do with a database; secondly, while four of the five events are related, the fifth one seems
to be lumped into this category, even though it is unrelated to the first four.

The five Database events ate:

e Data File Auto Grow

e Data File Auto Shrink

e Log File Auto Grow

e Log File Auto Shrink

e Database Mirroring State Change

— D atabase

"I Data File Auto Grow |— |— - |— |—
[~ DataFile Auta Shiink, I I r I N
[T Databasze Miraring State Change r [~
[~ LogFile fwto Grow I I r I N
[~ LogFile Auta Shirink [~ [~ r [~ B

Figure 11-5: Data and log file growth and shrinkage are recorded by these events.

AUTOMATIC LOG AND DATA FILE GROWTH AND SHRINKAGE

The first four events describe when auto grow or auto shrink is automatically invoked for a data or log
file. Notice that I said awtomatically. 1f you manually grow or shrink a data or log file using ALTER
DATABASE, no event is fired.

So why would you want to know if a data or log file automatically grows or shrinks? There are two ways
to answer this question, depending on how experienced a DBA you are.

If you are an experienced DBA, you should now that it is recommended #of to use the automatic
growth/shrink options to manage the size of your database. The best practice for managing data and log
file size is to manage them manually so that you can control when and how long growth/shrink
operations occur. This allows you to prevent automatic behavior from occurring during unexpected or
inappropriate times, such as your SQL Setvet's busiest time of the day.

Yes, as an experienced DBA you may want to leave the auto growth database option on to prevent
problems due to some unexpected file growth, as this is better than running out of space. But this
feature should only be used to cover unexpected events. Routine data and log file growth/shrinkage
should be managed manually. If you fall into this categoty, then you don't have any need to capture
these four growth/shrinkage events, as they won't ever become a problem for you.

Profiler Events and Data Columns Explained 233

If you don't follow the best practice just mentioned, or you are a consultant who is analyzing a
customet's SQL Server databases, the four growth/shrinkage events can come in handy. This is because
these events tell you when such unmanaged data and log file growth/shrinkage is occutring, and how
often. Excessive or unplanned growth/shrinkage events can cause resoutce contention on your SQL
Server. These four events allow you to see if, and when, they occur.

If you check out these events and notice a lot of file growth/shrinkage activity, then you are being
tipped off that data and log file management is not being managed manually, as it should be. With this
information, you can then change the data and log file management so that it better meets the needs of
your SQL Server.

EX SOL Server Profiler - [Untitled - 3 (BRAD-LAPTOP)]

%File Edit Yiew Replay Tools ‘Window Help ;lilﬁ
HFNgEfaQl)r v [ZENR PDw P
| EventSequence | EventClass | Applicationt arme | D atabaze ame Duration | FileMame EndTime j

38112 : Log File iMicrosoft SOL Server AdventurewWorks_Test 46 Adventureworks_Log 2007-05-05 03:44:45.:
36131 T Log File Microsoft sQL Server AdventurewWorks_Test &3 Adwventureworks_Log 2007-0%-058 09:44:51.7
3132 Log File Microsoft sQL Serwver Adventureworks_Test 110 Adwventureworks_Log 2007-058-08 09:144:51.:
36134 Log File Microsoft sQL Server AdventurewWorks_Test 126 Adwventureworks_Log 2007-0%-058 09:44:51.°
36136 Log File Microsoft sQL Server AdventurewWorks_Test 202 Adwventureworks_Log 2007-0%-058 09:44:51.%
36137 Log File Microsoft sQL Server Adventureworks_Test 80 Adventureworks_Log 2007-08-08 03:44:52.¢
3135 Log File Microsoft sQL Serwver Adventureworks_Test 120 Adventureworks_Log 2007-05-08 09:44:52.;
361359 Log File Auto Grow Microsoft sQL Server AdventurewWorks_Test 172 aAdwventureworks_Log 2007-0%-058 09:44:53.10
36140 Data File Auto Grow Microsoft SOL Server AdventurewWorks_Test 226 Adventureworks_Data 2007-05-08 09:44:53.;
36141 Data File AUTO Grow Microsoft sOL server Adventureworks_Test 110 Adventureworks_Data 2007-08-08 09:44:153.:
36142 Log File Auto Grow Microsoft sSOL Server Adventureworks_Test &2 adventureworks_Log 2007-05-08 09:44:53.¢
36147 Log File Auto Grow Microsoft sQL Server AdventurewWorks_Test &3 Adventureworks_Log 2007-0%-058 09:44:55.4
36145 Log File Auto Grow Microsoft sQL Server AdventurewWorks_Test 126 Adwventureworks_Log 2007-05-058 09:144:55.°
36145 Log File Auto Grow Microsoft sQL Serwver Adventureworks_Test 30 Adwventureworks_Log 2007-05-08 09:45:01.¢
36180 Log File Auto Grow Microsoft sSQL Server Adventureworks_Test 110 Adventureworks_Log 2007-05-08 09:45:01.;
36154 Data File Auto Grow Microsoft SOL Server AdventurewWorks_Test 46 Adventureworks_Data 2007-05-05 H
36167 Data File Auto Grow Microsoft SOL Server AdventurewWorks_Test 20 Adventureworks_Data 2007-05-05
36165 Log File Auto Grow Microsoft SQL Serwver Adventureworks_Test &0 Adwventureworks_Log 2007-05-05

4

Figure 11-6: Excessive data ot log growth/shrinkage can put an undue resource load on yout setver.

In the example above, you can see an extreme example of where both data and log file auto growth is
excessive, with events occurring within milliseconds of each other. If this type of activity was typical for
your servet, it would be putting an excessive burden on your servet's resources, hurting performance.

DATABASE MIRRORING STATE CHANGE

If you don't use database mitroring, this event will be of no intetest to you. But if you do use database
mirroring, it can be a handy tool to help track what is going on in your mirrored databases.

Any time a mirrored database's state changes, this state change is logged as a Database Mirroring State
Change event. From this event, you can find out the following information from the State data column,
which is part of the event.

Mirroring State ID Numbers:

e 0= Null Notification

e 1 = Synchronized Principal with Witness

e 2 = Synchronized Principal without Witness
e 3 = Synchronized Mirror with Witness

e 4 = Synchronized Mirror without Witness

e 5= Connection with Principal Lost

Profiler Events and Data Columns Explained 234

e (6 = Connection with Mirror Lost

e 7 = Manual Failover

e 8 = Automatic Failover

e 9 = Mirroring Suspended

e 10 =No Quorum

e 11 = Synchronizing Mirror

e 12 = Principal Running Exposed
If you are familiar with database mirroring, you should be able to see instantly how this information can
be useful. For example, you can troubleshoot many different mirroring problems, and even monitor

when database mirroring failover occurred. This event can be very useful and is one with which all
DBAs who use database mirroring should be familiar.

DEPRECATION

Now, this is a word most people don't use in daily conversation. Essentially, deprecation means that a
current feature of SQL Server will be removed in some futute version.

In the context of SQL Server Profiler, deprecation refers to Transact-SQL code, commands, or
functionality that will be eventually removed from the current version of SQL Server, either in the next
release, or sometime after the next major release of SQL Server.

In the deprecation event category, there are two events:
e Deprecation Announcement — a warning that this particular code will be supported in

the next major release of SQL Server, but that it will be removed sometime after the next
major release.

e Deprecation Final Support — a warning that this particular code will definitely be
removed from the next major release of SQL Server.

Profiler Events and Data Columns Explained

235

Trace Properties

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events™ and "Show all columns” options.

Events

| Applic... | Bignt... | Bigint... | Binary... | CPU

| Client... | Colum... [DBUs... | Datab... | Datab... | Durati..

+ Database
- Deprecation

Deprecation Announcement

I_E
[~ Deprecation Final Support
¥ Errors and Wamings
+ Full text
+ Locks
+ OLEDB
¥ Objects
+ Performance
¥ Progress Report

fa¥ Klodifi mmsbimumn

4 1L}

r
~

r r r
I I I

— Deprecation Announcement

Qccurs when you use a featune that will be removed from future version of SQL Server, but will not be removed from the ¥ Show all events
next major release of SQL Server. For greatest longevity of your applications, you should aveid using features that cause
the Deprecation Announcement event class or the Deprecation Final Support event class. [¥ Show all columns

—No data column selected.

Column Filters...

»

m

Organize Columns...

Run I Cancel Help

Figure 11-7: There are two types of deprecation warnings.

When you run a Profiler trace looking for deprecation warnings, they look as shown in Figure 11-8:

ﬁ SQL Server Profiler - [Untitled - 3 (PELE]]

(= [B S

£ File Edit View Replay Tools Window Help [=][=]]
-3 ol . 9

BOSgfac/»n s | ZANR HENP

J EventClass | ApplicationMame | Client ProcessID | Database|D | DatabaseMame | Eventt =
Deprecation Announcement stress utility & Big_Database
Deprecation Announcement stress utility & PBig_Patabase
gneprecat'iun ANNouNCemeant stress utility & Big_Database |_|
Deprecation Announcement stress utility & Big_Database

] |H ____________ | ".._.__..._____._r Tttt o o Tt T 3

The use of more than two-part column names will be removed in a future wversion of SQL Server.

'y m | 3

Trace is stopped. | Ln112 Coll | Rows: 144

| Connections: 0 y

Figure 11-8: An example of a deprecation announcement.

In the above figure, you notice that many Deprecation Announcement events are being captured. The
highlighted Deprecation Announcement tells us that "the use of more than two-patt column names will
be removed from a future version of SQL Server". Well, this message is somewhat useful, but exactly
what code is causing the problem? To find out, we need to collect more than just deprecation warnings;
we need to also collect the code that includes the deprecated events. This is because deprecation events
don't usually include the deprecated code. If you don't know what the deprecated code is, it can be hard

to identify and correct.

Profiler Events and Data Columns Explained 236

To make it easier to identify the code that is deprecated, you should consider including these additional
events in your trace:

e RPC:Completed
e SP:StmtCompleted
e SQL:StmtCompleted
When you collect the above events, plus the deprecated events, a better picture is painted of what is

going on, and what T-SQL activity caused the event to occur. For example, let's see what happens when
I run the deprecated command, sp_lock:

) 5QL Server Profiler - [Untitled - 6 (PELE]] = | [e
£3 File Edit View Replay Tools Window Help [- =]]
- u F
HFOgdfac(rns ZEONGR @ QP
| EveriClass | ObjectName | Duration | TextData |cPu -
Deprecation Announcement Esp_]ucl-c will be removed in a Tuture...
SP:stmtCompleted sp_lock 0 set nocount on J* #* sShow the lo...
SP:stmtCompleted sp_lock 0 set transaction isolation lewvel rea...
SP:StmtCompleted sp_lock 0 if @spidl is not NULL al
SP:StmtCompleted sp_lock 165 select convert {smallint, reg_spid... |—|
SP:stmtCompleted sp_lock 0 return {0) -- sp_lock
SQL: StmtCompleted 198 sp_lock
. l.-r...-‘.._‘..—ﬁ._.. P - aneen .l-- e A e semaaer A -
sp_Tock will be removed in a future version of SQL Server. Avoid using this fTeature in new development work, a -
4 | 1 | r
Trace is running. Ln 467, Coll | Rows: 713
| Connections: 1 ¥

Figure 11-9: The deprecated event occurs before the actual code is run.

Notice that in figure 11-9 the deprecation event occurs before the actual sp_lock command is run. What
does this mean? It means that when you are trying to identify what code or commands are causing
deprecation events, you must look for the code immediately after the deprecation event.

If you are an administrative DBA who works with developers, it is a good idea to identify all deprecated
code, commands and functionality in your current applications, and share that with developers, so that
they won't use it in new code. Hopefully, they will remove it from their current code before the next
version of SQL Server comes out that no longer supports the functionality. If you are a developer DBA
who wtites a lot of code, you also need to take the same advice. The sooner you and your organization's
developers become familiar with what features are going away, the better prepared you will be for the
future.

ERRORS AND WARNINGS

The Errors and Warnings event category is large, mixing both useful and not-so-useful events together
in one large grouping. As you might have guessed from the event category name, Errors and Warnings
are just that: events representing potential SQL Server problems that Microsoft thinks that DBAs might
be interested in knowing about. As I describe each event, I will spend the most time on those events that
I think are more useful to DBAs. The events in the Errors and Warnings event category are:

e Attention

e Background Job Error
e Blocked Process Report
e ErrorLog

Profiler Events and Data Columns Explained 237

e LEventlLog

e Exception

e Exchange Spill

e Execution Warnings

e Hash Warning

e Missing Column Statistics
e Missing Join Predicate

e Sort Warnings

e User Error Message

Trace Properties ﬁ

General Events Selection |

Review selected events and evert columns to trace. To see a complete list, select the "Show all events" and ""Show all columns" options.

Everts | Appiic... | Bigirt... | Bigirt... | Binary.. | CPU | Client... | Colum... | DBUs... | Datab... | Datab... | Dursti... | EndTi... [=
- | Enmors and Wamings ;
[~ Adtertion i i I i i i
I~ Backaround Job Emor ul wl
I” Blocked process report ul wl wl £
[~ Emorlog I I I I
™ Eventlog I I I I I
™ Exception I I I I
I~ Exchange Spill Evert wl wl ul wl
T Execution Wamings wl wl ul wl wl
I~ Hash Waming wl wl ul wl
I~ Missing Column Statistics wl wl ul wl
I~ AMincina lnie Dencdin—da | | _pi |
— Ermors and Wamings
Includes event classes that are produced when a SOL Server emor or waming is retumied: for example, an emor during the ¥ Show all events
compilation of a stored procedure or an exception in SQL Server.
¥ Show all columns
—No data column selected.
Column Filters... |
Organize Columns... |

Fn | Cancd | Hep |

O
Figure 11-10: Thete are many events available to the DBA within the Etrors and Warnings event category.

ATTENTION

Whenever a connection between a client and SQL Server is canceled or broken, for whatever reason, an
attention event is created by SQL Server. This can be a useful event if you are trying to troubleshoot
client connection problems. As a DBA, I sometimes receive phone calls from users telling me that their
client application lost connection to SQL Server. It was then my job to help identify what was causing
the problem (usually network issues), and the attention event can help provide the necessary information
needed to identify the cause of the problem.

Like many events, the attention event is more useful if you also capture additional events, such as:
e RPC:Completed

e SP:StmtCompleted
e SQL:StmtCompleted

This way, you can better see what code is running when the attention event occurs. Take a look at the
example trace shown in Figure 11-11:

Profiler Events and Data Columns Explained 238

7 SQL Server Profiler - [Untitled - 1 (PELE)] l
¥X File Edit View Replay Tools Window Help
HOSsaF a2 m 5 @@ @
| EveriClass | ApplicationName | CliertProcessiD | DatabaselD | DatabaseN Durstion | EndTime
i 5QL:Batchstarting §M'icr‘usuft SOL Server... 1488 & Big_Database
.Attent'i on Microsoft SQL Server... 1488 & Big_Database 63 2007-09-11 12:06:12.377
SqL:eatchstarting Microsoft SQL Server... 1488 & Big_Database
Attention Microsoft SQL Server... 1488 & Big_Database 54 2007-09-11 12:06:17.833
User Error Message stress utility & Big_Database
User Error Message stress utility & Big_Database
SqL:eatchstarting stress utility & Big_Database
Sort warnings stress utility & Big_Database
User Error Message stress utility & Big_Database
User Error Message stress utility & Big_Database
SQL:Batchstarting stress utility & Big_Database
User Error Message stress utility & Big_Database
User Error Message stress utility & Big_Database
sQL:Batchstarting stress utility & Big_Database
User Error Message stress utility & Big_Database
User Error Message stress utility & Big_Database
sQL:Batchstarting stress utility & Big_Database
Sort warnings stress utility & Big_Database
User Error Message stress utility & Big_Database
User Error Message stress utility & Big_Database
S0L:Batchstarting stress utility & Big_Database
4| ; ; 1 - | ’ '
select = from in_tran_tbl
ao

Figure 11-11: In the above trace, we see many types of Error and Warning events.

For example, look at the very first event on the screen, which is a SQL:BatchStarting event for
ClientProcessID 1488. We can see that the code that was run is as follows (see the bottom of the above
screenshot):

select * from in_tran_tbl

Immediately after this code is an attention event for the same ClientProcessID. This is telling us that the
ClientProcessID 1488 began and was then disconnected. In addition to this, we see the same event
repeated for the same ClientProcessID. Obviously, something is causing this connection to fail each
time this code is run.

While Profiler is great at telling us that an error occurred, it is unable to tell us why. That's when you
have to put your DBA detective hat on and begin further investigation into the cause of these broken
connections. For example, if you know the time the connection attempt occurred, and the user who was
disconnected, it makes it much easier to go to your network support staff and ask them if there were any
network problems during this same time petriod for this user. Most network support staff are able to
check for such problems.

BACKGROUND JoB ERROR

This is one type of error message you don't want to see. When it occurs, it means that some SQL Server-
based background job has failed abnormally. Examples of background jobs include the lazy writer, lock
monitor, schedule monitor, ghost clean up, auto-shrink, and so on. If you are regularly having these
kinds of errors, you are probably also having a lot of other severe problems with your SQL Server, and
you may want to start thinking about rebuilding your SQL Server.

In most cases, you probably won't be using Profiler to trace for these errors as these problems will be so
severe, you won't need to use Profiler to find them, as SQL Server will be failing in other significant
areas and it will be very obvious that something is going wrong. However, if you should decide to trace
for these errors, you need to know that there are three different EventSubClass messages (found in the

Profiler Events and Data Columns Explained 239

event's data columns) that provide you with some additional information that may be of some use to
you:

e EventSubClass message 1 indicates that a background job is ending after some(?) sort
of generic failure

e EventSubClass message 2 indicates that a background job has been dropped because
some related queue is full

e EventSubClass message 3 indicates that the background job returned a specific error
message that may be of some use to you when troubleshooting problems.

BLOCKED PROCESS REPORT

This is a very powerful new feature of SQL Server 2005 that every DBA needs to become familiar with.
It allows you to capture information on blocked processes that have been blocked longer than the
amount of time you specified. For example, let's say that you want a Profiler trace that shows you all of
the blocked processes that exceed 30 seconds. No problem. Once you turn this feature on, and start
Profiler, it will automatically create the report for you. Let's find out how.

Unlike virtually all the other events available in Profiler, this particular event is turned off by default. In
other words, if you want to produce a Blocked Process Report, you must first turn on the blocked
process threshold. Why do I have to turn this event on, while virtually all the other Profiler events are
turned on by default? Performance is the reason. The Blocked Process Report can be resource-intensive
to produce. Generally speaking, when you need this report, you turn the event on, create the Blocked
Process Report, and then turn the event off. Yes, this is a little extra work, but worth it.

Before we even begin using Profiler, the first step to creating a Blocked Process Report is to turn the
blocked process threshold on. This is generally done by running the following code from a query
window in SSMS:

--First, you must turn the Show Advanced Options on,

--assuming that it has not already been turned on for your server
SP_CONFIGURE 'show advanced options', 1 ;

GO

RECONFIGURE ;

GO

--Second, you set the blocked process threshold to a value in
seconds

--The example here is for 30 seconds

SP_CONFIGURE 'blocked process threshold', 30 ;

GO

RECONFIGURE ;

GO

--When you are done running the Blocked Process Report,
--run the following command to turn this feature off
SP_CONFIGURE 'blocked process threshold', 0 ;

GO

RECONFIGURE ;

GO

The blocked process threshold is a server-wide setting that is turned on and off using the
SP_CONFIGURE command. Turning it on requires several steps. First, if you have not previously done
so, you must turn on the Show Advanced Options feature of SQL Server, and then run
RECONFIGURE. Second, you run the SP_CONFIGURE 'blocked process threshold' command,

Profiler Events and Data Columns Explained 240

specifying the number of seconds you want to define as your threshold, and then run RECONFIGURE.
At this point, you can start Profiler and produce the Blocked Process Report. Once you are done
creating the report, you need to turn the blocked process threshold off, by resetting it to zero.

Having turned on the Blocked Process Reports event, your next step is to start Profiler and create a new
trace with a single event selected:

e Blocked Process Report

General Events Selection l

Review selected events and event columns to trace, To see a complete list, select the "Show all events" and "Show all columns" options,

Ewvents | [atab... | [hurati... | EndTi... | Ewvent... | |nidexID | |z5ust. . | Logit... | tode | Obiec... | Serve... | Sesal. |
Emors and Warnings
[# Blocked process report I~ Ird Ird Ird Ird Ird Ird Ird Ird Ird Ird

Figure 11-12: The Blocked Process Report is a very powerful tool for DBAs for identifying and
troubleshooting blocking issues.

When you run the Profiler, you will get a report like the one shown in Figure 11-13:

EX SQL Server Profiler - [Untitled - 1 (BRAD-LAPTOP)] !E
% File Edit View Replay Tools ‘Window Help =
ADgEFac|y v ZANR @B Q

| EventClazs | EventSequence | [atabaszelD | [ruration EndTime TextData

Trace Start

Elocked process report 204E5] 2171 200F-08%-07 12:21:5&.000 <blocked-process-report monitorLoop...
Elocked process report 30468] 5265 2007-05-07 12:2l:57.3397 <blocked-process-report monitorLoop...
Elocked process report 20465]

725 2Z0O0F-08%-07 12:22:00.000 <blocked-process-report monitorLoop...

S . . : C . —

<blocked-process-report monitorLoop="33&55">

<blocked-process= 1
<process id="process285T2E" taskpriority="0" logused="0" waitresource="OBIECT: 2:722101&£13:0 " waittime="1529&" owherId="147:315"

transactionname="user_transaction" lasttranstarted="z2007-05-07T12:21:52.733" XDES="0x559e2250" TockMode="Ix" schedulerid="2" kpid="337g"

status="suspended" spid="&57" shid="0" ecid="0" priority="0" transcount="2" lastbatchstarted="z007-08-07Tlz:21:52.733"

lastbatchcompleted="2007-05-07T12:21:52.733" clientapp="Microsoft SQL Serwver Management Studio - Query" hostname="BRAD-LAFPTOPR"

hostpid="&223" loginname="BRAD-LAPTOFYErad" isolationlewvel="read committed (2)" =actid="147&313" currentdb="3" lockTimeout="4234357235"

c]lientoptionl="&71090754" clientoptionz="330200">

“emecutionstack:

=Trame line="4" stmtstart="&4" sqlhandle="0x020000004Cce30516T2za54Cc35971dafeblrecs3efabsro040" /=

</ executionsStacks

=inputhufs

——Cause EBlocking
EEGIN TRAM
UPDATE sales.[SalesOrderHeader]
SET [DueDate] = GETOATE(]
< /inputbutfs:
< /process:
=/blocked-process:=
<blocking-process:=
<process status="suspended" waittime="12171" spid="5&" sbid="0" ecid="0" priority="0" transcount="1"
lastbatchstarted="2007-05-07T12:21:45.1223" Tlasthatchcompleted="2007-0%-07T12:21:45.122" clientapp="Microsoft SQL Server Management
Studio - Query' hostname="EBRAD-LAFPTOP" hostpid="&333" loginname="BRAD-LAFTORNErad" isolationlewvel="read committed (2)" xactid="147c5533"
currentdb="5" lTockTimeout="4z54367235" clientoptionl="&71l050754" clientoptionz="350z00"=
“emecutionstack:
=frame line="g" stmtstart="1%&" sglhandle="0x0200000041a4celshcdaesreder fdsz f52ea?7htlzbesebh" /=
< executionsStacks
=inputhufs

--Eegin Lock of Table
EEGIN TRAM
SELECT *
FR.OM Sales.SalesOrderHeader WITH ([HOLOLOCE)
) ITFOR DELAY '00:05:00'
=Sinputhufs
< /pProcCess:
=/blocking-process:= E
< /blocked-process -reports

Figure 11-13: The Blocked Process Report not only shows you excessive blocking, it shows you exactly what is
causing the blocking.

Profiler Events and Data Columns Explained 241

Every time there is a process that is blocked for longer than the time you specified in the blocked
process threshold, the block will be displayed as a row. As part of this row, you will see the code that is
being blocked, together with the code that is doing the blocking,.

This is a very powerful tool for troubleshooting blocking problems in your applications. With this
information, you are able to see exactly what the problem is. The hard part, of course, is figuring out
how to resolve the problem. I can't answer this here because each situation is different. However, by
knowing exactly what code is problematic, you will be on a direct route to resolving the problem.

ERRORLOG

All the ErrorLog event does is to record an event every time SQL Server writes a message to the SQL
Server error log. Generally, using Profiler to record that a message was written to the error log is not all
that helpful, especially when you can go directly to the SQL Setrver error log and see the errors.

On the other hand, there is one useful way to use this event, and that is to help you establish the context
of an error message. For example, often you will see messages in the SQL Server error log, but you
aren't able to see what code was running just before the message occurred.

By creating a trace that includes the ErrorlLog event, along with some additional context events, you can
see exactly what is happening just before the error event occurred, and so establish a context for the
problem. While you can add many different events to help you establish the context, I suggest the
following three as the minimum for a ErrorLog trace:

e RPC:Completed
e SP:StmtCompleted
e SQL:StmtCompleted

EVENTLOG

The EventlLog event is very similar to the ErrorLLog event. Every time SQL Server writes an event to the
Windows Event Log, the EventlLog event is fired. In virtually all cases, when SQL Server writes an event
to the Windows Event Log, it also writes it to the SQL Server error log, which means that an Errorlog
event is also fired. As such, this particular event is mostly redundant.

The one exception to this is when a developer creates a custom event log message and fires it
programmatically. The EventlLog event might help debug code that uses such custom event log
messages.

5H File Edit View Replay Tools Window Help N
By o g [=
HOE5E & n e | BEDNE | HE P
|E\rentClass | icationName |CliemF‘mcessID |I" baselD DatabaseN Duration EndTime Event Seque
User Error Message stress utility & Big_Database
{ErrorLog H
EventLog
Sort warnings stress utility & Big_Patabase
4| 1 |
2007-09-11 16:54:27.61 spid2s SQL Server has encountered 1 occurrence(s) of I/0 requests taking longer than 15 seconds to complete
on file [C:%\Program Files\Microsoft sSQL Server‘\MSSQL.I1\MSSQL\DATA\tempdb.mdf] in database [tempdb] (2). The 05 file handle is
0x0000075C. The offset of the latest long I/0 is: 0Ox00000003250000

Figure 11-14: EventlLog and Eventlog events generally occur together, as you can see above. The error
message is displayed at the bottom of the screen.

EXCEPTION

An exception event occurs when SQL Server identifies an exception error. When an exception occurs,
either the code is smart enough to handle the exception and it continues to run, or it is not and the code

Profiler Events and Data Columns Explained 242

fails. The exceptions captured by this event can be generated by the system (SQL Server code) or a user
connection (client code).

| EventClass | ApplicationMame | ClientProcess|D | DatabaselD | DatabaseMame

Exception SOLDMO_1 2236 1 master
Exception SOLDMO_1 2236 1 master
Exception SQLDMO_1 2236 1 master

Figure 11-15: An example of an exception error in Profiler.

In order for this event to be useful, you need to be sure to include the Error, State, and Severity data
columns. This event can be helpful when debugging code.

EXCHANGE SPILL

The name of this event is not really indicative of the data it captures. Before we can understand what
this event is all about, we first need some background on parallelism. When a query is submitted to the
query optimizer on a SQL Server instance that has two or more cores available to it, by default it is
considered for parallelism. In other words, the query optimizer checks to see if executing the query in
parallel (on two or more CPU cores) would be faster than executing it on a single CPU core. If the query
optimizer thinks using parallelism is advantageous, then the query is divided into two or more data sets,
and each data set is processed in parallel by multiple CPU cores. Once each data set has completed
processing, the results of each data set are merged back into a single data set for return to the client.

If a query plan has multiple range scans within it (for example, the query has multiple BETWEEN
operators that select from multiple ranges of rows), and the query optimizer decides to run this query in
parallel, a particular event can happen, namely the Exchange Spill event. For example, if the amount of
data being processed for each range is very large, it is possible for the communication buffers (in RAM),
used to store the data by SQL Server, to run out of room, meaning that the data has to be written to the
tempdb database. As you can imagine, this can greatly slow down a parallel query, since introducing disk
I/0 to the mix can greatly hurt performance. When this happens, an Exchange Spill occurs. Microsoft
only considers an Exchange Spill to be a problem when more than five Exchange Spills occur within the
same execution plan.

If you are still following this, I congratulate you, as this is quite obscure information and is rarely a
problem for most DBAs. On the other hand, if your system runs a lot of parallel queties and they aren't
performing as well as you expect, then you should consider creating a Profiler trace that includes both
the Exchange Spill and the ShowPlan XML events. You may also want to include additional events, but
these two are the most important. When an Exchange Spill event occurs, you want to be able to see the
graphical execution plan that created it. Again, generally speaking, if you don't have more than five
Exchange Spill events occurring for the same execution plan, you can ignore them.

But what if a particular query consistently creates more than five Exchange Spills every time it is run,
resulting in poor query performance? If this is the case, consider one or more of the following
suggestions:

e Try to avoid using ORDER BY clauses in the query.

e If you have to use ORDER BY, avoid ordering any column that is involved in the
multiple range scans.

e Use an index hint to force the query optimizer to access the affected table differently.
e Rewrite the query to force the use of a different, more efficient query plan.
e Use the MAXDORP hint to turn off parallelism for this specific query.

Hopefully, you will never run into an obscure problem like this one. But if you do, you are now better
prepared to handle it.

Profiler Events and Data Columns Explained 243

EXECUTION WARNINGS

Before a query can be executed, it must first be granted enough memory to execute. Most of the time,
there is enough memory available and the memory is granted immediately. However, if the server is
under intensive memory pressure, sometimes queries may have to wait their turn in order to get the
amount of memory they need to execute. The Execution Warnings event fires whenever a query has to
wait one second or more before it is allocated the memory it needs.

If you think your SQL Server is experiencing memory bottlenecks that are affecting performance, you
may want to trace the Execution Warnings event to see if any queries have to wait for memory (which
would confirm the memory pressure you suspect).

When an Execution Warning event occurs, the EventSubClass data column specifies whether the query
timed out, or if it only had to wait but ran eventually. If the query only had to wait, the Duration data
column would show, in milliseconds, how long the query had to wait.

If you run this trace and notice a lot of Execution Warnings, especially ones with long durations, then
you will need to take a serious look at how to add more memory to your SQL Server (or find a way to
reduce the load on the current servet):

| EventClass | Application Mame | ClientProcessID | Databasze|D | DatabazeMame | Duration |
gExecut'icun warnings §5tr'ess utility & Big_patabase 12000

Figure 11-16: This particular Execution Warning tells us that a query waited 12 seconds before it was able to get
enough RAM in order to run.

HASH WARNING

Before we get to Hash Warning, we must first recap what a hash join is. Many kinds of JOIN
statements, such as inner joins, left joins, right joins, full outer joins, and others, can cause the query
optimizer to choose a hash join to join the data in two tables, especially if the tables lack adequate
indexes, or the joins includes large numbers of rows. In addition, hash joins can occur as a part of an
execution plan, irrespective of whether the query has a JOIN clause in it.

There are three different types of hash joins: in-memory, grace hash join and recursive hash join. An in-
memory hash join is performed if there is enough memory for the hash join to occur fully in memory.
This is the fastest type of join.

If there is not enough memory for the hash join to occur entirely in memory, then either a grace hash or
recursive hash join is performed. In these latter two cases, since not enough memory is available, SQL
Server has to go through extra steps — such as data partitioning or writing to tempdb — using additional
SQL Server resources to perform the hash join. This is not an ideal situation from a performance
standpoint.

A Hash Warning event occurs when a hash join is performed as a grace hash join or a recursive hash
join. In other words, when an in-memory hash join is not possible, the Hash Warning event is fired. The
idea behind this event is that grace hash joins and recursive hash joins are less efficient, and that the
DBA should be aware of this potentially performance-harming behavior.

Profiler Events and Data Columns Explained 244

A SQL Server Profiler - [Untitled - 2 (PELE)] SHRCE X
EX) File Edit View Replay Tools Window Help NEE
HUOSEFaa|r BEDG =P
| EventCiass | ApplicationName | CiientProcessiD | DatabzselD | D Duration | EndTime EvertSequence | HostName | lsSystem | Logint »
i Showplan XML stress utility & Big_Database 1568 PELE pele
Hash warning stress utility 6 Big _Database 1565 PELE pele—
Hash warning stress utility & Big_Database 1570 PELE pele _
O il | 3
m 24 23 [
Sort Hash Match Hash Match Clustered Index Scan
Costo T x CInner Join) (nner Join) L61g Database). Labol, Lam_prpmst_tb 1), Lim_pr..
costr 13 % Costi 1 x Cost: 0 %
= 5]
Hash Match Index Scan
(mner 3Join) [sig_patabase]. [dbo]. [im_localins _rb1]. [im_
Costrz % Costr 5%
s 5]

Merge Join Clustered mdex Scan
CImner Join) [Bigpatabase]. [dbol. [im_localgrp_rb1]. [in_
Costr 1k Cats 3k

5

mdax sesk
[Big_patabase]. [dbol. [im_localsF b 11, [in1
cost: 0 %

5
Clustarad mdex scan
LB1g Patabase]. o). Lim_loca Istr_toi). [am_
cost: 1w

I Trace is stopped. Ln 574, Coll Rows: 586

Connections: 1

Figure 11-17: The above query (see the Graphical Execution Plan) created two Hash Warnings.

As with many other Profiler events, it is often useful to capture additional events as well as the Hash
Warning event. In figure 11-17, I am capturing both Showplan XML and Hash Warning events. By
capturing both types of events, not only can I see when a Hash Warning occurs, I can also see the
execution plan of the query that generated the Hash Warning. In the above example, two Hash
Warnings were generated from a single execution plan. If you look closely at the execution plan, you
scan see that two hash matches (hash joins) were performed, and that both of them were less than
optimal, causing the Hash Warning event to fire.

So how do you apply this information to your work as a DBA? Generally speaking, as a routine practice
1 would not run Profiler specifically looking for Hash Warnings. Instead, I would often be looking at
execution plans. If I noticed that a lot of the execution plans used hash joins, and that some of these
queries did not seem to be running optimally, then I would consider specifically conducting a trace
looking for Hash Warnings, and follow up from there.

If your queries do suffer from many Hash Warnings, what can you do? Here are some suggestions to get
you started:

e Reduce the number of rows being returned by the query.

e If ahash join has to be used, ensure that the current statistics exist on the columns being
joined. Performing hash joins on table columns with no or outdated column statistics is
one of the biggest causes of Hash Warnings.

e Hash Warnings are sometimes a result of not having enough memory, so consider adding
more memory to your server.

e Try to use a different type of join. Both a merge and loop join are generally more
efficient than a hash join. In some cases, the reason the query optimizer uses a hash join
instead of a generally more efficient merge or loop join is because the tables being joined
lack appropriate indexes. By adding the right indexes, you can speed up many join
operations. In addition, a query hint can be used to tell SQL Server what kind of join
operation to perform, although you should be wary of trying this, as you might cause
more harm than good. Be sure to experiment to see what happens.

Hash Warnings aren't generally a huge problem, so don't spend a lot of time tracking them until you
have resolved the more obvious performance issues your server may be suffering from.

Profiler Events and Data Columns Explained 245

MisSSING COLUMN STATISTICS

By default, SQL Server has the auto create and auto update statistics database option turned on for every
user database. Assuming you maintain these settings, the query optimizer can identify when columns are
missing any useful column statistics, or if the statistics need to be updated, and automatically add or
update them as needed.

On occasion though, a DBA might determine that having auto create and auto update statistics turned
on for a particular database is not a good choice. For example, automatic auto create or auto update
operations may occutr at inopportune times, disrupting performance on a temporary basis, causing
random performance issues for users.

Now what does this have to do with the Missing Column Statistic event? If you have auto create
statistics turned on for a database, you will never see a Missing Column Statistics event occur, as this
event is automatically turned off when auto create statistics is on. So this event is not of use to most
DBAs in most cases.

On the other hand, if you have turned off auto create statistics for a database, then the Missing Column
Statistics event is turned on and you should monitor it, as it is one of the best ways to identify table
columns that are missing potentially valuable column statistics that can help boost the performance of
your SQL Server. Once missing column statistics have been identified, you can manually add them. Or,
if you prefer, you can have the Database Engine Tuning Advisor do it for you. When you run a Profiler
Trace and feed it to the Database Engine Tuning Advisor, it also looks for missing column statistics, and
it can automatically create them for you.

MisSING JOIN PREDICATE EVENT

Sometimes, when a person writes a query, especially a long one with lots of joins, they forget to add
appropriate join predicates within the query. This can result in an unplanned cross-join (also known as a
Cartesian product). A cross-join joins every row in both of the tables, potentially creating a large result
set, which is normally not what the query writer intended. When cross-joins are performed on large
tables, huge amounts of server resources can be wasted.

To help identify this kind of mistake, you can use the Missing Join Predicate event. This event fires
whenever the query optimizer identifies a query with a cross-join, planned or unplanned.

In my example below, I have intentionally created a cross-join query, which in turn created a Missing
Join Predicate event in my Profiler trace, shown in Figure 11-18:

7 .
A SQL Server Profiler - [Untitled - 1 (PELE)] SRR X
ﬂg File Edit View Replay Tools Window Help - ||&| %
RO EFaa wom 5 EHE|
| EvertClass | ApplicationName | Cliert ProcessID | DatabaselD | DatabaseMame EventSequence | HostName | »
Missing Join Predicate Microsoft 5Q... 1488 5 Adventure... 2084 PELE il
50L:Batchstarting Microsoft 5Q... 1488 5 Adventure... 2083 PELE |_|
Showplan XML Microsoft s5Q... 1488 5 Adventure... 2085 PELE =

< | 1 | +

SELECT p.SalesPersonID, t.Name AS Territory
FROM Sales.SalesPerson p .
ICROSS JOIN Sales.SalesTerritory t

[ORDER BY p.SalesPersonID;

»

Figure 11-18: Identifying poorly performing queries due to missing join predicates is easy when using the
Missing Join Predicate event.

When using Profiler to identify Missing Join Predicate events, you may also want to capture the
following additional events:

Profiler Events and Data Columns Explained 246

e Showplan XML

e RPC:Completed

e SP:StmtCompleted

e SQL:StmtCompleted

By tracing all these events, you not only establish the context for the event firing (i.e. see the code that is
causing the problem), you also can see a graphical execution plan of the code, providing additional
useful information to help you identify the poorly written code so that it can be corrected.

As a DBA, if you are familiar with the queries you run, you may already know that your join code is
written well, and you need not bother tracing this particular event. On the other hand, if you are new to
your DBA job, or a DBA consultant, and are not familiar with the code that is running, tracing this
event can go a long way to identifying poorly performing queries very quickly.

SORT WARNINGS

When SQL Server is asked to perform an ORDER BY operation, it tries to perform the sort in memory,
in order to provide the best performance. But if the amount of data to be ordered is large, it might not
be able to be sorted in memory, having instead to be written to the tempdb database as part of the
sorting process. Because disk 1/O is now involved, sort performance can suffer.

The Sort Warnings event fires whenever SQL Server is unable to complete a sort entirely in memory and
has to resort to writing to the tempdb. While it is inevitable that some sorting occurs in the tempdb, it is
not desirable and should be avoided if possible.

When you create a trace to identify Sort Warnings, it is a good idea to also include these additional
events:

e Showplan XML

e RPC:Completed

e SP:StmtCompleted

e SQL:StmtCompleted

By collecting all these events, you will be in a better position to identify the exact code that is causing the
Sort Warnings.

Profiler Events and Data Columns Explained 247

Trace Properties ﬁ
General Events Selection | Everts Extraction Settings
Review selected events and event columns to trace. To see a complete list, select the "Show all everts” and "Show all columns” options.
Everts | Event.. | 1sSyst... | Login... | Logn.. [SPID | Serve . | Sessi. | StanT.. | TextD. | Trans... | Applic... |
v Sort Wamings v v v v I v v v v v
= Performance
[Showplan XML I 4 4 I3 3 I Ird 2 I3 Ird 2
= Stored Procedures
¥ RPCCompleted v v I v v v v v I I3 v
v SP:StmtCompleted v v I3 v I3 v v I3 I I3 v
= TSQL
¥ SQL:StmtCompleted I 4 4 I3 I3 I 4 2 I3 I3 I
4 T | 3
— Emors and Wamings
Includes event classes that are produced when a SGQL Server emor or waming is retumed:; for example, an emor during the [Show all events

compilation of a stored procedure or an exception in SOL Server.
[~ Show all columns

— ServerName
Name of the SGL Server traced. Column Fitters.... |

Organize Columns... |

Rn | Cancel | Hep |

Figure 11-19: Above are the recommended events you capture to troubleshoot Sort Warning events.

Sort Warnings occur in the Profiler trace after the code that caused the problem has been executed. In
the example shown in Figure 11-20, we can see that there are several Sort Warnings. If you select the
Showplan XML event that occurred just before the Sort Warning, you can see the execution plan of the
query that generated the Sort Warning. By evaluating the execution plan, you may be able to determine
what, if anything, you can do to prevent future Sort Warnings for this particular query.

Profiler Events and Data Columns Explained 248

'

A SQL Server Profiler - [Untitled - 1 (PELE)] = | 5

&4 File Edit View Replay Tools Window Help [-[=]]
B G s B 7,
BFOgEFac/» v 3HNR HE| P
J EventClass | ApplicationMame | ClientProcess|D | Database!D | DatabaseName | Everr
Trace Start
showplan XML SQL server P... 3412 32767 mssgq1syst...
SfL:BatchsStarting stress utility & Big_patabase
Showplan XML stress wutility & Big_patabase
SgL:Batchstarting stress utility & Big_Database
§Shu:mp'lan XML stress utility & Big_Ppatabase
Sort warnings stress utility & Big_patabase
SOL:Batchstarting stress wutility & Big_Patabase
showplan XML stress utility & Big_Database
Sort warnings stress utility & Big_patabase
SOL:Batchstarting stress wutility & Big_Ppatabase
Showplan XML stress utility & Big_Database
sort warnings stress utility & Big_Database
Trace Stop
dq 1 3
ic] 1 =3 k%
]
Nested Loops ,————— 1 cort S Hash Match R — Clustered Index Scan
{Inner Join) Cost: 28 % {Inner Join) LE1g Databasel. Ldool. LIm_prpmst_tb
Cost: 1 % : Cost: 2 % Cost: 0 %
L Bash Match
{Inner Jain)
Cost: § ®
Trace is stopped. | Ln6, Coll | Rows: 14
| Connections: 0 A

The Sort Warnings event is a very easy way to identify slowly performing sorts, allowing you to evaluate
if there is anything you can do avoid them. Sometimes you can, sometimes you can't. So, what can you

do

Figure 11-20: Sort Warnings occur when sorting operations are unable to be completed entirely in memory.

to help avoid Sort Warnings? Some suggestions include:

Reduce the amount of data returned, so less data needs to be sorted.

Use data pages more efficiently. In other words, fit as many rows per data page as
possible to maximize how efficiently memory is used to store rows. Be sure you run
regular jobs to keep your indexes defragmented.

Change the current fill factor to one that allows more rows to be stored per data page.
Consider using a clustered index on the column to be sorted, in order to presort the data.
Add more RAM to your SQL Server.
If all else fails and you still need to sort to tempdb, locate tempdb on a faster drive all by
itself, so it doesn't have to compete with other disk I/O. Also consider dividing up the
tempdb physical file into multiple files. As a rule of thumb, many DBAs create one
physical file per CPU core that is available to their SQL Server instance.

Profiler Events and Data Columns Explained 249

UseER ERROR MESSAGE

SQL Server often sends messages to the client application that is requesting data from it. These may be
generic messages or specific error messages. How these messages are handled depends on how the client
handles them. Some may be ignored, while others are captured and acted upon by the client application.

The User Error Message event captures all the messages that SQL Server sends to the client. Generally
speaking, you will want to capture these additional events, as well as the User Error Message event, so
you can see exactly what code is causing the error message to be returned.

e Showplan XML
e RPC:Completed

e SP:StmtCompleted
e SQL:StmtCompleted

Trace Properties ﬁ

General Events Selection | Everts Extraction Settings

Review selected events and event columns to trace. To see @ complete list, select the "Show all events" and "Show all columns" options.

Events I Event Sequence I Is System I LoginMName I LoginSid I SPID I ServerMame I SessionLoginName I Start Time I Tex
- Emors and Wamings
...... V¥ User Emor Message v I3 ™2 Ird I I3 I~ " i
= Performance

¥ Showplan XML ~ [~ v I v [w " i
] Stored Procedures

v RPC:.Completed Ird 2 Ird ~ = 7 = v P

¥ SP:StmtCompleted ™2 ~ I I~ ~ = [[P
= TsaL

¥ SQL:StmtCompleted Ird 2 I I3 I~ w I~ v P

4 T | 3

— Emors and Wamings
Includes event classes that are produced when a SGL Server emor or waming is retumed; for example, an emor during the I~ Show all events
compilation of a stored procedure or an exception in SCGL Server.

[Show all columns

— ServerName
Name of the SQL Server traced. Column Filters... |

Organize Columns... |

Fn | Cancel Hep |

Figure 11-21: The above events are recommended for tracing User Error Messages.

This way, when you do run a trace, you can see exactly what code caused which error message to be
generated, as you can see in Figure 11-22:

Profiler Events and Data Columns Explained 250

A 5QL Server Profiler - [Untitled - 1 (PELE)] (=] B]
&2 File Edit View Replay Toels Window Help HEE
-3 b S |
BOFEFae |y | ZEAAS HE P
J EvertClass I ApplicationMame I ClientProcess|D I Database|D DatabaseName I Evert, »
SOL:Batchstarting stress utility & Big_Database al
Showplan XML stress utility & Big_Database |—|
guser Error Message gstress utility & Big_patabase
User Error Message stress utility & Big_Database =
dq m | 3
hanged database context to 'Big_Database’. ~
< | 1 | »
Trace is stopped. |Lr1 7, Coll |Rows: 17
| Connections: 0 y

Figure 11-22: Some SQL Server activity can generate multiple User Error Messages.

We see that two User Error Messages were generated, one of which was "Changed database context to
‘Big_Database™. This is an example of a user message that is normally ignored by a client application. If
you look at the SQL:BatchStarting event, you can see the code that generated the event, and if you look
at the Showplan XML event, you can see the execution plan for the code that generated the event.

In most cases, as an administrative DBA, you won't have a lot of need to use this particular event. On
the other hand, this event can be used by developers who want a better understanding of what kind of
messages that SQL Server is sending to their software, so they know how to deal with them properly.

FuLL TEXT

If you don't use SQL Server 2005's Full Text service, then you can skip these three Full Text events:

e Crawl Aborted — indicates when a crawl has failed due to an exception error.
e Crawl Started — indicates that a crawl has started.
e Crawl Stopped — indicates that a crawl has ended because it has finished or failed.

If you do use the Full Text service, and you are troubleshooting crawling problems, then these events
may be of use.

Locks

Locking is an integral part of preserving a database's data integrity. Most of the time, SQL Server does a
great job of self-managing locks. All the work goes on in a black box that DBAs rarely have to peek into.
But when locking problems arise, identifying and troubleshooting the problem can be difficult.
Fortunately, SQL Server Profiler includes nine events we can use to help us out in this oftentimes
difficult task:

e Acquired
e Released

e Escalation
e Cancel

e Deadlock

Profiler Events and Data Columns Explained

e Deadlock Chain

e Deadlock Graph

e Timeout (timeout > 0)
e Timeout

251

To keep our discussion focused, I am going to group the above nine events into these three categories,

which were created for discussion purposes only:

e General Lock Events

o Acquired
o Released
o Escalation
o Cancel
e Deadlock Lock Events
o Deadlock

o Deadlock Chain
o Deadlock Graph

e Timeout Lock Events

o Timeout (timeout > 0)
o Timeout

Before we go any further, I want to point out that a busy production SQL Server can experience
thousands of locks per second. You must be very careful about how much data you collect. In other
wortds, be sure to select only those events that are of direct interest to you, and use filters to minimize
the amount of data returned. In addition, restrict your monitoring to short time periods. The worst two
offenders are the Acquired and Released events. If you can avoid collecting them, you will be much

better off. The other events do not present such a performance problem.

GENERAL LocK EVENTS

The first two lock events we want to explore are Acquired and Released. Every time any sort of lock is
used, an Acquired event is fired. And every time a lock is removed, a Released event is fired. In most
cases, capturing this raw data is not very interesting. Figure 11-23 shows one example of each type of

event:

o
7 SQL Server Profiler - [Untitled - 2 (PELE]] | .
E File Edit View Replay Tools Window Help = [*

HOSaF aao|b 2EHIG @@
| EventClass ‘ ApplicationMame ‘ BinaryData | DatabaselD | Duration ‘ EndTime | EventSequence | HostMa... | Mode IntegerData2 ObjectID2 | -
Lock: Acquired { 0X1C000 1 0 200... 72294 3 -3 0 - LOCK 281474978545664 | |
Lock:Released “ox1co0o. 1 72295 3-s 0 - LOCK 281474978545664 «
4| m *
(D400b4b7d551) -
4 11 | *
Trace is stopped. Ln5, Col3 | Rows: 20239
Connections: 0

Figure 11-23: In most cases, the Acquired and Released lock events aren't that useful.

When either event is fired, you can identify the object the lock was taken on (see the ObjectID2 data
column) and the type of lock acquired (see the Mode data column). This is a normal type of locking

activity and there is generally no point in monitoring it.

Profiler Events and Data Columns Explained 252

The Cancel event occurs when a lock on a resource has been cancelled, perhaps due to a cancelled
query or a lock being killed due to a deadlock conflict. This is also not generally a very exciting event to
track, unless you are experiencing a high volume of cancelled locks and need to investigate.

The Escalation event is probably the most interesting of the general lock events. It occurs when a fine-
grained lock has been converted to a coarser-grained lock, such as when a record lock or a page lock is
escalated. Lock escalation is SQL Server's way of minimizing the amount of resources it takes to manage
the many thousands of locks at any one time, and it is a normal process. But in some cases, lock
escalation, especially from page to table locks, can cause resource contention issues that sometimes have
to be identified and resolved. For example, a query on a table might end up locking an entire table,
preventing other users from accessing it until the lock is released.

If your server is experiencing a lot of concurrency problems, you might want to trace the escalation
event to see if lock escalation is contributing to the problem. If it is, you may need to rewrite your
queries to make them more efficient, or you may need to add more effective indexes. As a last resort you
may need to use query hints to control locking behavior.

DEADLOCK LocK EVENTS

A deadlock occurs when two or more spids try to lock on the same resource and therefore block each
other. Neither spid can complete its task, but nor can the resource be released until each spid completes
its task, so a deadlock occurs. In most cases, the spid that has used the fewest resources up to the point
of the deadlock will be automatically killed by a SQL Server lock monitor thread, allowing the other spid
to complete.

Profiler includes three events related to deadlocking:

e Deadlock Graph
e Deadlock
e Deadlock Chain

You can find out more about these events, in great depth, in Chapter 5 of this book.
TIMEOUT LocK EVENTS

By default, connections from a client to SQL Server do not timeout due to blocking locks. A connection
will wait for as long as it needs to wait for a blocking lock to be cleared.

NOTE:

While SQL Server will not, by default, timeout a connection between a client and SQL Server, it
is possible that the client will timeout the connection, depending on how the client connection
was configured by the developer.

As an option, when a connection is made, the SET LOCK_TIMEOUT command can be used to
establish a specific timeout value, overriding the default behavior. If this option has been turned on for a
connection, then either of the two Timeout Lock events — Timeout or Timeout (timeout >0) — can
be captured to indicate when a lock times out due to this setting. If the SET LOCK_TIMEOUT
command is not being used, then the Timeout Lock events won't fire.

Timeout and Timeout (timeout >0) provide almost identical functionality. The difference is that the
Timeout event can fire if a Timeout event of zero occurs. A Timeout of zero can occur due to internal
SQL Server activity and is not very useful. If you do use the SET LOCK_TIMEOUT command to
control how long blocking locks exists before they timeout, you will want to capture the Timeout

Profiler Events and Data Columns Explained 253

(timeout >0) Profiler event. Each time a timeout occurs due to a blocking lock, the Timeout
(timeout>0) event will be fired so the Profiler can trace the event.

OBIJECTS

The three events in the Objects event category are all DDL-related audit events. In other words, these
events are fired when any object is created, altered, or deleted. The events include:

e Altered
e Created
e Deleted
f Trace Properties ﬁ

General Events Selection |

Review selected events and event columns to trace. To see a complete list, select the "Show all events” and “Show all columns” options.

Events | Applic... | Bigint... | Bigint... | Binary.. [CPU | Client... | Colum... | DEUs... | Datab... | Datab... | Dursti... | EndTi... | Em =
+ Emors and Wamings
+ Full et
+ Locks B
+ OLEDB
[¥ Cbject: 2 2 I3 I3
|V Cbject-Created v v v v
v Object:Deleted v v v v
+ Peformance
+ Progress Report
+ Query Notfications il
0 i
F] 1 b
—Objects
Includes event classes that are produced when database objects are created. dropped. or altered. W Show all events
v Show all columns
— No data column selected.

Column Filters.. |

Organize Columns... |

Fun | Cancel Heb |

Figure 11-27: You can audit object creation, alteration and deletion activity using these events.

To see how these events track object Created, Altered, and Deleted activity, I ran the following test
script. It instigates all three types of event in the AdventureWorks database:

CREATE TABLE MyTest
(

CustID INT IDENTITY(1000, 1)
PRIMARY KEY,
CompanyName NVARCHAR(50)

go

ALTER TABLE MyTest ALTER COLUMN CompanyName NVARCHAR(100)
go

DROP TABLE MyTest

Profiler Events and Data Columns Explained 254

go

The Profiler results are as shown in Figure 11-28:

EventClass | ApplicationName ClientProcess|D | DatabaselD ‘ DatabaseMName EventSequence EventSubClass HostName IndexID IrtegerData | |sSystem | LoginMName
Trace start

object:Created Mmicrosoft ... 1684 5 adventureworks | 0 - Begin PELE 1 pele'\Brad
object:Created Microsoft ... 1684 5 Adventureworks 0 - Begin PELE pele\Brad
Object:Created Microsoft ... 1684 5 Adventureworks 413 1 - Commit PELE peleiBrad
Object:Created Microsoft ... 1684 5 Adventureworks 412 1 - Commit PELE pele‘\Erad
Object:Altered Microsoft ... 1684 5 Adventureworks 415 0 - Begin PELE peleyBrad
Object:Altered Microsoft ... 1684 5 Adventureworks 415 1 - Commit PELE peleyBrad
object:peleted Mmicrosoft ... 1684 5 Adventureworks 417 0 - Begin PELE peleyBrad
object:peleted Mmicrosoft ... 1684 5 Adventureworks 417 1 - Commit PELE peleyBrad

Trace Stop
Figure 11-28: While Object events can be useful for auditing DDL-type activity, they can be a little hard to
read.

The first thing you will notice, from the EventSubClass column, is that every event is wrapped in a
transaction. So, for every object Created, Altered or Deleted action, you will always see two events; one
representing the Begin Transaction and one representing the Commit Transaction.

However, you still might be wondering why we see four Object:Created events instead of two. The
reason for this is that implied in the table creation command is the creation of a primary key. The first
Created event refers to the table and the second to the primary key.

So, how is this information useful to the DBA? Essentially, you can use these events to find out who is
creating, altering or deleting objects in your SQL Server, together with when they did it. This is probably
not something that you will do often, but if you have a problem with the mysterious appearance and
disappearance of database objects, and nobody admits to making any changes, using this Profiler option
will make it very easy to identify the guilty party.

OLEDB

The OLEDB event category includes five events specifically related to when SQL Server uses an OLE
DB provider when making distributed queries and remote procedure calls. It is mostly of use to
developers, not production DBAs.

If your SQL Server environment doesn't use distributed queries or remote procedure calls, then you will
not find any use for these particular Profiler events. If it does, then these events may "help" developers
troubleshoot problems that can't be easily diagnosed by other tools. I emphasize the word "help" in the
last sentence because the events provided are better than nothing, but they don't provide as much
information as you might like when troubleshooting. The five events are:

e OLEDB Call: This event is fired when SQL Server calls an OLE DB provider for a
distributed query or remote stored procedure, but for only those calls that do not return
data or do not use the Querylnterface method

e OLEDB DataRead: This event is fired when SQL Server calls an OLE DB provider for
a distributed query or remote procedure call, but only for those calls that return data.

e OLEDB Errors: This is probably the most useful event to collect; it notifies you of
specific OLE DB-related errors, should they occur. It identifies the name of the instance
making the call, the name of the linked server, and the specific error message, along with
additional information that is useful in identifying where and when the error occurred.

e OLEDB Provider Information: Performance tuning distributed queries or remote
stored procedure calls can sometimes be difficult. The data columns collected by this
event can be used to help optimize query performance. However, this is a complex
process requiring considerable experience.

Profiler Events and Data Columns Explained 255

e OLEDB Querylnterface: This event is used to capture those OLE DB events related to
a Querylnterface call. It is designed to fire when an OLE DB provider returns an OLE
DB error object, and is used for troubleshooting problems with OLE DB providers.

Trace Properties lﬂ
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events" and "Show all columns™ options.
Everts | ApplicationName | ClientProcess|D | DatabaselD | DatabaseName | Duration | EndTime | Emor | EventSeq...
" oueos
[v¥ OLEDB Call Evert v I~ v v v I~ v v
[+ OLEDEB DataRead Event v i~ v v v v v v
[v OLEDE Emors v v v v v v
W OLEDB Provider Information W i~ i~ rd v
[OLEDB Querylnterface Event v v v v v ™ i~ i~
4 | (11 | [3
OLEDB
Includes event classes that are produced by OLE DE calls. I~ Show all events
[Show all columns
ApplicationName no filters applied)
Name of the client application that created the connection to SQL Server. This column is populated with the values passed Column Filters... |
by the application rather than the displayed name of the program.
Organize Columns... |

Run | Cancel | Help |

Figure 11-29: OLEDB events are used to identify problems with distributed queries or remote stored
procedures.

When using any of these events to collect Profiler data, keep in mind that the overhead of collecting
OLE DB data can be great, especially if your instance is performing a lot of distributed queries or
remote procedure calls. Be sure to limit the time period for which you collect data, ideally only starting a
trace when you think a problem will occur, or is already occurring, and turning the trace off after you
have captured your data.

From a production DBA's perspective, these events would only be collected if you are having problems
with distributed queries or remote procedure calls and you have run out of ideas where to look next to
tind out the root cause.

PERFORMANCE

The Performance events category includes twelve events; a lot to consider. Fortunately, only a handful
of these events are useful on a regular basis. The 12 Performance events are:

e Auto Stats

e Degree of Parallelism (7.0 Insert)

e Performance Statistics

e SQL:FullTextQuery

e Showplan All (deprecated, replace with Showplan XML)

e Showplan All For Query Compile (deprecated, replace with Showplan XML for Query
Compile)

Profiler Events and Data Columns Explained 256

Showplan Statistics Profile (deprecated, replace with Showplan XML Statistics Profile)
Showplan Text (deprecated, replace with Showplan XML)

Showplan Text (Unencoded) (deprecated, replace with Showplan XML)

Showplan XML

Showplan XML for Query Compile

Showplan XML Statistics Profile

To save time, I won't be discussing the deprecated events listed above. I'll cover all of the remaining
seven Performance events, but will focus on those events that are of the most benefit to DBAs.

Trace Properties ﬁ
General Events Selection | Everts Exraction Settings I
Review selected events and event columns to trace. To see a complete list. select the "Show all events™ and "Show all columns” options.
Events | ApplicationName | ClientProcess|D | DatabaselD | DatabaseName | Duration | EndTime | Ermor | Everr ~
- Performance
v Auto Stats I3 I3 I3 v v v I3 I3
¥ Deagree of Parallelism (7.0 Insert) I3 I3 I~ i~ v
|+ Performance statistics I~ I3 I
v SGQL:Ful TextQuery I’d I’d I I I3 I~ I~ IrE
v Showplan Al I I I I~ I
¥ Showplan All For Query Compile I~ I~ I~ I Ird
¥ Showplan Statistics Profile I3 I3 I~ I~ ~
¥ Showplan Text I3 I3 I~ i~ |
¥ Showplan Text (Unencoded) I3 I3 I~ i~ I
¥ Showplan XML I I I3 I~ I3
[I VRAL Cve (o imne Pl = = = = =T
< I | ¢
— Perfformance
Includes event classes that are produced when SQL data manipulation (DML) operators execute. [Show all events
v Show all columns
—No data column selected.
Column Fitters... |
Organize Columns... |

Rn | Cancd | Hep |

Figure 11-30: Performance events include a vatiety of different ways to identify performance-related issues.

AuUTO STATS

The purpose of the Auto Stats event is to determine how often statistics updates occur. If you are using
asynchronous auto stats, instead of synchronous stats, you can also find out about the status of the
asynchronous update. This information can be used to help the DBA determine if auto stats is running
more often than it needs to, if it is running at inappropriate times, or to find out how well asynchronous
auto stats is performing.

Profiler Events and Data Columns Explained 257

Trace Properties

General Events Selection |

Review selected events and event columns to trace, To see a complete list, select the "Show all events" and "Show all columns” options,

Figure 11-31: Auto Stats events are easy to capture with Profiler.

To find out how auto stats is behaving in your server, you only need to capture the Auto Stats events.
Other events are not required, but might be useful in some cases.

In Figure 11-32, you can see a Profiler trace of Auto Stats events.

| SQL Server Profiler - [C:\..\How to identify excessive update stats -- demo6.trc] LEIEIQ
File Edit View Replay Tools Window Help [= [&][=]
BF e s =[=
HOSERa@|»nn|2CG0TE0R S|P
| EvertClass | Duration | EventSubClass | ClientProcessID | DatabaseMName | EndTime Object!D | ApplicationName
Trace start
101 1 6988 tempdb 2007-08-07 12:53:16.560 988855631 Microsoft 50
65 1 6988 tempdb 2007-08-07 12:53:16.810 988855631 Microsoft sqQ
71 6388 tempdb 2007-08-07 12:53:17.233 356855517 Microsoft 50
T 1 63988 tempdb 2007-08-07 12:53:17.840 1292856714 Microsoft s5Q
8 1 6988 tempdb 2007-08-07 12:53:17.857 1292856714 Microsoft 5Q
70 1 6988 tempdb 2007-08-07 12:53:18.013 1260856600 Microsoft sqQ
71 6388 tempdb 2007-08-07 12:53:18.107 1536857797 Microsoft 50
3 1 63988 tempdb 2007-08-07 12:53:18.107 1548857626 Microsoft 50
Trace Stop
< m | 2
iCreated: Database, resource_database_id -~
4| [T |
Done. | Ln2, Coll | Rows: 10
| Connections: 0 v
O ——

Figure 11-32: The Auto Stats event can tell you when and where auto stats are occurring in your server.

When analyzing a trace of Auto Stats, what you are looking for includes:

e How often are auto stats being run

e How long it is taking to run auto stats

e Which databases and objects are incurring the most auto stats events
e What kind of auto stats event it is — synchronous or asynchronous

Based on this information, you can troubleshoot a variety of auto stats problems.

As a general rule of thumb, the Auto Stats event is not one you will commonly use, unless you suspect
an auto stats-related problem, and are specifically troubleshooting it. For example, you notice that a
query normally has a fairly consistent duration, but occasionally takes much longer to run. Another
example would be if you have identified a problem with excessive recompilations due to auto stats
activity. Every time auto stats is run, any queries that touch the auto stats indexes or columns have to be
recompiled, which can lead to excessive recompilations, hurting server performance.

Events | Application... | Clignt... | Catab... | Dratab... | Drurati... | EndTi... | Erraor | Ewvent... | Ewent... | HostN...l IndexD | Intege...l Intege
- Performance
V¥ Auta Stats I i 3 i i I I i i I i i i

Profiler Events and Data Columns Explained 258

What can you do if you identify auto stat-related problems? This depends on your particular problems.
If you have a problem with inconsistent run times for a query, then turning asynchronous auto stats on
might help. If you identify that auto stats occurs too often, or at bad times of the day, you can turn off
Auto Stats and manually update index and column statistics at a time when your server is not as busy.
But before you do anything, you need to determine you have a problem, and using the Auto Stats event
can help you identify and troubleshoot it.

DEGREE OF PARALLELISM (7.0 INSERT)

This oddly named Profiler event is also deceivingly named. It is fired every time a SELECT, INSERT,
UPDATE or DELETE statement is executed and tells you, among other things, whether or not the
execution plan for the query is parallel.

The Degree of Parallelism (7.0 Insert) event is not too useful by itself and should be combined with
other events to help put the event itself into context. You might want to consider collecting all the
following events to make better sense of what the Degree of Parallelism (7.0 Insert) event is telling you:

e Degree of Parallelism (7.0 Insert)
e Showplan XML

e RPC:Completed

e SP:StmtCompleted

e SQL:StmtCompleted

' R
Trace Properties [&J
General Events Selection | Events Extraction Settings]
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.

Events | Event... | IsSyst.. | Login... | Login.. | SPID | Serve... | Sessi.. | StanT.. | TextD.. | Trans... | Appiic... |
v Degree of Parallelism (7.0 Insert) v v v v 2 v v v rd v
[v Showplan XML v v v v v v v i~ ™ i~ ~

= Stored Procedures
[v RPC:Completed v v Iv v v v v v v v v
[v¥ SP.StmiCompleted v v Iv v v v v v v v v

B TSQL
v SQL:StmtCompleted v v v v v v v i~ ™ [+ ~

4| 1 | +

Performance
Includes event classes that are produced when SQL data manipulation {DML) operators execute. I~ Show all events

[~ Show all columns
LoginSid (o fitters applied)
Security identification number (SID) of the logged-in user. You can find this information in the syslogins table of the master Column Filters... |
database. Each 51D is unique for each login in the server.
Organize Columns... |
Rn | cancel | Hep |
.

Figure 11-33: Capturing multiple events help to make sense of the Degree of Parallelism (7.0 Insert) event.

When you run the above trace, the captured events look as shown in Figure 11-34:

Profiler Events and Data Columns Explained 259

'8 5
2 SQL Server Profiler - [Untitled - 2 (PELE]] = | 5
% File Edit View Replay Tools Window Help - [[& =

BEOSEERac|) THDR @& P
| EventClass | TextData | BinaryData EventSubClass DatabaseMName Duration | (-
sqQL:BatchsStarting exec dbo.ADGSP_EN_salesInstr |:|
iDegree of Parallelism (7.0 Insert) ! 0X02000000 1 - Select Big_Database
Showplan XML <ShowPlanxML xmins="http://sch... O0XBCOO0000D Big_Database
SgL:BatchCompleted exec dbo.ADGSP_EN_SalesInstr 17421 -
4| (1l | +
-
4 T | »
Trace is stopped. Ln4, Coll |Rows: 46
Connections: 0
-

Figure 11-34: The Degree of Parallelism (7.0 Insert) event, by itself, is not all that useful.

In the first row of this figure, you can see that a stored procedure called ADGSP_EN_SalesInstr is
starting. Next, you see the Degree of Parallelism (7.0 Insert) event, which includes two useful pieces of
information:

e BinaryData — where the possible values are:

o 0x00000000 (indicates a serial execution plan)
o 0x01000000 (indicates a parallel execution plan running serially)
o >=0x02000000 (indicates a parallel execution plan running in parallel)

¢ EventSubClass — where the possible values are:

1 - Select

2 - Insert

3 - Update

4 - Delete

From the value of the BinaryData column, you can see that in this case the stored procedure will be
running a parallel plan in parallel. The EventSubClass column confirms that it is a SELECT statement
that is running. Addition data columns (not shown) indicate the physical resources used by this
statement.

O O O O

The third row shows the graphical execution plan of the statement, which makes it easier to figure out
what is going on with this plan. The fourth row indicates when the statement is completed.

So how is this information useful? In most cases, the Degree of Parallelism (7.0 Insert) event is used to
help identify pootly-running queries. In some cases, a query would run more effectively in parallel than
serially. In other cases, a query would run faster serially than in parallel. This event provides you basic
information as to what is really happening with a query, and can be used to help decide if the query plan
is as effective as it could be.

If you determine that a query is running serially when it should be running in parallel in order to be most
effective (or vice versa), you may consider using an appropriate hint to modify how parallelism behaves
for the particular query.

PERFORMANCE STATISTICS

The Performance Statistics cvent is similar to the Showplan XML For Query Compile event, which
is discussed a little later. As such, you may want to read about both events and determine which better
meets your needs.

Profiler Events and Data Columns Explained 260

Like many Profiler events, its name is deceiving. Essentially what the Performance Statistics event does
is to fire when a compiled query plan is cached for the first time, compiled, recompiled, or flushed from
the cache. It does not fire when a query runs that finds an execution plan already in cache.

As 1 often do, I like to collect other events that may be of use to me when I am analyzing the results of a
trace. In particular, I will be capturing the following events in addition to the Performance Statistics

events:

e RPC:Completed
e SP:StmtCompleted
e SQL:StmtCompleted

Trace Properties

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.
Events | Evert... | IsSyst... | Login... | Login... [SPID | Serve... | Sessi.. | StarT... | TextD... | Trans... | Applic... |
¥ Performance statistics I~ I~ I3 Ird I~
= Stored Procedures
¥ RPC:Completed v 2 v I I v I v v v v
v SP:StmtCompleted 2 v Ird v 2 2 I~ Ird 2 v v
= TsaL
W SQL:StmtCompleted W W i W W W 2 i ~ W W
4 T | 3
— Performance
Includes event classes that are produced when SQL data manipulation {DML) operators execute. [Show all events
[~ Show all columns
 IsSystem (no fitters applied)
Indicates whether the event occumed on a system process or a user process. 1 = system, 0 = user. Column Filters... |
Organize Columns. .. |

An | Cancd | Hep |

Figure 11-35: Additional events, besides the Performance Statistics event, are useful when analyzing trace data.

Before I ran my test code, I ran the DBCC FREEPROCCACHE command in order to remove all
currently existing query plans from SQL Server cache. Next, I ran a stored procedure, followed by an ad
hoc query. The trace results are shown in Figure 11-306:

Profiler Events and Data Columns Explained 261

£ SQL Server Profiler - [Untitled - 3 (PELE)] o [(S
&) File Edit View Replay Tools Window Help [-[=]x]
FOgEFac|> v | FEHDORE BE|P
| EvertSequence | EventClass | EvertSubClass | BigintDatal | BigirtData2 | Duration | TextData [cru 1

2587 sQL:Batchstarting exec dbo.ADGSP_EN_SalesInstr;
= 2588 (1)

2588 Performance statistics |1 - SP:plan | 1 1296 118 87
o 2891 (1) ' '

2591 SOL:BatchCompleted 21877 exec dbo.ADGSP_EN_SalesInstr; 3634
= 2592 (1)

2592 SOL:BatchStarting SELECT top 10000 =, gl_cm...
= 2593 (1)

2592 Performance statistics 2 - Batch:Plan 1 152 8 2
= 2594 (1)

2594 pPerformance statistics 0 - sqL SELECT top 10000 *, gl_cm...
= 2595 (1)

2595 SQL:BatchCompleted 870 SELECT top 10000 *, gl_cm... 47 -
4 M] 2

r = =
[—————
0 Hash mateh

—
P — Hash Match] Clusterad Index Scan
s?rt (Inner Join) (Inner Join) LB1g Databasel. ldbo . Lim_prpmst_tb 1. Lam_pr..
Cost: &9 %
: Cost: 3 % Cost: 1 % Cost: 0 %
[— L‘
L——————" Hash match Index Scan
{mner Join) [Big patabase].[dbol. [im_Jlocalins_
Cost: 2 % Cost: O %
Merge Join
{Inner Join)
Cost: 2 %
3
Trace is running. | Ln6, Col 3 | Rows: 22

| Connections: 1 @

Figure 11-36: The above trace shows both a stored procedure and a query.

The first row of the trace, identified by EventSequence 2587, relates to the execution of a stored
procedure named ADGSP_EN_Saleslnstr. The next row, EventSequence row 2588, shows that a
Performance Statistics event was fired. Last of all, we see that the query was completed in
EventSequence row 2591.

So exactly what is the Performance Statistics event telling us? Unlike many other Profiler events, this
event is a little harder to decipher.

In the Figure 11-36, I have clicked on the Performance Statistics event that fired for this stored
procedure. First of all, notice that the execution plan for this stored procedure is displayed at the bottom
of the screen. This is very similar to the ShowPlan XML event, which we will discuss in more detail later.

Second, notice that the EventSubClass for this event is "1 — SP:Plan". The Performance Statistics event
can have four different values for EventSubClass:

e 0 — the execution plan for the query or batch is not present in the cache.
e 1 — queries within a stored procedure have been compiled.

e 2 — queries within an ad hoc query have been compiled. It also shows the duration, in
milliseconds, for compiling the ad hoc query.

e 3 —acached query for either a stored procedure or ad hoc query has been removed from
rnernory.

So in our example, an EventSubClass event of 1 indicates that a query within our stored procedure was
compiled. In addition:

e The BigintDatal data column tracks the number of times this plan has been recompiled

Profiler Events and Data Columns Explained 262

e The BigintData2 data column indicates the size, in kilobytes, of the compiled plan
¢ The Duration column tells you how long, in milliseconds, it took for the query to
compile.

Now, let's take a look at the second query I captured, which was an ad hoc query:

2592 [5QL:BatchStarting SELECT top 10000 *, gl_cm...
- 2593 (1)

2593 Performance statistics 2 - Batch:Plan 1 152 3 z
- 2594 (1)

2594 Performance statistics 0 - SOL SELECT top 10000 =, gl_cm...
- 2595 (1)

2595 sSgL:BatchCompleted 870 SELECT top 10000 =, gl_cm... 47
4| i |

SELECT top 10000 =, gl_cmp_location, in_tran_type
FROM in_tran_tkl
IWHERE (g1_cmp_location = "01') AND (in_tran_type = 'R'];

Figure 11-37: This is an example of when an ad hoc query runs.

In EventSequence row 2592, we see that the ad hoc batch is starting. To the right, we see a small
portion of the query. In EventSequence 2593, we see a Performance Statistics event, as shown in
Figure 11-38:

= 2533 (1)

2593 Performance statistics
= 2594 (1)

2594 Performance statistics
= 2595 (1)

2595 SQL:BatchCompleted 870 SELECT top 10000 *, gl_cm... 47
< | i '

= 2y

Clustered Index Scan
LE1g Patabase]. Ldvol. LIn_tran_tbil. [in_tran..
Cost: 95 %

1 152 3 2

SELECT top 10000 *, gl_cm...

Top
Cost: C %

Figure 11-38: A graphical execution plan of this query is displayed above.

For this event, the EventSubClass is 2, which means that an ad hoc query is being compiled. We can also
see that it took 8 milliseconds to compile and that it took 152K of memory in the cache. At the bottom
of the screen, we see the query execution plan that was created for this ad hoc query. In the next row,
with EventSequence 2594, we see a second Performance Statistics event for the same ad hoc query, as
shown in figure 11-39:

- 2594 (1)

2594 | performance statistics {0 - sqL SELECT top 10000 *, gl_cm...
- 2595 (1)

2595 SOL:BatchCompleted 870 SELECT top 10000 *, gl_cm... 47
4 | i +
SELECT top 10000 =, gl_cmp_location, in_tran_type
FROM in_tran_tbl
HERE (g1_cmp_location = "01') AND (in_tran_type = 'R'];

Figure 11-39: An EventSubClass event of 0 displays the actual code at the bottom of the screen.

In this case, the EventSubClass is 0, it has no compile duration or cache size data, but it does display the
ad hoc query at the bottom of the screen. What is this about? Didn't I say earlier that an EventSubClass
of 0 means that the query is not in cache? This seems a little confusing given that it was preceded by an
event with an EventSubClass of 2.

For whatever reason, when an ad hoc query is first compiled, it creates two Performance Statistics
events, a 2 and a 0. Based on the definition of these two EventSubClasses, you would think it would list
the 0 EventSubClass first and the 2 EventSubClass second. But it doesn't. These two EventSubClasses

Profiler Events and Data Columns Explained 263

only appear when an ad hoc query is run. When a stored procedure is run and compiled for the first
time, it only produces a single Performance Statistics event.

If you are really into following the lifecycle of a query, from original compilation to its removal from
cache, this event can help you out, assuming you want to put up with the event's odd behavior.

SQL:FULLTEXTQUERY

The SQL:FullTextQuety event is used to troubleshoot Full Text Quety problems. If you don't use the
Full Text service, you can ignore this event.

If are using the Full Text service, this event can be useful by providing you the following information:

e Length of time to complete the full text query
e Error message number, if any
e The full text of the query

This event can incur a lot of overhead. Limit traces for this event to only those time periods when you
want to capture troublesome queries.

SHowPLAN XML

I've used this event throughout the book so you should be rather familiar with it. If you missed it, this
event occurs every time SQL Server executes a SQL statement, producing an estimated graphical
execution plan. This is a great tool for analyzing pootly performing queries. In addition, you can export
the XML used to generate the graphical execution plan to an XML file.

While you can capture the Showplan XML event by itself, it is generally more useful if you capture it
along with some other basic events, such as:

e RPC:Completed
e SQL:BatchStarting
e SQL:BatchCompleted

Profiler Events and Data Columns Explained

264

Trace Properties ﬂ
General Events Selection | Events Extraction Settings
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and " Show all columns” options.
Events | TentD... | Applic... | NTUs... | Login... [CPU | Reads | Wites | Durati... | Client.. | SPID | StantT... |
¥ Showplan XML I~ 12 12 72 I3 Ir2
= Stored Procedures
¥ RPCCompleted W~ W W~ I W W~ 2 W i W i
= TSaL
¥ SQL:BatchCompleted ¥ v ¥ I 2 I3 I W I v I
¥ SQL:BatchStarting I~ I~ I~ I~ I I~ Ird
< T | +
_r‘ fi ce
Includes event classes that are produced when SQL data manipulation (DML) operators execute. [~ Show all events
[~ Show all columns
— No data column selected.
Column Fitters.... I
Organize Columns... I
Rn | Cancel | Heb |

Figure 11-40: The Showplan XML event is one of the most powerful events available with Profiler.

When you capture the above events, you get a trace like the one shown in Figure 11-41:

54 SQL Server Profiler - [Untitled - 4 (PELE)]

=)

% File Edit View Replay Tools Window Help

BEEE

AN EFac|r e | EDG BDE| P

I ApplicationMame =

4 L

J EventClass I TextData
Trace Start
SQL:Batchstarting SELECT top 10000 *, gl_cmp_location, in_tran... Microsoft sq
Showplan XML <ShowPlanxML xmlns="http://schemas.microsoft.com... Microsoft 5Q
.SQL:Batch:ump'leted .SELEET top 10000 *, gl_cmp_location, in_tran... Microsoft 50 =

3

=

Top
Cost: B %

_ Clustered Index Scan
LBvg Catabase]. Ldoo]. Lin_tran_tbl]J. Lin_tran_.

Coet: 95 %

Trace is stopped.

|Ln3,Coll | Rows: 20

| Connections: 0

A

4

Figure 11-41: The Showplan XML event captures the XML Showplan and displays it as a graphical execution

plan in the Profiler window.

Graphical execution plans provide some of the most useful information available on how a query is
executed in SQL Server. In fact, almost every Profiler trace I run includes this event.

Unfortunately, we don't have time to explain how to read graphical execution plans in this book, but if
you want to learn more, check out the free e-book from Red Gate Software called Dissecting SOL. Server

Execution Plans, by Grant Fritchey.

Profiler Events and Data Columns Explained 265

If you want, you can save the Showplan XML code directly to a file, instead of just looking at it on the
Profiler screen. There are two ways to do this. The first way is to right-click on the Showplan XML
event and select "Extract Event Data", as shown in Figure 11-42:

[5 SQL Server Profiler - [Untitled - 4 (PELE)} ESEER

i3 File Edit View Replay Tools Window Help [= =] x]

AD@EFac|(rn s [ZFEMNG A= P

J EvertClass I Text Data | ApplicationMame
Trace start [

SQL:Batchstarting SELECT top 10000 *, gl_cmp_location, in_tran... Microsoft 50

Showplan xML i «<Show =" 2 irrosoft. com. imicrosoft sQ
sqL:Batchcompleted SELEG Run Trace nin o tran. .. Microsoft sq -
1 L Pause Trace r
Stop Trace
g —_— Clust Toggle Boockmark Ctrl+F2
Cost: © % LB1g patabase]. Ld
Aggregated View Ctrl+G
Trace is stopped. Grouped View ik | Ln3, Coll | Rows: 20
Extract Event Data... | Connechions 0 Y

— Properties... —

Figure 11-42: You can save the Showplan XML to a file using the Extract Event Data option.

This brings up a dialog box where you can enter the path and filename of the XML code you want to
store. Instead of storing the XML code with the typical XML extension, the extension used is
.SQLPlan. Why? When you double-click on the a .SQLPlan file from within Windows Explorer, the
XML code will open up in SSMS in the form of a graphical execution plan. This means that you can
share graphical execution plans with other DBAs if you want. However, if you really want to be a geek,
you can also open the file in Notepad and see the raw XML code. In fact, there is hidden query
performance information stored in the RAW XMI.. A discussion of this is beyond the scope of this
book.

The second way to save the raw XML from Profiler is a little more ambitious. Instead of selecting one
Showplan XML event at a time and saving it as a single file, you can have Profiler do this for you
automatically for every Showplan XML event. To do this, go to the Trace Properties screen and select
the Events Extraction Settings tab, as shown in Figure 11-43:

Profiler Events and Data Columns Explained 266

Trace Properties ﬁ

General I Everts Selection Events Extraction Settings

— XML Showplan

[T Save XML Showplan events separately
HML Showplan results File:

| |

€ Al =ML Showplan batches in a single file
€ Each ML Showplan batch in a distinct file

— Deadlock XML

[T Save Deadiock <ML events separately
Deadlock <ML results file:

| |

€ &l Deadlock XML batches in a single file
" Each Deadlock XML batch in a distinct file

Fun | Cancel | Hep |

Figure 11-43: The Events Extraction Settings option allows you to save the Showplan XML code automatically
for every event captutred by Profiler.

Here, you can specify that you want to collect all Showplan XML events, the location in which to store
them, and whether you want to store them as one large file or as separate files for each event.

NOTE:

If you don't see the Events Extraction Settings tab, then you haven't selected the Showplan
XML event under the Events Selection tab.

As you might guess, using this option produces overhead for a busy server, so use it sparingly.

If you get anything out of this chapter, it should be that the Showplan XML event is one of the most
useful and powerful events available to DBAs. You need to take the time to learn how to use it, along
with learning how to read graphical execution plans.

SHoWPLAN XML FOR QUERY COMPILE

The Showplan XML for Query Compile event is actually a subset of the Showplan XML event. While
the Showplan XML event is fired every time a query is executed, the Showplan XML for Query Compile
event only fires when a query is first compiled. If a query is executed that already has an execution plan
in cache, then this event does not fire.

Because the Showplan XML for Query Compile is so similar to the Showplan XML event, I don't want
to repeat myself, so let's jump into a specific example to show how the two events ate different.

For the trace shown in Figure 11-44, I first cleared the cache of all currently existing execution plans and
then ran the same ad hoc query as in the Showplan XML example:

Profiler Events and Data Columns Explained 267

[A SQL Server Profiler - [Untitled - 4 (PELE)] F=E)

£ File Edit View Replay Tools Window Help NEE:
= e , =
HNEsEFaa|br THIR =P
| EventClass | Text Data | ApplicationName »
Showplan XML For Query Compile ;-:Shm.'P'lanmL xmins="http: //schemas.... §M'icr'u5u‘|=t 50.
SOL:Batchstarting SELECT top 10000 =, gl_cmp_loca... Microsoft SQ|E|
SOL: eatchCompleted SELECT top 10000 =, gl_cmp_loca... Microsoft sqQ.
SOL:Batchstarting SELECT top 10000 =, gl_cmp_loca... Microsoft sQ.
SQL: eatchCompleted SELECT top 10000 =, gl_cmp_loca... Microsoft 5Q. _
1| m | 3
Top Clustered Index Scan
X . LEvg batabase]. Ldool. Lin_tran_tbil. Lin_tran.
Cost: £ % Cest: 95 %
Trace is stopped. Ln4, Col2 |Rows: 16

Connections: 0

b

Figure 11-44: The Showplan XMP for Query Compile event only fires when a query is compiled just before it is

executed.

Just before the query executes, the Showplan XML for Query Compile event fires and you can see the
graphical execution plan for the query. Once the plan for the query compiles, the query is executed. 1
executed the query multiple times but since the plan for this query is already in cache, the Showplan
XML for Query Compile event doesn't fire again.

The Showplan for Query Compile is useful for troubleshooting query compilations, and uses less
overhead than does the Showplan XML event (as fewer events are captured). And just as for the
Showplan XML event, you can extract the raw XML and save it to disk.

SHowPLAN XML STATISTICS PROFILE

By now, I bet you are getting tired of Showplan XML events. But wait, there is one more to consider.
The Showplan XML Statistics Profile event is like the Showplan XML event in that it fires every time a
query is executed. It also produces a graphical execution plan that can be exported to a raw XML file. So
what is the difference between the twor? The difference is that the Showplan XML Statistics Profile
includes additional statistics not included in the Showplan XML event.

The curious thing is that if you run the Showplan XML and Showplan XML Statistics Profile events at
the same time, the data returned in Profiler looks virtually identical in each case. If this is the case, how
are these events different? In fact, the differences are there, just hidden. The Showplan XML Statistics
Profile event hides the additional statistics within the raw XML code, which can't be seen from Profiler.
In order to see the differences in the data collected, Showplan XML Statistics Profile events need to be
stored in a local database table and viewed there. Then you have to write an XMI-based query to extract
the statistics data. As you can imagine, this is beyond the scope of this book. However, if you are an
XML fan, you can find out more about how to write this code here:

http://blogs.msdn.com/sqlqueryprocessing/rss_tag_statistics+Profile.xml

As it is implemented currently, the Showplan XML Statistics Profile event is not very convenient to use.

http://blogs.msdn.com/sqlqueryprocessing/rss_tag_Statistics+Profile.xml�

Profiler Events and Data Columns Explained 268

PROGRESS REPORT

This event category includes a single event: Online Index Operation. It is used to monitor online index
activity that results from creating, rebuilding or dropping indexes. Online indexing is only available on
SQL Server 2005 Enterprise Edition.

A significant performance issue with an online index operation should be a rarity. However, if you do
experience issues, you may want to investigate, using the Online Index Operation event.

Trace Properties ﬁ
Gereral Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and " Show all columns” options.
Events IBppIicaﬁonName | Bigint Data1 | BigintData2 | ClientProcess|D I DatabaselD I DatabaseMName I Durati... |
¥ Progress Report: Online Index Operation 2 I3 2 2 I~ I~2 ~
4| 1 | 3
r~ Progress Report
Includes the Progress Report: Online Index Operation event class. [Show all events
™ Show all columns
— No data column selected.
Column Filters... I
Organize Columns... I

Rn | Cancel | Heb |

Figure 11-45: Monitor Online Index Operation only if your are having performance problems during online
indexing activities.

If you decide to capture a Profiler trace of online indexing activity, you will want to start the capture just
before the online indexing activity actually starts, and end it when it is complete. Otherwise, you are just
wasting server resources.

The key information provided by the Online Index Operation event is found in the EventSubClass data
column. In this column you will see the status of the online index activity. The available subclass events
are:

e 1 =Start
e 2 =Stage 1 execution begins
e 3 = Stage 1 execution ends
e 4 = Stage 2 execution begins
e 5 = Stage 2 execution ends
e 6 = Inserted row count
e 7=Done
While the Online Index Operations event is useful to identify the status of the online index activities, it

is more useful if you combine this event with other events, such as those related to blocking and
performance. In addition, you may want to run a concurrent Performance Monitor trace in order to

Profiler Events and Data Columns Explained 269

determine where, if any, bottlenecks are occurring during the online index activity. By correlating the
Profiler results with the Performance Monitor results, you can more easily identify problem areas.

NOTE:

Correlating Profiler and Performance Monitor results is covered in Chapter 8.

If you discover that online index operations are indeed contributing to unacceptable performance
problems, you may need to reschedule when they occur.

QUERY NOTIFICATIONS

SQL Server 2005 introduced a new feature called Query Notifications, which is built on the Service
Broker. Essentially, Query Notifications allows applications to be notified automatically when data in the
database has changed. If you are not using Query Notifications in your applications, then you can skip
this event category. If you are, then the four events in the Query Notification category can help you to
identify performance issues and to debug application problems. The four events ate:

e QN: Dynamics — Provides information on the background activity SQL Server
performs to support query notification. This includes: clock run started, clock run
finished, master cleanup task started, master cleanup task finished, and master cleanup
task skipped.

e QN: Parameter Table — Provides information on the internal tables used to stote
parameter information, including: table created, table drop attempt, table drop attempt
failed, table dropped, table pinned, table unpinned, number of users incremented,
number of users decremented, LRU counter reset, cleanup task started, cleanup task
finished.

e QN: Subscription Event — Provides information on subscriptions, including:
subscription registered, subscription rewound, subscription fired, firing failed with broker
error, firing failed without broker error, broker error intercepted, subscription deletion
attempt, subscription deletion failed, and subscription destroyed.

e QN: Template — Provides information on the use on query templates, including:
template created, template matched, and template dropped.

Profiler Events and Data Columns Explained 270

Trace Properties ﬁ
General Events Selection |
Review selected events and event columns to trace. To see a complete list, select the "Show all events" and "Show all columns™ options.
Events I ApplicationName I ClientProcessID I DatabaselD I DatabaseName I EventSequence I EventSubClass I HostName I s Syst
- Query Notifications
[¥ QN: Dynamics ¥ I I I I I3 I3 I
¥ QN: Parameter table I3 I3 12 72 i~ I3 I3 12
¥ QN: Subscription I3 I3 2 Ird I~ I3 I3 2
¥ QN: Template M I W I I 3 3 I
< I 2
—Query Notifications
Includes event classes produced by query notifications processing. [Show all events
™ Show all columns
—Client P 1D {no fitters applied)
The process ID of the application calling SQL Server. Column Filters... |
Organize Columns... |

Fun | Cancel Heb |

O ——
Figure 11-46: Query Notifications can be traced by using the above four events.

Since Query Notifications is built upon the Service Broker and also involves queries, you will probably
want to trace the following events in addition to the Query Notification events:

e Broker Events (all that are appropriate)
e RPC:Completed

e SQL:BatchStarting

e SQL:BatchCompleted

When collecting so many events, it is important to run only such a Profiler trace for as short as time as
bl
you can in order to minimize its performance impact.

SCANS

Index and table scans are a fact of life. It is not always possible, or even efficient, for a set of data to be
retrieved by an index seek. In other words, the appearance of index or table scans in an execution plan is
not necessarily a reason to assume the query is performing inefficiently. In effect, some scans are
"good", and the queries they are found in don't need to be tuned; and some scans ate "bad," and the
queries they are found in need performance tuning. While the discussion of how to tell a "good" scan
from a "bad" one is outside the scope of this book, a high level of scan events in a Profiler trace may be
an indication that you have more "bad" scans that would be optimal for the performance of your server.

The Scans event category includes two events:

e Scan: Started

e Scan: Stopped

Profiler Events and Data Columns Explained 271
Trace Properties ﬁ
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.
Events | Applic... | Client... | Datab... | Datab... | Event... | HostN... | IndexiD | IsSyst... | Login... | Logn... | NTDo.. |
[¥ Scan:Stated I I I I I I I I I I I
[# Scan:Stopped I I I I I I I I l I I
4 T | b
— Scans
Includes event classes that are produced when tables and indexes are scanned. [~ Show all events
V¥ Show all columns
— No data column selected.
Colurnn Filters. .. I
Organize Columns... I
Run | Cancel Heb |

Figure 11-47: Both index and table scans are identified using the Scan events.

The scans identified by these two events can be either index or table scans and you can use the IndexID

data column to determine which are which.

First of all, collecting both the "Scan:Started" and "Scan:Stopped" events are somewhat redundant, as
both events indicate that a scan is being performed, which is all we really want to know. You may
sometimes want to capture both events and calculate the duration, but this won't be common. What we
really want to know is how many scans, of any type, are being performed, and to identify those that

appear to be excessive.

Besides the single Scan:Started event, I also like to include the following context events when I am

performing a Profiler trace with the goal of identifying excessive scans:

e Showplan XML

e RPC:Completed

e SP:StmtCompleted

e SQL:BatchStarting

e SQL:BatchCompleted

This way, when a trace is collected, you can see exactly what Transact-SQL is causing the

scans. In

addition, you get to see the execution plan of the offending query, which provides you with additional
information that can help you determine if the scan you have identified is a "good" or a "bad" one.

When I perform a Scan trace, I also like to group the scan by the EventClass data column, which

produces a screen like the following:

Profiler Events and Data Columns Explained

272

7 SQL Server Profiler - [Untitled - 4 (BIGISLAND\SQL2008)]

(=[5 |

|%File Edit View Replay Tools Window Help

BEEI

ANSErac|» v BEANR D@ P

J EventClass

| ObjectiD

| Duration

+ SQL:BatchCompleted (32)
+ SQL:Batchstarting (32)
+ Scan:Started (16)

+ Showplan XML (24)

+ Trace start (1)

+i Trace Stop (1)

Figure 11-48: Grouping by the EventClass data column makes it easy to determine if scans are a problem.

For example, in the above trace it is very easy to see that there were only 16 Scan:Started events that
occurred during the capture. If this data was captured over an hour, I would be very happy, as only 16
scans happening in a single hour would be a very good thing. On the other hand, if I discovered 124,843
Scan:Started events in a single hour, then I would want to investigate why there are so many. At this
point, I would then drill down into the trace data, identifying what Transact-SQL code is contributing to
the most scans, and then analyzing the code to see if the scans were "good" and could be ignored, or
"bad" scans that indicated I need to teview the code and look for ways to boost its petformance.

SECURITY AUDIT

The Security Audit event category has more events than any other, a total of 43.

NOTE:

If you want to learn more about how to audit SQL Server activity using Profiler, see Chapter 0,

"Using Profiler to Audit Database Activity."

Profiler Events and Data Columns Explained 273

i 5
Trace Properties [&J

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all everts™ and "Show all columns” options.

Everts | Applic.. | Bigint... | Bigint... | Binary.. | CPU_ | Client... | Colum... | DBUs... | Datab... | Datab... | Dursti. =
- | Security Audit
v Audit Add DB User Event v v v v v v
[w Audit Add Loginto Server Role Evert v v v Iv i~
W Audt Add Member to DB Fole Event ¥ " " rZ " i
v Audit Add Role Event v v v v v
v Audit Addlogin Evert v v v Iv i~
v Audit App Role Change Password Ev... v v v Iv v
[w Audit Backup/Restore Event v v v v rd
v Audit Broker Conversation r i~ v v v
[v Audit Broker Login v v v
[w Audit Change Audit Event v v v [+ v rd
I~ hodd Thaeos D—dabans Dhmee
4 | m | 3
Broker
Includes event classes that are produced by Service Broker. ¥ Show all everts

[V Show all columns

Mo data column selected.
Column Filters... |

Organize Columns... |

Rn | Cancel | Help |

-

Figure 11-51: The Security Audit category has 43 events.

Typically, you use Security Audit events to track what users are doing inside a SQL Server instance.
While Profiler can do this, there are several disadvantages to using Profiler for this purpose on anything
but a part-time basis. For example, using Profiler to audit SQL Server instances can be very resource-
intensive. A busy server can create thousands of Security audit events per minute, which means
resources have to be diverted from SQL Server to Profiler. If your SQL Server is not particularly busy,
this might not be a problem.

Profiler also doesn't make it particulatly easy to extract the information you want from the collected
data. Essentially you need to store the data in a database and then create queries to extract the data you
want, which is all a manual process.

Lastly, configuring what audit events to collect, along with which data columns, is not convenient using
the included GUI interface.

Yes, you can perform security auditing with Profiler, but it is far from ideal if you need to do security
auditing on a continuing basis. On the other hand, if you only need to perform security auditing for
short periods, then Profiler can work well for you.

SERVER

The Server event category is another one of those categories that encompasses an odd collection of
events. The three events in this category are:

e Mount Tape
e Trace File Close
e Server Memory Change

We'll take a brief look at the first two, and spend a little extra time on the Server Memory Change event,
which is of more interest — and use — to DBAs.

Profiler Events and Data Columns Explained 274

i 5
Trace Properties [&J

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all events™ and "Show all columns” options.

Events | Applic.. | Bigint... | Bigint... | Binary.. | CPU_ | Client... | Colum... | DBUs... | Datab... | Datab... | Dursti. =
+ Scans
¥ Security Audit

v Mount Tape v 2 v 2 v

|w Server Memory Change
[+ Trace File Close

+ Sessions
+ Stored Procedures
+ T5QL E
+ Transactions
+ User corfigurable e
o m] v
User corfigurable
Includes event classes that you can define. v Show all everts

W Show all columns

Mo data column selected.
Column Filters... |

Onganize Columns... |

Fun | Cancel | Help |

e

Figure 11-52: The Server event category includes widely vatying event types.

MOUNT TAPE

This event will tell you when a tape mount request on your SQL Server was requested, completed, or
cancelled. While I am sure there are some DBAs who use this feature on SQL Server, I have never
personally met one.

TRACE FILE CLOSE

This event fires when a trace file has been closed during a rollback. This can occur when you are playing
back a trace file in Profiler. I have not personally found any reason to want to trace this.

SERVER MIEMORY CHANGE

Of the three events in the Server events category, this event is the most interesting. This event fires
when the memory of a SQL Server instance increases or decreases by either 1mb or 5% of the
maximum server memory allocated to SQL Server, whichever is greater.

When you collect this event, all it shows is when the event occurred, if the event was a memory increase
or a memory decrease, and the new memory size, in mb’s. There is no indication why the event
occurred.

To put the Server Memory event in context, I usually capture some additional events, such as:

e RPC:Completed
e SQL:BatchStarting
e SQL:BatchCompleted

In the trace shown in Figure 11-53, there are four Server Memory events, grouped in two sets of two:

Profiler Events and Data Columns Explained 275

SQL Server Profiler - [Untitled - 2 (PELE)] = [B R
| 45 File Edit View Replay Tools Window Help [[[=]]
Yy ow [
EgEFacr s ZEANR FE P
J EventClass | Ewvent SubClass | IrtegerData | Start Time »
Trace start 2007-09-258 11:15:12.170
sOL: Batchstarting 2007-09-28 11:15:18.677
server Memory Change {1 - Increase | 111 2007-09-28 11:15:19.143
Server Memory Change 1 - Increase 245 2007-09-28 11:15:22.980(°
SOL: eatchCompleted 2007-09-28 11:15:18.677
sOL: Batchstarting 2007-09-28 11:15:33.377
SOL: BatchCompleted Z007-09-28 11:15:33.377
sOL: Batchstarting 2007-09-28 11:15:36.657
SqL: BatchCompleted 2007-09-258 11:15:36.657
SOL:Batchstarting 2007-09-28 11:15:41.450
Server Memory Change 1 - Increase 370 2007-09-28 11:15:47.193
Server Memory Change 1 - Increase £1Z 2007-09-28 11:15:51.130
SOL: earchCompleted 2007-09-28 11:15:41.450 =
' il | P
F
' m | *
Trace is stopped. | Ln3, Col 2 | Rows: 23
| Connections: 0 y

Figure 11-53: You can trace when SQL Server increases or decreases its need for memory.

In the first Server Memory Change event, the amount of memory was raised to 111mb. Almost
immediately afterwards, it went up to 245mb. About 27 seconds later, memory went to 370mb, then to
512mb. I have my test system limited to a maximum of 512MB, so memory can't increase any further.
However, it is already obvious that the code I was running was consuming a lot of memory, very quickly.

Fortunately, this example is not typical. Once a server has been up and running for a while, you're
unlikely to see this sort of activity. In other words, once SQL Server has started and begins to use
memory, it grabs the amount it needs and memory requirements generally don't change a whole lot,
unless unusual activity occurs.

I don't collect this event on a regular basis because when I want to track memory usage of SQL Server, 1
generally use Performance Monitor instead. While Performance Monitor might not provide the exact
data (the increases or decreases of 5%) it provides a wealth of other useful memory-related counters that
generally provide all the memory data I need to troubleshoot problems.

SESSIONS

The Sessions event category has a single event: ExistingConnection. Its sole purpose is to provide a
list of currently existing user connections (at the time the Profiler trace started), providing connection
data for each connection.

Profiler Events and Data Columns Explained 276

Trace Properties u
(Gereral Events Selection |
Review selected events and event columns that are being traced. Selection cannot be changed while tracing is active.
Events I ApplicationName I BinaryData I ClientProcess|D I DatabaselD I DatabaseName I EventSequence I HostName I IntegerData I
v ExistingConnection I I I I3 I I3 I I3
a T 3
— Sessions
Includes server session event classes. [~ Show all events
™ Show all colurmns
— No data column selected.
Column Filters... |
Organize Columns... |

ok | Cancel Hep |

11-54: The Sessions event has a single event: ExistingConnection

Whenever you begin a Profiler Trace, using the ExistingConnection event, a list of all currently existing
connections appears as rows at the top of the Profiler window. When you click on any of the
connections, you see the connection information at the bottom of the screen, as shown in Figure 11-55:

[54 sQL Server Profiler - [Untitled - 3 (PELE]] (=) |

#4 File Edit View Replay Tools Window Help HEER
AN EFac(r v | ZENGE TE|P
J EvertClass | ApplicationMName | BinaryData | ClientProcess|D DatabaselD | Databasel
Trace start
ExistingConnection SoLAgent - G... O0X20000... 4104 4 msdb
ExistingConnection SQL Server P... 0X20000... 4544 1 master
< m | 3

-- network protocol: LPC
set quoted_identifier off S
set arithabort off

set numeric_roundabort off
set ansi_warnings on

set ansi_padding on

set ansi_nulls on

set concat_null_wields_null on
set cursor_close_on_commit off
set implicit_transactions off
set language us_english

set dateformat mdy

set datefirst 7 L
set transaction isoclation level read committed

»

m

4

4 | I | »

Trace is running. | Ln2, Coll | Rows: 3

| Connections: 1 A

Figure 11-55: The ExistingConnection event provides all the connection settings for all current connections at
the time the Profiler trace begins.

Profiler Events and Data Columns Explained 277

This event only fires when Profiler first starts. Once Profiler starts and all existing connections are
displayed in Profiler, this event does not fire any more and any new connections made after a Profiler
trace begins are not added to the list.

The connection information provided by the ExistingConnection event can be handy when
troubleshooting connection problems, and to help identify the differences between connections.
Different connection settings can affect how a query is processed and sometimes the only way to
troubleshoot such a problem is to see what the connection settings are.

STORED PROCEDURES

The Stored Procedures event category includes 12 events and is probably one of the most useful set of
events available in Profiler. These events can be used to troubleshoot many different types of stored
procedure-related problem. Because of this, we will take our time in this section. The 12 events are:

e RPC:Output Parameter
e RPC:Completed

e RPC:Starting

e SP:CacheHit

e SP:Cachelnsert

e SP:CacheMiss

e SP:CacheRemove

e SP:Completed

e SP:Recompile

e SP:Starting

e SP:StmtCompleted
e SP:StmtStarting

Profiler Events and Data Columns Explained 278

[R
Trace Properties ﬁ
General Events Selection l
Review selected events and event columns to trace. To see a complete list, select the "Show all everts” and "Show all columns” options.
Everts | ApplicationName | ClientProcess|D | Database|D | DatabaseName | EvertSequence | HostName | IntegerData2 | IsSyst. +
|v Deprecated
W RPC Output Parameter v v v v v v v
[+ RPC.Completed v v v v v v v
W RPC:Starting rd [+ [+ i~ [+ v v
| SP.CacheHit v ™ i~ i~ v ™ V[
Jv SP.Cachelnsert v v v v v v M
v SP.CacheMiss v v v v v V|
v SP:CacheRemove v v rd v v v v
[v SP:Completed v i~ v v i~ 7 ~
[v SP:Recompils v i~ v v i~ 7 v ~
S CD-Ciadimn Loy L) = L) L) Ly Ly v
4 | 11 [
Stored Procedures
Includes event classes produced by the execution of stored procedures. v Show all events
[~ Show all columns
IntegerData2 (no fiters applied)
Integer value dependent on the event class captured in the trace. Column Filters... |
Organize Columns... |

Run | Cancel | Help |

Figure 11-56: There are 12 events available in the Stored Procedures event category.

You have probably already noticed that several of these events above have been discussed previously in
this chapter, and throughout the book. This is because many events in the Stored Procedure events
category are useful to collect together with other events, giving you a better view of what is happening in
your server.

Before we jump into the discussion of individual events, let's first take consider the RPC and SP prefixes
found before each of these events. Three of the events begin with RPC, and the rest begin with SP. RPC
stands for Remote Procedure Call, and SP stands for Stored Procedure. The two prefixes refer to
different ways in which a stored procedure can be called.

If a stored procedure is called using an ODBC CALL escape sequence or an OLE DB RPC escape
sequence, then it is picked up by the RPC events. If you create a NET SqlCommand object and assign it
a CommandType of "StoredProcedure," this will also create an RPC event.

If a stored procedure is called by the Transact-SQL Execute statement, then it is picked up by the SP
events. If you create a .NET SqlCommand object and assign it a CommandType of "Text," this will also
create an SP event.

You won't always know how an application will call a stored procedure, so it is a good idea to capture
both RPC and SP events to ensure that you don't miss anything. More often than not, you will find SP
events much more common than RPC events.

RPC:OutPuT PARAMETER

When a stored procedure executes, an output parameter can be returned, which can be used by the
called application. The RPC:Output Parameter event is designed to capture the output parameters from
a stored procedure executed as a remote procedure call. This can be handy when debugging application
code, checking to see if the stored procedure is outputting what you expect it to output. This event does
not return output parameters from a stored procedure called by the Transact-SQL EXECUTE
statement.

Profiler Events and Data Columns Explained 279

RPC:COMPLETED

The RPC:Completed event fires after a stored procedure is executed as a remote procedure call. The
default data columns collected for this event include useful information about the execution of the
stored procedure, including the CPU time used to execute the stored procedure, the total length of time
the stored procedure ran, logical reads and writes that occurred during its execution, along with the
name of the stored procedure itself.

RPC:STARTING

The RPC:Starting event fires when a stored procedure is first executed as a remote procedure call. In

many cases, DBAs don't even bother tracing this event as the information it provides is a subset of what
the RPC:Completed offers.

SP:CACHEHIT

When a client application requests that a stored procedure be executed, one of the first things the query
optimizer does is to determine if the stored procedute's execution plan has been cached or not. If it has,
then the stored procedure can most likely reuse the plan, saving time. The SP:CacheHit event is fired
every time that a stored procedure is about to be executed and the query optimizer has determined that
there is a matching execution plan available in cache.

[54 SQL Server Profiler - [Untitled - 1 (PELE]] = B |
&4 File Edit View Replay Tools Window Help [- =] %]
ANSdfac|r | AANGE HE|P
J EvertClass | ApplicationMame | DatabaseMame | ObjectMame | TextData -

ESP:cacheH'it stress utility Big_Database ADGSP_PO_Furchasord -
4 0 | b
« | m | » -
Trace is stopped. | Ln574, Coll | Rows: 595
| Connections: 0 y

Figure 11-57: SP CacheHit indicates that the query optimizer has determined that the execution plan for the
stored procedure is already in cache.

In the example shown in Figure 11-57, you can see that an SP:CacheHit event occurred when the
ADGSP_PO_PurchasOrd stored procedure ran, because the execution plan for this stored procedure
was already in cache. When a SP:CacheHit event occurs, the EventSubClass data column can take one of
two values:

e 1 = Execution Context Hit — a free execution plan was found in the plan cache.
e 2= Compplan Hit — a compiled plan was found in the plan cache.
This event is handy when you are trying to identify if a particular stored procedure's execution plan is

being used over and over. In most cases this is a good thing, but at other times it can be a bad thing.
This event, in the context of others in this event category, can make this kind of troubleshooting easiet.

Profiler Events and Data Columns Explained 280

SP:CACHEINSERT

When the query optimizer has to create an execution plan, because one doesn't already exist in the plan
cache, it has to take that plan and insert it into the plan cache so that it can be used the next time the
stored procedure is executed. When this happens, an SP:Cachelnsert event is fired.

[{# SQL Server Profiler - [Untitled - 1 (PELE]] E@g
#4 File Edit View Replay Tools Window Help [=][=]]
DS EFae(r v BEANR FE| P
J EvertClass | ApplicationName | DatabaseMame | ObjectName | TextData -

SP:CacheInsert stress utility Big_Database ADGSP_PO_Purchasard -
4] | b
< | m | » -
Trace is stopped. | Ln 574, Coll | Rows: 595
| Connections: 0 P

Figure 11-58: An SP:Cachelnsert occurs when the query optimizer puts an execution plan into cache.

The SP:Cachelnsert event can be used to help identify stored procedures that are being recompiled too
often, or that are being removed from the cache too soon due to a lack of available memory to store
cached plans. Each SP:Cachelnsert event indicates that a stored procedure had to be compiled for some
reason. The reason for this is not provided by the event.

SP:CAcCHEMISS

The SP:CacheMiss event indicates that an execution plan for a stored procedure is not in the plan cache,
causing the query optimizer to create a new execution plan.

[] SQL Server Profiler - [Untitled - 1 (PELE]] E@g
&4 File Edit View Replay Tools Window Help [- [=] %]
ANSA LAl v BANR FE|P
J EventClass | ApplicationName | DatabaseMame | ObjectMame | TextData -

SP:CacheMiss stress utility exec dbo.ADGSP_PO_Purchasord -
4 i | 3
< I | -
Trace is stopped. | Ln 574, Coll | Rows: 595
| Connections: 0 A

Figure 11-59: An SP:CacheMiss occurs when a stored procedure that is to be executed does not have an
execution plan currently in cache.

One of the implications for the SP:CacheMiss event is that this stored procedure's execution plan could
have been in the plan cache, but wasn't. This could mean that this is the first time the stored procedure
has run. Or, it could mean that the stored procedure was moved out of the plan cache by SQL Server
because there was not enough memory to retain it.

If you see a lot of SP:CacheMiss events for a particular stored procedure throughout the day, and this
procedure runs often, it may mean your server is low on memory, forcing the execution plan to be
constantly moved out of the plan cache due to lack of memory to retain it.

Profiler Events and Data Columns Explained 281

SP:CACHEREMOVE

Sometimes, SQL Setrver decides that it needs memory for a particular internal need, and because of a
lack of available memory, decides to reduce the amount of RAM given to the plan cache. When this
happens, currently existing execution plans are removed from the plan cache and the SP:CacheRemove
event fires. If you see a lot of these events, it is a strong indication that your server needs more RAM for
the existing workload.

SP:COMPLETED

Aptly named, the SP:Completed event fires when a stored procedure completes executing. The data
columns return some very useful information, including the name of the stored procedure, the total
duration for which the stored procedure ran, the number of rows it returned from all statements
included in it, and more.

[53 QL Server Profiler - [Untitled - 1 (PELE] (= | B

4 File Edit View Replay Tools Window Help [- | =] =]
-3 G s B f

AgEFac|r e ZGHANR BE| P

J EventClass I ApplicationMName | Database|D I BinaryData DatabaseMame | *
SP:starting stress utility [BEig_Database
SP:StmtsStarting stress utility & Big_Database
S5P: stmtCompleted stress utility & Big_Database
SP:Stmtstarting stress utility [Eig_Database
5P: stmtCompleted stress utility & Big_Database |:|
ESP:cump'Ieted gstr‘ess utility & Big_Database -

4 I I

exec dbo.ADGSP_EN_EOLINSLr

T|y

1

' 0 | »

Trace is stopped. | Ln 498, Coll | Rows: 509

| Connections: 0 A

Figure 11-60: The SP: Completed events occurs when a stored procedure has complete executing.

In the example in Figure 11-60, the first row shows a SP:Starting event, which tells us that a new stored
procedure has begun to execute. Then there are several statements within the stored procedure that
execute and, finally, the SP: Completed event occurs, letting us know that execution of the stored
procedure is complete.

SP:RECOMPILE

This event is deprecated. Instead, you should instead use the SQL:StmtRecompile event, which is
included in the TSQL event category.

SP:STARTING

Like the SP:Completed event, the SP:Starting event is aptly named and fires whenever a stored
procedure begins executing.

Profiler Events and Data Columns Explained

282

2 SQL Server Profiler - [Untitled - 1 (PELE)]

o | B ||

4

L

i File Edit View Replay Tools Window Help [- =] =]
(=3 u b x

HOggPac|rn ZHAAR BDHEP

J EventClass I ApplicationMame I DatabaselD I BinaryData I DatabaseName I -
ESP:Starting gstress utility & Big_Database
SP:STMTSTAarting stress utility [Big_Database
SP:sTmtCompleted stress utility & Big_Database
SP:StmtStarting stress utility & Big_Database
SP:StmtCompleted stress utility & Big_Database |:|
SP:Completed stress utility & Big_Database =~

exec dbo.ADGSP_EN_BOLINSTr

ol

I

3

Trace is stopped.

|Lnd93, Coll | Rows: 509

| Connections: 0

o

Figure 11-61: The SP: Starting events signals when a stored procedure begins execution.

While the SP:Starting event is a handy way to indicate the beginning of the execution of a stored
procedure, the event's data columns don't provide a lot of useful information beyond this. Many DBAs
consider this event optional when they collect trace data, as this information is essentially a subset of

what the SP: Completed event provides.

SP:STMTCOMPLETED

Stored procedures are made up of one or more SQL statements. In SQL Server, each statement within a
stored procedure creates a separate event. As you have already guessed, the SP:StmtCompleted event

indicates when a statement within a stored procedure has ended.

Profiler Events and Data Columns Explained

283

3 SQL Server Profiler - [Untitled - 1 (PELE]]

:Eg

']

#4 File Edit View Replay Tools Window Help HEE

ANSdFac|r v AR =P

J EventClass I ApplicationMame I Duration I CPU I DatabaseName I BinaryData I ClientPro =
SP:Stmtstarting stress utility Big_Database |:|
ESP:Stmtccﬂnp'leted stress utility 20840 1794 EBig_Database

SELECT DISTIMNCT
so_hdr_tbl.gl_cmp_key AS Company,
gl_cmp_tbl.gl_cmp_desc AS [Co. desc],
so_hdr_tb1.so_brnch_key AS branch,
so_brnch_tbl.so_brnch_name AS [branch desc],
in_whs_tbl.in_whs_name A5 [warehouse name],
so_load_tbl.in_whs_key AS [warehouse #],
so_load_tbhl.so_load_key AS [load number],
so_load_tbhl.so_ship_date AS [actual load date],
in_tran_tbl.in_tran_sysdt AS [system load date],
so_dt1_tbl.so_hdr_key AS [order number],
so_dt1_tbl.so_dtl_prmdt AS [promise date],
so_hdr_tbl.so_hdr_crtdt AS [order date],
so_hdr_tbl.en_frgt_key As [freight terms],

[

< | 1

| »

Trace is stopped.

|Ln503,Coll | Rows: 509

| Connections:) -

Figure 11-62: SP: The StmtCompleted indicates when a statement within a stored procedure ends.

The SP:StmtCompleted event's data columns provide lots of useful information about the statement,
including the actual code in the statement, the duration for which the statement ran, the amount of CPU
time used, the number of logical reads and writes, and the number of rows returned by the statement,
among others. This is a very commonly collected event and is very useful to the DBA.

SP:STMTSTARTING

The SP:StmtStarting event, as you may have guessed, indicates when a statement within a stored

procedure begins.

Profiler Events and Data Columns Explained

284

{38 SOL Server Profiler - [Untitled - 1 (PELE]]

D@g

% File Edit View Replay Tools Window Help

BEEE]

ANSEPac|r n e BZANR DE| P

J EventClass I ApplicationMame I Duration I CPU

I DatabaseMame BinaryData

| CliertPro »

| SP:Stmtstarting
SP:stmtCompleted
4 1L}

istress utility

stress utility 20840

Big_Database

1794 Eig_Database

SELECT DISTIMNCT
so_hdr_tbl.gl_cmp_key AS Company,
gl_cmp_tbl.gl_cmp_desc AS [Co. desc],
so_hdr_tbl.so_brnch_key AS branch,
so_brnch_tbl.so_brnch_name AS [branch desc],
in_whs_tbl.in_whs_name aAs [warehouse name],
so_load_thl.in_whs_key As [warehouse #],
so_load_tbl.so_load_key AS [load number],
so_load_tb1.so_ship_date AS [actual load date],
in_tran_tbl.in_tran_sysdt AS [system load date],
so_dtl_tbl.so_hdr_key AS [order number],
so_dtl_tbl.so_dtl_prmdt AS [promise date],
so_hdr_tbl.so_hdr_crtdt AS [order date],
so_hdr_tbl.en_frgt_key AS [freight terms],

1| 1

| »

Trace is stopped.

| Ln 502, Col1

| Rows: 509

| Connections: 0 -

N —————————————————————————

Figure 11-63: The SP: StmtStarting event indicates when a new statement within a stored procedure begins.

Like the SP:Starting event, the SP:StmtStarting event is useful to help place a statement in context of
what else is going on in a server, but is of little further use. As such, many DBAs also consider the SP:
StmtStarting event an optional event because it is essentially a subset of the SP: StmtCompleted event.

TSQL

While the previous section focuses on stored procedure activity, the TSQL event category focuses on
Transact-SQL activity, as found in batches and individual SQL statements.

Profiler Events and Data Columns Explained 285

Trace Properties ﬂ
General Events Selection I
Review selected events and event columns to trace. To see a complete list. select the "Show all events™ and "Show all columns” options.
Events I ApplicationMName I Client Process|D I DatabaselD I DatabaseName I Duration I EndTime I EventSequence I HostN... ~
= TSQL
I Bxec Prepared SQL 2 2 2 v i v
v Prepare SGL 2 2 2 2 v v
¥ SQL:BatchCompleted I I I I3 I~ I I Ird
¥ SQL:BatchStarting I I I I I~ Ird
[V SQL:StmtCompleted W W W v v v v v
v SQL:StmtRecompile i~ i~ i~ i~ I3 Ir2
¥ SQL:StmtStarting I~ I~ I~ i~ 2 "
v Unprepare SQL 2 2 2 2 v IC
W XQuery Static Type ~ ~ ~ ~ I~ V|
+ Transactions
0 Home mmedim bl s S
4 1 | 3
—T50L
Includes event classes produced by the execution of Transact-SCL statements passed to an instance of SGL Server from V¥ Show all events
the client.
[~ Show all columns
—No data column selected.
Column Fitters... |
Organize Columns. .. |

Rin | Cancel Hep |

Figure 11-64: The TSQL event category has three distinct types of event.

The TSQL events fall into three distinct subcategories, so I will discuss them as three separate groups.

Batch and Statement Level Events

e SQL:BatchStarting

e SQL:BatchCompleted
e SQL:StmtStarting

e SQL:StmtCompleted
e SQL:StmtRecompile

Prepare/Execute Model Events
e Prepare SQL

e Exec Prepared SQL
e Unprepare SQL

XML Event

e XQuery Static Type

BATCH AND STATEMENT LEVEL EVENTS

A batch is a group of Transact-SQL statements that run as a single unit. A batch might include a single
Transact-SQL statement, or it might include many separate Transact-SQL statements. The TSQL event
category includes both batch starting and completion events, along with statement level starting and
completion events. As you might expect, when a batch (with one or more statements) is executed, the
batch starting event occurs first, then the statement level starting and completion events (one for each
statement); when all the statements are run, a batch completed event occurs.

Profiler Events and Data Columns Explained 286

SQL:BATCHSTARTING

An SQL:BatchStarting event is fired whenever a new batch begins. Once a batch begins, then one or
more individual Transact-SQL statements are executed.

-
SQL Server Profiler - [Untitled - 1 (PELE]] | =
#5 File Edit View Replay Toels Window Help [-]=] =]
o L . T
HhsEafac|r v | ZANR HE P
J EvertClass | ApplicationName | ClientProcessID | DatabaselD | DatabaseName | Duration =
SOL:Batchstarting Microsoft SQ... 3828 6 Big_Database
SQL: stmtstarting Microsoft sQ.. 2828 & Big_patabase
SgL: stmtCompleted Microsoft sQ.. 3828 & Big_patabase
SOL: StmtStarting Microsoft 5Q.. 3328 & Big_Database =
SOL: StmtCompleted Microsoft 5Q.. 3828 & Big_Database
S0L: BatchCompleted Microsoft 5Q.. 3828 & BEig_Database il _
] [T 3
SELECT top 10000 =, gl_cmp_location, in_tran_type -~
FR.OM in_tran_tbl
HERE (gl_cmp_location = '01') AND (in_tran_type = 'R"']);
SELECT top 100 =, gl_cmp_location, in_tran_type =
FR.OM in_tran_tbl
WHERE (gl_cmp_location = '01') AND (in_tran_type = 'R"');
i
4 T | »
Trace is stopped. | Ln6, Coll | Rows: 12
| Connections: 0 v

Figure 11-65: All batches begin with an SQL:BatchStarting event.

Like the SP:Starting and SP:StmtStarting events, the SQL:BatchStarting event allows you to see cleatly
where a batch begins. Other than this, it is not particularly useful.

SQL:BATCHCOMPLETED

The SQL:BatchCompleted event occurs when a batch completes. This means that one or more
Transact-SQL statements within this batch have completed execution.

Profiler Events and Data Columns Explained 287

r
A SQL Server Profiler - [Untitled - 1 (PELE)] [ESRIEN 5
&5 File Edit View Replay Toels Windew Help [-]=] =]
] I x
HhsEafac|r v | AR DS P
J EvertClass | ApplicationName | ClientProcessID | DatabaselD | DatabaseName | Duration »
S0L:BatchStarting Microsoft S5Q... 3828 & Big_Database
S0L: StmtStarting Microsoft 5Q.. 3828 & BEig_Database
SgL: stmtCompleted Microsoft sQ.. 3828 & Big_patabase F
SgL: stmtstarting Microsoft sQ.. 3828 & Big_patabase =
SQL: StmtCompleted Microsoft 5Q.. 3828 & Big_Database
S0L: BatchCompleted Microsoft 5q.. 3328 & Big_Database il
] T }
SELECT top 10000 *, gl_cmp_location, in_tran_type ~
FROM in_tran_tbl L
HERE (gl_cmp_location = '01') AND (in_tran_type = 'R'];
SELECT top 100 =, gl_cmp_location, in_tran_type =
FROM in_tran_tbl
\[WHERE (gl_cmp_location = '01') AND (in_tran_type = 'R'];
| 1 | »
Trace is stopped. | Ln1l, Coll | Rows: 12
| Connections: 0 v

Figure 11-66: The SQL:BatchCompleted event fires when a batch is done.

The SQL:BatchCompleted event is more useful than the SQL:BatchStarting event because it includes
useful information like the duration of the entire batch, the logical number of reads and physical writes
caused by all the statements inside the batch, the total number of rows returned by the batch, and more.
Many DBAs use the SQL:BatchCompleted event, but not the SQL:BatchStarting event, as the latter is
just a subset of the SQL:BatchCompleted event.

SQL:STMTSTARTING

Once a batch starts, then the individual statements within the batch are executed, one at a time. The
SQL:StmtStarting event is fired as the execution of each individual statement begins.

Profiler Events and Data Columns Explained 288

-
A SQL Server Profiler - [Untitled - 1 (PELE)] = | B S
i File Edit View Replay Tools Window Help [-]=] =]
o "I 3
B Fac|r»ne | ZANSR FE| P
J EvertClass | ApplicationName: | ClientProcessID DatabaselD DatabaseMame I Duration
SgQL:Batchstarting Microsoft 5Q.. 38258 & Big_Database
SOL:StmtStarting Microsoft 54.. 3828 & Big_Database
SOL: stmtCompleted Microsoft 5gQ.. 2828 & Big_Database
SQL:stmtstarting Microsoft 5Q.. 38258 & Big_Database
S0L: StmtCompleted Microsoft 53.. 3828 & Big_Database
sgL: eatchCompleted Microsoft SQ... 3828 & Big_Database 1)y
L ST — g
SELECT top 10000 =, gl_cmp_location, in_tran_type ~
FROM in_tran_tbl
HERE (gl_cmp_location = '01') AND (in_tran_type = 'R");
i
] T 3
Trace is stopped. Ln7, Coll |Rows:12
| Connections: 0 y
-4

Figure 11-67: The SQL:StmtStarting event occurs at the beginning of every new Transact-SQL statement.
Notice in the above batch that there are two SQL:StmtStarting events, indicating two Transact-SQL

events in this batch. Like the SQL:BatchStarting event, the SQL:StmtStarting event is useful to identify
when a new statement is being executed.

SQL:STMTCOMPLETED

The SQL:StmtCompleted event occurs when an individual SQL statement completes execution.

-
3 SQL Server Profiler - [Untitled - 1 (PELE]] = []
£4 File Edit View Replay Tools Window Help []=] =]
e s I 3
HOsEgFac|/» v | ZFANR @A P
J EvertClass | ApplicationMName | Client ProcessID | DatabaselD | DatabasaName | Duration »
SQL:BatchStarting Microsoft 5Q.. 3828 & Big_Database
SQL:StmtStarting Microsoft 5Q.. 3828 & Big_Database
SQL: StmtCompleted Microsoft 5Q.. 3828 & Big_Database
SQL: StmtStarting Microsoft 5Q.. 3828 & Big_Database
SQL: StmtCompleted Microsoft 5Q.. 3828 & Big_Database
SQL:eatchCompleted Microsoft 5Q.. 3828 & Big_Database 1)
< T | b
SELECT top 10000 *, gl_cmp_location, in_tran_type o~
FROM in_tran_tbl
HERE (gl_cmp_location = '01') AND (in_tran_type = 'R'];
e
] ITi] 3
Trace is stopped. Ln8, Coll |Rows: 12
| Connections: 0 v

Figure 11-68: The SQL:StmtCompleted event occurs after each SQL:StmtStarting event.

Profiler Events and Data Columns Explained 289

In the example shown in Figure 11-68, you see two SQL:StmtCompleted events because there are two
Transact-SQL events in this particular batch. Once again, the data columns that accompany the
SQL:StmtCompleted event provide useful information regarding the duration of the entire statement,
the logical number of reads and physical writes caused by the statement, the total number of rows
returned by the statement, and so on.

SQL:STMTRECOMPILE

Starting with SQL Server 2005, recompilation of Transact-SQL code occurs at the statement level, not at
the batch or stored procedure level. Because of this, the SQL:StmtRecompile can be used with both
Stored Procedure and TSQL events to identify Transact-SQL code that recompiles.

Generally speaking, when the a Transact-SQL statement is sent to the query optimizer, it first checks to
see if the Transact-SQL statement already has an execution plan in the plan cache. If it does not, then a
new execution plan is created. If it does find an execution plan, then it is usually reused.

Occasionally, an execution plan exists in the plan cache, but the query optimizer doesn't want to use it,
preferring instead to recompile the statement. Why? There are a variety of possible reasons, including:

e Schema changed

e Statistics changed

e There is a deferred compile

e A SET option changed

e A temp table changed

e A remote rowset changed

e Por Browse permissions changed
e The query notification environment changed
e A partition view changed

e Cursor options changed

e A recompile request was made

If you check the EventSubClass data column for this event, it will tell you for which of these reasons the
Transact-SQL statement was recompiled.

If any table or view accessed by the Transact-SQL code is subject to any of the above changes, between
the time the code is first recompiled and the time it needs to execute again, then the Query Optimizer
will force the code to recompile. This is because any of these changes could negatively affect the
performance of the existing execution plan, so a new plan needs to be created in order to ensure an
optimal execution plan is used.

Profiler Events and Data Columns Explained 290

[54 sQL Server Profiler - [Untitled - 1 (PELE] (= | B e |

EE File Edit Wiew Replay Toeols Window Help = [l =|| =
BN aa|r = AT
| EventClass | EventSubClass | DatabaselD | DatabaseMame CbjectMame -
ESQL:StmtRecumpﬂe 3 - Deferred compile 32767 mssqlsystemresource sp_MShelptype -

‘| 1 | F

update #sphelptype set di_defowner = schema_name(d.schema_id) ~
from #sphelptype c, sys.all_objects d where c.dt_def is not null and d.object_id = —
c.dt_def |E‘
4 | i | 3
Trace is stopped. Ln8 Coll |Rows:17

Connections: 0

-

Figure 11-69: The SQL:StmtRecompile event fires when the query optimizer identifies a reason why a particular
statement should be recompiled.

In many cases, a recompile is a necessary event, so seeing SQL:StmtRecompile events in a trace file is
normal. On the other hand, excessive recompiles indicates a potential problem. So, if you see a lot of
these events, you will want to investigate them, especially if they are occurring over and over for the
same Transact-SQL statement.

PREPARE/EXECUTE MODEL EVENTS

In some cases, applications that use the SqlClient, ODBC, OLE DB, or DB-Library prepare a SQL
statement that is sent to SQL Server to be executed. This can involve up to three steps:

1. Preparation of the SQL statement into an execution plan (Prepare SQL)
2. The execution of the SQL statement (Exec Prepared SQL)
3. Removing the execution plan from the plan cache (Unprepare SQL).

This occurs for applications that use the prepare/execute model to communicate with SQL Server. For
too many reasons to discuss here, the prepare/execute model is not the ideal way to communicate with
SQL Server and should be avoided. Most applications do not use this model, so it is not much of an
issue, and you will not have to worry about tracing the three related TSQL events: Prepare SQL, Exec
Prepared SQL, and Unprepare SQL.

On the other hand, if you have poorly-performing applications and notice that it is using the
Prepare/Execute model to communicate with SQL Server, then you can use these three TSQL events to
monitor how effectively this model is working.

PREPARE SQL

This event fires when a prepared Transact-SQL statement has been sent to SQL Server via SglClient,
ODBC OLE DB, or DB-Library. This event only occurs when the Transact-SQL statement is first
compiled.

EXec PREPARED SQL

This event fires when the Transact-SQL statement is actually executed. In a typical trace you should see
three to five times more Exec Prepared SQL events than Prepare SQL events. This is because the
Transact-SQL statement should be compiled only once, and then executed over and over again without
being recompiled each time it is run. If you notice that the number of Prepare SQL events is about the

Profiler Events and Data Columns Explained 291

same as the Exec Prepared SQL events, this means that the Transact-SQL statement is being recompiled
over and over again, and is a strong indicator that the application code used to execute the Transact-
SQL using the Prepare/Execute Model is pootly designed and is running inefficiently.

UNPREPARE SQL

This event fires when the application has specifically removed a prepared Transact-SQL statement from
the plan cache. This should be a rare event.

XML EVENT: XQUERY STATIC TYPE

The last event in the TSQL event category is XQuery Static Type. The XQuery Static Type event fires
whenever SQL Setrver executes an XQuery expression. To manipulate XML data in SQL Server, the
XQuery language must be used. It is a subset of Transact-SQL and is executed by the query optimizer in
a very similar way to standard Transact-SQL statements. This event can be used when troubleshooting
problems with the XQuery language.

TRANSACTION

The Transaction event category has 13 events, three of which may be of some use to DBAs, while the
other 10 are client software specific. The 13 events are:

e DTCTransaction Event Class

e SQLTransaction Event Class

e TM: Begin Tran Completed Event Class

e TM: Begin Tran Starting Event Class

e TM: Commit Tran Completed Event Class
e TM: Commit Tran Starting Event Class

e TM: Promote Tran Completed Event Class
e TM: Promote Tran Starting Event Class

e TM: Rollback Tran Completed Event Class
e TM: Rollback Tran Starting Event Class

e TM: Save Tran Completed Event Class

e TM: Save Tran Starting Event Class

e Transactionlog Event Class

Profiler Events and Data Columns Explained 292

i 5
Trace Properties [ﬂ

General Events Selection

Review selected events and event columns to trace. To see a complete list, select the "Show all everts” and "Show all columns” options.

Events | Applic... | Bigint... | Bigint... | Binary... [CPU_ | Client... | Colum... | DBUs... | Datab... | Datab... | Dureti. »
= Transactions
DTCTransaction
SQLTransaction

TM: Begin Tran completed
TM: Begin Tran starting

TM: Commit Tran completed
TM: Commit Tran starting

TM: Promate Tran completed
TM: Promote Tran starting
TM: Rollback Tran completed
TM: Rollback Tran starting

i~

m

d X KRR RAAFA
FURC U U U U U U B Y
d % XK KRR K] R A
q % X R R R R KRR
IR AR RRRAAA

TM: Covimn Temm nnmnledad
4 | 1 | r
Broker

Includes event classes that are produced by Service Broker. I¥ Show all events

¥ Show all columns

Cliert Process|D (no fitters applied)
The process D of the application calling SGL Senver. Column Filters. . |

Organize Columns... |

Rn | canced | Hep |

.

Figure 11-71: We will be discussing three of the Transaction events.

Of the above 13 Transaction events, ten are preceded by the letters "TM". These ten events only collect
data if your client application is using a Transaction Management Interface to communicate with SQL
Server. Because this is not common, and because these events are of more interest to developers than
DBAs, we won't discuss them here. However, we will discuss these 3 Transaction events:

e DTCTransaction
e SQLTransaction
e Transactionlog

DTCTRANSACTION

Distributed transactions, or transactions that occur between two databases on the same or different
servers, are notoriously difficult to troubleshoot. While this is mostly a developer debugging issue, often
DBAs get caught up in helping to resolve these problems.

The DTCTransaction event can be used to monitor the status of transactions flowing through the
Microsoft Distributed Transaction Coordinator (MS DTC). It is fired every time a distributed
transaction occurs. While the data columns for this event provide a lot of useful troubleshooting
information, the most useful data is found in the EventSubClass data column. This column describes the
status of the distributed transaction, and can report back the following states:

e 0 = Getaddress

e 1 = Propagate Transaction

e 3 = Close connection

e (= Creating a new DTC transaction
e 7 = Enlisting in a DTC transaction
e 9 = Internal commit

e 10 = Internal abort

Profiler Events and Data Columns Explained 293

e 14 = Preparing Transaction

e 15 = Transaction is prepared

e 16 = Transaction is aborting

e 17 = Transaction is committing

e 22 ='TM failed while in prepared state

e 23 = Unknown
Armed with the above information, the developer should be able to see what is happening with the code
and troubleshoot the problem. If your server is running many distributed transactions, capturing this

event can put an undue burden on the SQL Setvet's resoutces. Be sute to collect data only for limited
periods of time.

SQLTRANSACTION

Of the three Transaction events, this one is probably of the most interest to DBAs and developers. The
SQLTransaction event fires each and every time a SQL Server transaction begins and ends.

54 SQL Server Profiler - [Untitled - 1 (PELE)] = &)
X File Edit View Replay Toels Window Help [=][=] =]
B dFac|r v BADR BDE| P
J EventClass I EvertSequence | Event SubClass | SPID | DatabaseName DatabaselD | *
sgLTransaction 28349 0 - EBegin { 53 pig_Database 3
SgLTransaction 28350 2—R.D'|'|DE.E|'C 53 Big_Database & |j
SQLTransaction 28351 0 - Begin 53 Big_Database 3
SQLTransaction 28352 2 - Rollback 53 Big_Database 6 _
' mo ’ ’ ' b
4|] | v
Trace is stopped. |Ln21895, Col3 | Rows: 38877
| Connections: 0 y

Figure 11-72: The SQLTransaction event reports back on all SQL Server transactions.

When it fires, the SQLTransaction event provides a wealth of useful information for DBAs and
developers trying to troubleshoot specific transaction problems. The information provided by this event
includes:

e The duration of the event

e Username of the transaction

e The name of the object being referenced in the transaction
e The state of the transaction

o 0= Begin
o 1= Commit
o 2= Rollback

o 3 = Savepoint
Because the SQLTransaction event fires at least twice for every transaction, collecting this event can be
quite burdensome on the server, so only collect this event if you absolute need to, and only collect it for
the duration of the specific transactions in which you are interested.

Profiler Events and Data Columns Explained 294

TRANSACTIONLOG

The TransactionLog event is used to track activity in a database's transaction log, and is supposed to
record when transactions are actually written to a transaction log. Unfortunately, this event is not very
useful because the most of the data it provides is not documented by Microsoft.

SQL Server Profiler - [Untitled - 1 (PELE)] =] B |
#4 File Edit View Replay Tools Window Help [= =] x]
& u 3
BOFEFac|r»r v AR = P
J EventClass I EventSequence I Event SubClass I ApplicationName I SPID I HostName I D =
TransactionLog 45332 33024 stress utility 53 PELE
TransactionLog 45333 327EE stress utility 53 PELE
TransactionLog 45334 1802 stress utility 53 PELE s
ETransact'iunLug 45335 1035 stress utility 53 PELE I—I
Trancartdinnl nn ACTITE 1000 etrrace it TH g CT* DCIC i
4| 0 | p
14 1 | »
Trace is stopped. |Ln38853, Coll | Rows: 38877
| Connections: 0 -

Figure 11-73: The Transactionl.og Event is pootly documented and not too useful.

In addition, this event can generate thousands of events per second, putting a huge burden on your
server. Until Microsoft decides to document this event, it is not much use to anyone.

USER CONFIGURABLE

The User Configurable event category allows the DBA or developer to create up to ten user-defined
Profiler events. That's right: you have to define these events yourself if you want to use them!

User Configurable events can be used to debug an application, or within an application to provide useful
information on the behavior of your application.

Profiler Events and Data Columns Explained 295

i N
Trace Properties ﬁ
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and " Show all columns” options.
Events | Applic... | Bigint... | Bigint... | Binary.. | CPU_ | Client... | Colum... | DBU... | Datab... | Datab... | Durati. =
= User configurable
™ UserConfigurable:0 [- ~ ~ -
I~ UserConfigurable:1 n ~ ~ ~ ~
™ UserConfigurable:2 [r ~ - =
™ UserConfigurable:3 [- ~ ~ m
™ UserCorfigurable:4 [- ~ ~ ~
™ UserConfigurable:5 [r ~ - =
™ UserCorfigurable:& [- ~ ~ m
[~ UserConfigurable:7 n ~ ~ ~ ~ :
™ UserConfigurable:8 [- n - =
™ UserCorfigurable:9 n n ~ ~ ~ 1
4 | 1 | .
Broleer
Includes event classes that are produced by Service Broker. ¥ Show all events
W Show all columns
DatabaseMName (no fiters applied)
MName of the database in which the statement of the useris running. Column Filters... |
Organize Columns... |
,Tl Cancel | Help |

-

Figure 11-74: Create your own profiler events that can be captured with Profiler.

Other than to say that these events are created with the sp_trace_generateevent command in SQL
Server, we will not be discussing the topic further in this book, as it would require a lengthy chapter to
cover all there is to know about it.

Believe it or not, we have finished our discussion on useful Profiler events. If you have any attention
span left at this point, we are ready to dissect the various data columns that are available for Profiler
events.

PROFILER DATA COLUMNS

SQL Server Profiler offers up to 64 different data columns per event, although not every column is used
for every event. In this section, we will take a quick look at each of the available data columns, including
a discussion of which ones are more useful than others.

NOTE:

When I describe the data columns below, I often refer to how often a particular data column is
used, such as rarely or often. When I make such a statement, I am referring to how commonly
the data column is used by the various events, not by how commonly the data columns are used
by DBAs to troubleshoot problems.

APPLICATIONNAME

Assuming that the client application passes SQL Server its name (and often no name is passed from the
application), this data column lets you know which application is associated with this event. On some
occasions, the name of the application that is passed to SQL Server may not match the name normally
associated with the application, making it difficult to determine exactly which application is creating the

Profiler Events and Data Columns Explained 296

event. When multiple applications are running on the server and you only need to see trace results of a
single application, it is often useful to filter on this column.

BIGINTDATAL

This seldom-used data column includes event-specific data.

NOTE:

Event-specific data means that the contents of a particular data column will vary, depending on
the event. Often, the only way to find out event-specific data is to look it up in Books Online.

BIGINTDATA2

This even less seldom-used data column includes event-specific data.

BINARYDATA

A few events include this column, which stores event-specific binary data. In most cases, as the data is in
binary form, it is not too useful. One exception to this is the Showplan XML event. The actual XML
data is stored as binary data. While we can't read the data directly, we need to capture it so that Profiler
can display the graphical execution plan.

CPU

This useful data column shows the amount of CPU time used by the event (in milliseconds). This is a
commonly-used data column.

CLIENTPROCESSID

This the ID number assigned to the client process that is communicating with SQL Server and that has
created this event. It is only populated if the client passes the ClientProcessID to SQL Server. Most
events include this data column, and it can be used to filter events so that you only capture those events
relating to the client process in which you are interested.

COLUMNPERMISSIONS

This rarely-used data column is available for audit events only and is used to help you track column
permission activity.

DBUSERNAME

This is the SQL Server user name used by the client. It may or may not be very useful, depending on the
granularity of user security used by the client. For example, if a client application uses DBO to access a
database, then DBO will be put into this data column, which is generally not very useful information.

DATABASEID

This is the internal database ID used by SQL Server, as expressed by a single integer. You can use the
DB_NAME() function to find out the name of the database associated with this integer. Generally,

Profiler Events and Data Columns Explained 297

however, it is easier to use the DatabaseName data column. For most events, both the DatabaselD and
DatabaseName data columns are available, so you only need to capture one or the other. However, for
those few events that only return the DatabaselD, and not the DatabaseName, will you need to use this
data column to identify which database is being affected by the event.

DATABASENAME

Many events include the DatabaseName data column, which makes it easy to identify which database is
being affected by which event. If this column is available for an event, there is no point collecting the
DatabaselD, as it is redundant. Filters are often created on the DatabaseName column, restricting events
to those relevant to the database you are investigating.

DURATION

This very useful data column provides the length of time that an event has taken from beginning to end,
in microseconds. Curiously, when Duration is displayed from the Profiler GUL, it is shown in wzlliseconds
(although you can change this by going to Tools | Options from within Profiler, and changing the default
setting). So internally, SQL Server stores Duration data as microseconds, but, by default, displays it in
milliseconds in Profiler. In addition, when trace data is written to a file or a database, the data is also
written in the form of microseconds.

The Duration column provides DBAs with valuable information on the performance of the event. You
can also filter on Duration, which allows you to select only those events that fall into a timeframe of
interest to you. For example, when I look for long running queries on a SQL Server, I often only return
those queries that exceed a duration of 5000 milliseconds (5 seconds). This helps me to focus on only
those queries that are causing the biggest performance problems.

ENDTIME

The EndTime data column is used for those events associated with a specific end time. It can be used to
help identify when a particular query or transaction completes.

ERROR

Some events are associated with specific errors. If an error occurs, this data column is populated with
the error number. While not always true, you can search for the text message associated with the error
message in the sys.messages system view.

EVENTCLASS

This is the name of the event you are capturing. You will always want to capture this data column so you
know what events you have captured.

EVENTSEQUENCE

Every event produced by SQL Server Profiler trace is assigned a sequence number. This data column is
useful to see the order in which events were fired. Much of the time, you will capture traces in default
order, which means that the events are displayed in the order they occurred in the Profiler GUI, and the
EventSequence numbers will be displayed in ascending order. However, if you choose to capture traces
grouped differently from the default order, then the EventSequence data column makes it easier for you
to see whether an event occurred before or after another event.

Profiler Events and Data Columns Explained 298

EVENTSUBCLASS

This is a very useful, but often overlooked data column. Many events have sub-events which, rather than
have their own row, are displayed in the EventSubClass data column. In this column, assuming the event
has sub-events, you will see some indication of what the sub-event is. Most of the time the sub-events
are fairly self-explanatory; if they are not, you can research them in Books Online. If an event has an
EventSubClass data column, I highly recommend that you always capture it, as it can contain valuable
information.

FILENAME

Some of the events refer to a logical name of a file that has been modified. If this is the case, the name
of the file is stored in the FileName data column.

GUID

This seldom-used data column contains a GUID value that is specific to the event being traced.

HANDLE

This seldom-used data column stores an integer value, used by ODBC, OLE DB, or DB-Library to
coordinate server execution.

HosTNAME

This common and useful data column includes the name of the host running the client application.
Unfortunately, this column has to be provided by the application, which does not always do this. A filter
on this column allows you to focus your trace on only those events from the specific host you are
troubleshooting.

INDEXID

A handful of events refer to specific indexes that have been affected by an event. The value returned is
an integer that identifies the logical number of the index. You can find the name of the index by looking
up the index ID number in the sys.indexes system view of the database where the index is located.

INTEGERDATA

This seldom-used data column includes event-specific data.

INTEGERDATA2

This even less-used data column includes event-specific data.

ISSYSTEM

This very common data column tells you whether an event occurred on a system process or a uset
process. A value of 1 refers to a system process, and a value of 0 refers to a user process. It is sometimes
handy to filter out the system process so you can focus on user processes instead.

Profiler Events and Data Columns Explained 299

LINENUMBER

This data column can be helpful when debugging application code. For a limited number of events, it
contains the physical line number of the statement in a batch or stored procedure that is affected by the
event.

LINKEDSERVERNAME

If you are tracing any of the limited number of events that relate to linked servers, this data column
stores the name of the linked server.

LoGINNAME

Most events include the LoginName data column. It stores the login of the user that caused the event.
Depending on the type of login used, this column can contain either the SQL Server login 1D or the
Windows Login ID (domain\username). This useful data column helps you to identify who is causing
potential problems, and is also a good column to filter on. This way, you can limit trace results to those
of a specific uset.

LoGINSID

This commonly-used data column contains the security identify (SID) of the user that caused the event.
In most cases, you will probably not need it, as the LoginName data column provides essentially the
same data and is easier to read. If you need to find out the login name of a SID, you can do so by
querying the sys.server_principals view in the master database.

METHODNAME

This seldom-used data column contains the OLE DB method that was used when this event was
created. You might find it useful for debugging applications.

MoDE

This seldom-used data column includes event specific state data.

NTDoMAINNAME

This commonly-used data column contains the name of the domain in which the user responsible for
the event resides. In most cases, you won't care about this information.

NTUSERNAME

This is also another commonly-used data column and contains the Windows user name of the user
responsible for the event. In many cases this data duplicates the data found in the LoginName column.

NESTEDLEVEL

This data column is used for those events that return a value based on the @@NESTLEVEL function.
It can sometimes be useful for debugging applications.

Profiler Events and Data Columns Explained 300

OBJECTID

Many events are directly related to specific objects, such as a table or index. The ObjectID data column
stores the system-assigned ID of the object being affected by the event. To identify the name of an
object ID, query the sys.objects system view of the database where the object is located. This can be a
very useful data column, helping you to identify specific objects that might be troublesome. In addition,
you can filter on this column so that you focus exclusively on particular objects of interest. Many events
that include the ObjectlD also include the ObjectName data column. If this is the case, using both of
these data columns would be redundant.

OBJECTID2

In a limited number of events, the ObjectlD2 data column is used to indicate the system-assigned ID of
an object related to the object found in the ObjectID column.

OBJECTNAME

In some events, the ObjectName is stored in the ObjectName data column. There is no point in
returning data for both ObjectID and ObjectName data columns. Instead, pick one and use it.

OBJECT TYPE

Occasionally, when an ObjectlD or ObjectName column is used in an event, the type of the object is
stored in this column. The type value is a number, not a name. You can query the sys.objects system
view to find out what object type the number refers to.

OFFSET

This seldom-used data column indicates a starting offset number of a statement within a batch or stored
procedure. You might find it useful for debugging applications.

OWNERID

This data column is deceivingly named. It is only used for lock events and refers to the type of the object
that owns the lock. This can be useful information when troubleshooting locking issues.

OWNERNAME

This data column, which is used for some Broker and Audit events, lists the database user name of the
object ownet.

PARENTNAME

This rarely-used data column appears in some Broker and Audit events, and contains the name of the
schema in which an object resides.

PERMISSIONS

This data column is only available for selected Audit events. It contains values representing the type of
permissions affected by the event. If you are auditing events for security purposes, this is a useful data
column.

Profiler Events and Data Columns Explained 301

PLANHANDLE

The PlanHandle data column is only available for a single event: Performance Statistics. It contains the
plan handle to the corresponding compiled plan stored in cache.

PROVIDERNAME

This uncommon data column includes the name of the OLE DB provider used for this event.

READS

This very useful data column contains the number of logical page reads performed for the event. It is
very useful in determining how a particular event affects performance.

REQUESTID

This common, but rarely used, data column contains the request ID of the statement shown in the
event.

ROLENAME

If the event is caused by a client running under a SQL Server database role, the role name is located in
this data column.

RowCOUNTS

The RowCounts data column is only found in a few Stored Procedure events. It contains the number of
rows returned from a query.

SPID

This required data column exists for every event, and contains the number of the server process 1D
(SPID) that is assigned to the client process creating the event. It is used to identify what connections
are being used for an event, and can also be used as a filter to limit the number of events returned to
those that are of particular interest.

SERVERNAME

This common data column lists the name of the SQL Server instance that is being traced. In most cases,
this is redundant information and does not need to be collected.

SESSIONLOGINNAME

This common, but seldom-used, data column contains the login name of the account that started the
session that produced the event. This can be useful to know if the event was fired using an account
other than the account original login account.

Profiler Events and Data Columns Explained 302

SEVERITY

When an event produces an error message, it also produces a severity code, which is stored in the
Severity data column. If you are tracking error messages, you will also want to track the message's
severity.

SOURCEDATABASEID

This data column is only available for certain Stored Procedure events. It contains the 1D of the
database where the object exists that is directly related to the event. You can use the DB_NAME()
function to find out the name of the database associated with this ID.

SQLHANDLE

This seldom-used data column includes a 64-bit hash based on the code of an ad hoc query, or it can
contain the object ID of an object. To make use of this value, you must query sys.dm_exec_sql_text() in
order to identify the text associated with this handle.

STARTTIME

Virtually every event has a StartTime data column and, as you would expect, it includes the time the
event started. Often, the start time of an event can be matched to other related events to identify their
order of execution. It can also be compared to the stop time of events to determine the differences in
time between when one event started and another event completed.

STATE

This seldom-used data column contains an error state code that is related to the particular event that
occurred.

SUCCESS

Many events indicate whether they were successful or not. A value of 1 means success, and a value of 0
means failure.

TARGETLOGINNAME

Used only for Broker and Audit events that target a login, this data column contains the name of the
targeted login.

TARGETLOGINSID

Used only for Broker and Audit events that target a login, this data column contains the SID of the
targeted login.

TARGETUSERNAME

Used only for Broker and Audit events that target a database user, this data column contains the name
of the targeted user.

Profiler Events and Data Columns Explained 303

TEXTDATA

This commonly-used data column is one of the most useful data columns you can collect. The value
stored in this column varies according to the event, but often includes the text of the code that fired the
event. You should almost always include this data column in your traces.

TRANSACTIONID

The TransactionID data column exists for most events and contains the system-assigned ID of the
transaction firing the event. Unless you are troubleshooting transactions, this column is not all that
useful.

TYPE

Used mostly for Lock events, this data column contains an integer value that is dependent on the event.

WRITES

Like the Reads data column, the Writes data column is not used often by events. But when it is available,
it provides useful information on the number of physical disk write operations that are performed on the
server as a result of the event. This information is useful when troubleshooting performance problems.

XACTSEQUENCE

While a commonly-used data column, it does not provide information of much use to the DBA. It
contains a token used to describe the current transaction.

SUMMARY

Now that you know the basics of Profiler events and data columns, you can apply them to real world
situations, as appropriate.

I hope you have enjoyed your journey to becoming a Profiler Master. By reading this book, and using
what you have learned in your day-to-day task as a DBA, you are well on your way to becoming an
Exceptional DBA.

Index

Audit Database Activity
Audit Traces, 4, 11, 147,153

Security Audits, 50, 147, 234, 278, 279

Correlation and Analysis
Analysis Services, 10, 13, 22, 47, 48, 49, 224

Analyzing Correlations, 4, 173, 175, 197, 201,
229

Analyzing Trace Data, 229

Correlating Data from Profiler and
Performance Monitor, 5, 187

Database Engine Tuning Advisor
Creating a Trace for the DTA, 11

DTA Analysis, 157, 165, 230
DTA Traces, 231
Using the DTA, 4, 11, 157, 162

Deprecation, 233, 240, 241

Events and Data Columns
Column Filters, 3, 4, 10, 33, 39, 41, 63, 71, 72,

151,152

Organising Data Columns, 3, 4, 10, 63, 75, 94,
152

Profiler Terminology, 3, 5, 9, 12, 13, 15, 64,
233

Organising Traces
Grouping and Aggregation, 229

Parallelism, 261, 264, 265

305

INDEX

Permissions, 18, 150, 151, 306

Profiler GUL, 3, 5, 10, 11, 14, 15, 19, 20, 28, 30,
45, 63, 66, 80, 82, 91, 93, 95, 205, 206, 207,
210, 217, 220, 221, 226, 228, 229, 230, 303

ShowPlan XML, 89, 92, 194, 248, 267
SQL Server 2005 Full Text Service, 233, 256, 269
Trace Templates, 3, 49, 53, 59, 95

Traces, 3, 5, 9, 10, 11, 17, 27, 30, 44, 47, 63, 80,
90, 95, 153, 157, 161, 186, 205, 223, 229
Capturing, 5, 205

Creating, 5, 223, 226
Custom, 3, 33, 53, 56, 59
Organizing, 147
Running, 5, 223, 227

sp_trace_create, 206, 207, 208, 209, 210, 211,
212,213, 218

sp_trace_setevent, 206, 208, 209, 211, 213,
214, 215, 218, 219, 220

sp_trace_setfilter, 206, 208, 215, 220
sp_trace_setstatus, 206, 207, 209, 216, 220

T-SQL
Analyzing Trace Data, 229

The SQL:StmtRecompile Event, 127, 128, 130,
287,291, 295, 296

T-SQL Traces, 5, 217

	Contents
	About the author
	Introduction
	Which Version of SQL Server Profiler is covered in this Book?
	How the Book is Structured
	Chapter 1: Getting Started with Profiler
	Chapter 2: Working with Traces and Templates
	Chapter 3: Profiler GUI Tips and Tricks
	Chapter 4: How to Identify Slow Running Queries
	Chapter 5: How to Identify and Troubleshoot SQL Server Problems
	Chapter 6: Using Profiler to Audit Database Activity
	Chapter 7: Using Profiler with the Database Engine Tuning Advisor
	Chapter 8: Correlating Profiler with Performance Monitor
	Chapter 9: How to Capture Profiler Traces Programmatically
	Chapter 10: Profiler Best Practices
	Chapter 11: Profiler Events and Data Columns Explained
	Have Fun, and Let the Profiler Adventure Begin

	Getting Started with Profiler
	Why Mastering Profiler can help make you an exceptional DBA
	How Profiler can help DBAs
	How Profiler can help developers

	The inner workings of Profiler
	Profiler terminology
	Events
	Data columns
	Filters
	Traces

	Getting Started with Profiler
	Permissions required to use Profiler
	How to start up Profiler
	Getting familiar with the Profiler GUI
	Capturing basic traces
	How to start a trace
	How to pause a trace
	How to stop a trace
	How to clear a trace
	How to save a completed trace to a file
	How to load a saved trace

	Summary

	Working with Traces and Templates
	Understanding the Events Selection Options
	Creating a Custom Trace from Scratch
	Step 1: Start Profiler
	Step 2: Create a new trace definition
	Step 3: Saving the trace to file
	Step 4: Selecting the events to trace
	Step 5: Selecting the data columns
	Step 6: Applying filters
	Step 7: Ordering the data columns
	Step 8: Running the trace
	Step 9: Stopping the trace

	Saving Traces to a SQL Server Table
	Capturing Analysis Server Traces
	Creating and Using Trace Templates
	Predefined Profiler templates
	Standard (default)
	SP_Counts
	TSQL
	TSQL_Duration
	TSQL_Grouped
	TSQL_Replay
	TSQL_SPs
	Tuning

	Custom Profiler Trace Templates
	Creating a Custom Trace Template from Scratch
	Create a Custom Trace Template from an Existing or Saved Trace File
	Modifying Custom Templates
	Executing Custom Trace Templates
	Importing and Exporting Trace Templates

	Summary

	Profiler GUI Tips and Tricks
	Tips on Selecting Profiler Events and Data Columns
	Tip #1: Don't overload your traces
	Tip #2: Event categories are a guide only
	Tip #3: Deselect unwanted data columns
	Tip #4: Use Show All Events and Show All Columns
	Tip #5: When creating traces, you can only change the column order using Organize Columns
	Tip #6: The SPID and EventName data columns are mandatory
	Tip #7: Use the Help Tips!

	Tips on Using Column Filters
	Tip #1: Editing Filters
	Tip #2: Filters do not necessarily reduce workload
	Tip #3: Creating multiple filters
	Tip #4: Filter criteria
	Tip #5: Excluding empty rows

	Tips on Organizing Columns for Grouping and Analysis
	Tip #1: Which are the most important data columns?
	Tip #2: Data is only aggregated if you group on a single column
	Tip #3: Controlling Aggregation and Grouping

	How the "Server Processes Trace Data" Option Affects Traces
	How to Set Global Trace Options
	Display Options
	Tracing Options
	File Rollover Options
	Replay Options

	How to Schedule a Trace's Stop Time
	How to Use the Auto Scroll Window
	How to Search for Data in a Trace File
	How to Set Bookmarks
	Summary

	How to Identify Slow Running Queries
	Creating a Trace to Identify Slow Running Queries
	Selecting Events
	RPC:Completed
	SP:StmtCompleted
	SQL:BatchStarting
	SQL:BatchCompleted
	ShowPlan XML

	Analyzing Captured Events
	Selecting Data Columns
	Duration
	ObjectName
	TextData
	CPU
	Reads
	Writes
	IntegerData
	DatabaseName
	ApplicationName
	StartTime
	EndTime
	SPID
	LoginName
	EventSequence
	BinaryData

	Creating a Filter
	Organizing Columns
	Creating a Template
	Running the Trace

	Analyzing the Poorly Performing Queries Identified by Profiler
	The Big Picture
	Finding Slow-Running Procedures and Queries
	Finding Queries and Procedures that Execute Frequently
	Analyzing Problem Queries
	Drilling in to the Trace Data
	Does a Query Run Slowly Every Time?

	Tuning Slow Queries

	Summary

	How to Identify and Troubleshoot SQL Server Problems
	How to Identify Deadlocks
	Deadlock Events
	Selecting Data Columns
	Selecting a Column Filter
	Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Blocking Issues
	Selecting Data Columns
	Selecting a Column Filter
	Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Excessive Auto Stats Activity
	The Auto Stats Event
	Selecting the Data Columns
	Selecting a Column Filter
	Selecting Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Excessive Statement Compilations
	The SQL:StmtRecompile Event
	Selecting Data Columns
	EventSubClass
	ObjectType

	Selecting a Column Filter
	Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Excessive Database File Growth/Shrinkage
	Data and Log File Auto Grow/Shrink Events
	Selecting Data Columns
	IntegerData
	FileName

	Selecting a Column Filter
	Selecting Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Excessive Table/Index Scans
	The Scan:Started Event
	Selecting the Data Columns
	Selecting a Column Filter
	Column Organization
	Running the Trace
	Analyzing the Trace

	How to Identify Memory Problems
	Memory Profiling Events
	Execution Warnings
	Sort Warnings
	Server Memory Change

	Selecting the Data Columns
	EventSubClass
	IntegerData

	Selecting a Column Filter
	Column Organization
	Running the Trace
	Analyzing the Trace

	Summary

	Using Profiler to Audit Database Activity
	Capturing Audit Events
	Selecting Data Columns
	Selecting Column Filters
	Organizing Columns
	How to Conduct an Audit Trace
	Summary

	Using Profiler with the Database Engine Tuning Advisor
	Features and Benefits of Using the DTA
	How to Create a Trace for Use by the DTA
	Using the Profiler Default Tuning Template
	A Slim-line Tuning Template
	Running the Workload Trace
	Performing a Missing Index Analysis Using the DTA
	Starting the DTA
	Defining the Workload and Specifying the Database
	Running the DTA Analysis
	Analyzing the Results
	Implementing the DTA's Recommendations

	Summary

	Correlating Profiler with Performance Monitor
	How to Collect Profiler Data for Correlation Analysis
	Events and Data Columns
	Filters
	Ordering and Grouping Columns

	How to Collect Performance Monitor Data for Correlation Analysis
	Defining a new Performance Monitor Log File
	Selecting Performance Counters for the Log File
	Creating and Saving the Log File
	Collecting Performance Monitor Data

	How to Capture Profiler Traces and Performance Monitor Logs
	How to Correlate SQL Server 2005 Profiler Data with Performance Monitor Data
	How to Analyze Correlated Data
	Correlation Analysis Part One: Starting from Performance Monitor
	Correlation Analysis Part Two: Starting from Profiler

	Summary

	How to Capture Profiler Traces Programmatically
	Pro and Cons of Capturing Traces Programmatically
	Capturing Trace Data Programmatically: An Overview
	Required System Stored Procedures
	SP_TRACE_CREATE
	SP_TRACE_SETEVENT
	SP_TRACE_SETFILTER
	SP_TRACE_SETSTATUS

	Putting the Pieces Together: Writing Your Own Trace Capture Scripts
	The start_trace Script: Creating, Defining and Starting the Trace
	Declaring Variables
	Assigning Values to Parameters
	Creating the Trace
	Error Handling
	Specifying the Trace Events and Data Columns
	Setting Filters
	Starting the Trace
	Finishing the Script
	The stop_trace Script: Stopping and Closing the Trace

	Creating T-SQL Traces from the Profiler GUI
	Using a Trace Function to Query a Trace File
	Summary

	Profiler Best Practices
	General Profiler Best Practices
	Profiler is Not Just for DBAs
	Profiler May Not be the Best Choice to Analyze a Particular Problem
	Use Profiler to Learn How Applications Work
	Use Profiler for Transact-SQL, SSIS, and Analysis Services
	Use Profiler to Monitor Live Activity
	Create Profiler Baselines
	When (and when not) to Trace Data
	How Often to Trace Data
	Where to Store Trace Data
	Profiler GUI vs. Profiler System Stored Procedures
	Ensuring Adequate Disk Space for a Trace
	Practice Makes Perfect

	Creating Traces
	Use Templates or Scripts
	Collect Only Relevant Data
	Use Filters to Reduce the Number of Events Collected

	Running Traces
	Run Only One Trace at a Time
	The SQL Server 2005 Default Trace
	Don't Run Profiler When Other Activity is Happening
	Store Trace Files on Disk, Then Import into a SQL Server Table
	Turn Traces Off and On Automatically

	Analyzing Traces
	Limit Data Collected
	Use Grouping and Aggregation
	Analyze Trace Data Using Transact-SQL

	Performance Monitor
	Don't Perform a Correlation Analysis When the Server is Busy
	Run Performance Monitor and Profiler off the SQL Server Instance
	Ensure Both Client and Server are in Same Time Zones
	Restrict the Amount of Performance Monitor Counter Data Collected
	Restrict the Number of Counters Displayed in Profiler GUI
	Use the Zoom Feature to Drill Down Into Time Intervals

	Database Engine Tuning Advisor
	Only include Essential Events and Data Columns in DTA Trace
	Run DTA Analysis during Times of Low Activity
	Make DTA Traces a Regular Part of Your Scheduled Tasks

	Summary

	Profiler Events and Data Columns Explained
	Event Categories
	Broker Events
	CLR Events
	Cursors
	Database
	Automatic log and data file Growth and Shrinkage
	Database Mirroring State Change

	Deprecation
	Errors and Warnings
	Attention
	Background Job Error
	Blocked Process Report
	ErrorLog
	EventLog
	Exception
	Exchange Spill
	Execution Warnings
	Hash Warning
	Missing Column Statistics
	Missing Join Predicate Event
	Sort Warnings
	User Error Message

	Full Text
	Locks
	General Lock Events
	Deadlock Lock Events
	Timeout Lock Events

	Objects
	OLEDB
	Performance
	Auto Stats
	Degree of Parallelism (7.0 Insert)
	Performance Statistics
	SQL:FullTextQuery
	Showplan XML
	Showplan XML for Query Compile
	Showplan XML Statistics Profile

	Progress Report
	Query Notifications
	Scans
	Security Audit
	Server
	Mount Tape
	Trace File Close
	Server Memory Change

	Sessions
	Stored Procedures
	RPC:Output Parameter
	RPC:Completed
	RPC:Starting
	SP:CacheHit
	SP:CacheInsert
	SP:CacheMiss
	SP:CacheRemove
	SP:Completed
	SP:Recompile
	SP:Starting
	SP:StmtCompleted
	SP:StmtStarting

	TSQL
	Batch and Statement Level Events
	SQL:BatchStarting
	SQL:BatchCompleted
	SQL:StmtStarting
	SQL:StmtCompleted
	SQL:StmtRecompile
	Prepare/Execute Model Events
	Prepare SQL
	Exec Prepared SQL
	Unprepare SQL
	XML Event: XQuery Static Type

	Transaction
	DTCTransaction
	SQLTransaction
	TransactionLog

	User Configurable

	Profiler Data Columns
	ApplicationName
	BigintData1
	BigintData2
	BinaryData
	CPU
	ClientProcessID
	ColumnPermissions
	DBUserName
	DatabaseID
	DatabaseName
	Duration
	EndTime
	Error
	EventClass
	EventSequence
	EventSubClass
	FileName
	GUID
	Handle
	HostName
	IndexID
	IntegerData
	IntegerData2
	IsSystem
	LineNumber
	LinkedServerName
	LoginName
	LoginSID
	MethodName
	Mode
	NTDomainName
	NTUserName
	NestedLevel
	ObjectID
	ObjectID2
	ObjectName
	Object Type
	Offset
	OwnerID
	OwnerName
	ParentName
	Permissions
	PlanHandle
	ProviderName
	Reads
	RequestID
	RoleName
	RowCounts
	SPID
	ServerName
	SessionLoginName
	Severity
	SourceDatabaseID
	SQLHandle
	StartTime
	State
	Success
	TargetLoginName
	TargetLoginSid
	TargetUserName
	TextData
	TransactionID
	Type
	Writes
	XactSequence

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020062A0645062706450627064B0020064506390020064506420627064A064A06330020005000440046002F0058002D00310061003A0032003000300031002006300648002006270644064506480627063506410627062A0020062706440642064A06270633064A0629002000490053004F00200644062A06280627062F064400200645062D062A0648064A0627062A00200627064406310633064806450627062A060C00200644064406250637064406270639002006390644064900200627064406450632064A062F002006450646002006270644064506390644064806450627062A0020062D0648064400200625064606340627062100200648062B06270626064200200050004400460020062706440645062A064806270641064206290020064506390020005000440046002F0058002D00310061060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200034002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043a043e04380442043e002004420440044f0431043204300020043404300020044104350020043f0440043e043204350440044f04320430044200200438043b0438002004420440044f04310432043000200434043000200441044a043e0442043204350442044104420432043004420020043d04300020005000440046002f0058002d00310061003a00320030003000310020002d002000490053004f0020044104420430043d04340430044004420020043704300020043e0431043c0435043d0020043d04300020043304400430044404380447043d04380020043c043004420435044004380430043b0438002e00200020041704300020043f043e043204350447043500200438043d0444043e0440043c043004460438044f0020043e0442043d043e0441043d043e00200441044a04370434043004320430043d04350442043e0020043d0430002000500044004600200434043e043a0443043c0435043d04420438002c00200441044a043e04420432043504420441044204320430044904380020043d04300020005000440046002f0058002d00310061002c002004320436002e00200420044a043a043e0432043e0434044104420432043e0442043e0020043704300020044004300431043e04420430002004410020004100630072006f006200610074002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200034002c00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006200750064006f00750020006b006f006e00740072006f006c006f0076006100740020006e00650062006f0020006d0075007300ed0020007600790068006f0076006f0076006100740020007300740061006e006400610072006400750020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e00640061007200640075002000490053004f002000700072006f0020007001590065006400e1007600e1006e00ed0020006700720061006600690063006b00e90068006f0020006f00620073006100680075002e0020002000440061006c016100ed00200069006e0066006f0072006d0061006300650020006f0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f00200050004400460020007600790068006f00760075006a00ed006300ed006300680020005000440046002f0058002d003100610020006e0061006a00640065007400650020007600200050015900ed00720075010d0063006500200075017e00690076006100740065006c00650020004100630072006f0062006100740075002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200034002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d006900640061002000740075006c006500620020006b006f006e00740072006f006c006c0069006400610020007600f500690020006d006900730020007000650061007600610064002000760061007300740061006d00610020007300740061006e00640061007200640069006c00650020005000440046002f0058002d00310061003a00320030003000310020002800490053004f0020007300740061006e00640061007200640020006700720061006100660069006c00690073006500200073006900730075002000760061006800650074007500730065006b00730029002e00200020004c0069007300610074006500610076006500740020007300740061006e00640061007200640069006c00650020005000440046002f0058002d0031006100200076006100730074006100760061007400650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d0069007300650020006b006f0068007400610020006c006500690061007400650020004100630072006f00620061007400690020006b006100730075007400750073006a007500680065006e0064006900730074002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200034002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003c003c103cc03ba03b503b903c403b103b9002003bd03b1002003b503bb03b503b303c703b803bf03cd03bd002003ae002003c003bf03c5002003c003c103ad03c003b503b9002003bd03b1002003c303c503bc03bc03bf03c103c603ce03bd03bf03bd03c403b103b9002003bc03b5002003c403bf002003c003c103cc03c403c503c003bf0020005000440046002f0058002d00310061003a0032003000300031002c002003ad03bd03b1002003c003c103cc03c403c503c003bf002000490053004f002003b303b903b1002003b103bd03c403b103bb03bb03b103b303ae002003c003b503c103b903b503c703bf03bc03ad03bd03bf03c5002003b303c103b103c603b903ba03ce03bd002e00200020039303b903b1002003c003b503c103b903c303c303cc03c403b503c103b503c2002003c003bb03b703c103bf03c603bf03c103af03b503c2002003c303c703b503c403b903ba03ac002003bc03b5002003c403b7002003b403b703bc03b903bf03c503c103b303af03b1002003b503b303b303c103ac03c603c903bd0020005000440046002003c303c503bc03b203b103c403ce03bd002003bc03b5002003c403bf0020005000440046002f0058002d00310061002c002003b103bd03b103c403c103ad03be03c403b5002003c303c403bf03bd0020039f03b403b703b303cc002003a703c103ae03c303c403b7002003c403bf03c50020004100630072006f006200610074002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200034002c0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D905D505E205D305D905DD002005DC05D105D305D905E705D4002005D005D5002005E905D705D905D905D105D905DD002005DC05D405EA05D005D905DD002005DC002D005000440046002F0058002D00310061003A0032003000300031002C002005EA05E705DF002000490053004F002005E205D105D505E8002005D405E205D105E805EA002005EA05D505DB05DF002005D205E805E405D9002E002005DC05E705D105DC05EA002005DE05D905D305E2002005E005D505E105E3002005D005D505D305D505EA002005D905E605D905E805EA002005DE05E105DE05DB05D90020005000440046002005D405EA05D505D005DE05D905DD002005DC002D005000440046002F0058002D00310061002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200034002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020006b006f006a00690020007300650020006d006f00720061006a0075002000700072006f0076006a0065007200690074006900200069006c00690020007000720069006c00610067006f00640069007400690020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f0020007300740061006e006400610072006400750020007a0061002000720061007a006d006a0065006e0075002000670072006100660069010d006b0069006800200073006100640072017e0061006a0061002c0020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005a00610020007600690161006500200069006e0066006f0072006d006100630069006a00610020006f0020007300740076006100720061006e006a0075002000500044004600200064006f006b0075006d0065006e006100740061002000730075006b006c00610064006e006900680020007300200066006f0072006d00610074006f006d0020005000440046002f0058002d0031006100200070006f0067006c006500640061006a007400650020004100630072006f0062006100740020006b006f007200690073006e0069010d006b0069002000700072006900720075010d006e0069006b002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200034002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a007a00610020006c00e900740072006500200061007a006f006b0061007400200061007a002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002c00200061006d0065006c00790065006b0065007400200065006c006c0065006e01510072007a00e900730072006500200073007a00e1006e002c0020007600610067007900200061006d0065006c00790065006b006e0065006b0020006d006500670020006b0065006c006c002000660065006c0065006c006e0069006500200061002000670072006100660069006b00750073002000740061007200740061006c006f006d0020006300730065007200650066006f007200670061006c006f006d007200610020006b006900660065006a006c00650073007a0074006500740074002000490053004f00200073007a00610062007600e1006e00790020005000440046002f0058002d00310061003a003200300030003100200066006f0072006d00e100740075006d006e0061006b002e0020002000410020005000440046002f0058002d0031006100200066006f0072006d00e100740075006d006e0061006b0020006d0065006700660065006c0065006c0151002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0020006c00e90074007200650068006f007a00e1007300e10072006100200076006f006e00610074006b006f007a00f300200074006f007600e10062006200690020007400750064006e006900760061006c00f3006b00200061007a0020004100630072006f006200610074002000660065006c006800610073007a006e00e1006c00f300690020006b00e9007a0069006b00f6006e0079007600e900620065006e0020006f006c00760061007300680061007400f3006b002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200034002e003000200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b0069007200740069002000740069006b00720069006e00740069002000610072002000700072006900760061006c006f002000610074006900740069006b007400690020005000440046002f0058002d00310061003a0032003000300031002000670072006100660069006e0069006f00200074007500720069006e0069006f0020006b0065006900740069006d006f00730069002000490053004f0020007300740061006e00640061007200740105002e00200020004400610075006700690061007500200069006e0066006f0072006d006100630069006a006f0073002000610070006900650020005000440046002f0058002d003100610020007300740061006e00640061007200740105002000610074006900740069006e006b0061006e010d00690173002000500044004600200064006f006b0075006d0065006e007401730020006b016b00720069006d01050020006900650161006b006f006b0069007400650020004100630072006f00620061007400200076006100720074006f0074006f006a006f0020007600610064006f00760065002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200034002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690020006900720020006a01010070010100720062006100750064006100200076006100690020006b0075007200690065006d0020006900720020006a01010061007400620069006c007300740020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f0020007300740061006e00640061007200740061006d002000610070006d006100690146006100690020006100720020006700720061006600690073006b006f0020007300610074007500720075002e00200050006c006101610101006b007500200069006e0066006f0072006d010100630069006a007500200070006100720020005000440046002f0058002d00310061002000730061006400650072012b00670075002000500044004600200064006f006b0075006d0065006e0074007500200069007a00760065006900640069002c0020006c016b0064007a0075002c00200073006b006100740069006500740020004100630072006f0062006100740020006c006900650074006f00740101006a006100200072006f006b00610073006700720101006d006100740101002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200034002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002c0020006b007400f300720065002000620119006401050020007300700072006100770064007a006f006e00650020006c007500620020007301050020007a0067006f0064006e00650020007a0020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e0064006100720064002000490053004f00200064006c0061002000770079006d00690061006e00790020007a00610077006100720074006f015b006300690020006700720061006600690063007a006e0065006a002e0020002000570069011900630065006a00200069006e0066006f0072006d00610063006a00690020006e0061002000740065006d00610074002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a0067006f0064006e0079006300680020007a0020005000440046002f0058002d003100610020007a006e0061006a00640075006a006500200073006901190020007700200070006f0064007201190063007a006e0069006b007500200075017c00790074006b006f0077006e0069006b0061002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200034002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f00620065002000500044004600200063006100720065002000750072006d00650061007a010300200073010300200066006900650020007600650072006900660069006300610074006500200073006100750020007400720065006200750069006500200073010300200063006f00720065007300700075006e006401030020007300740061006e00640061007200640075006c007500690020005000440046002f0058002d00310061003a0032003000300031002c00200075006e0020007300740061006e0064006100720064002000490053004f002000700065006e00740072007500200073006300680069006d00620075006c00200064006500200063006f006e01630069006e0075007400200067007200610066006900630020002000500065006e00740072007500200069006e0066006f0072006d00610163006900690020007300750070006c0069006d0065006e007400610072006500200064006500730070007200650020006300720065006100720065006100200064006f00630075006d0065006e00740065006c006f0072002000500044004600200063006f006e0066006f0072006d00650020006300750020007300740061006e00640061007200640075006c0020005000440046002f0058002d00310061002c00200063006f006e00730075006c0074006101630069002000470068006900640075006c0020007500740069006c0069007a00610074006f00720075006c00750069002000700065006e0074007200750020004100630072006f006200610074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200034002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043a043e0442043e0440044b04350020043f043e0434043b04350436043004420020043f0440043e043204350440043a043500200438043b043800200434043e043b0436043d044b00200441043e043e0442043204350442044104420432043e043204300442044c0020005000440046002f0058002d00310061003a0032003000300031002c0020044104420430043d04340430044004420443002000490053004f00200434043b044f0020043e0431043c0435043d0430002004330440043004440438044704350441043a0438043c00200441043e04340435044004360430043d04380435043c002e002000200411043e043b043504350020043f043e04340440043e0431043d0430044f00200438043d0444043e0440043c043004460438044f0020043f043e00200441043e043704340430043d0438044e0020005000440046002d0434043e043a0443043c0435043d0442043e0432002c00200441043e0432043c0435044104420438043c044b0445002004410020005000440046002f0058002d00310061002c0020043f0440043504340441044204300432043b0435043d043000200432002004200443043a043e0432043e043404410442043204350020043f043e043b044c0437043e0432043004420435043b044f0020004100630072006f006200610074002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200034002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e9002000730061002000620075006400fa0020006b006f006e00740072006f006c006f00760061016500200061006c00650062006f0020006d00750073006900610020007600790068006f0076006f0076006101650020016100740061006e006400610072006400750020005000440046002f0058002d00310061003a0032003000300031002c0020016100740061006e00640061007200640075002000490053004f0020006e00610020007000720065006400e100760061006e006900650020006700720061006600690063006b00e90068006f0020006f00620073006100680075002e0020010e0061006c01610069006500200069006e0066006f0072006d00e10063006900650020006f0020007600790074007600e100720061006e00ed00200064006f006b0075006d0065006e0074006f007600200050004400460020007600790068006f00760075006a00fa00630069006300680020005000440046002f0058002d003100610020006e00e1006a00640065007400650020007600200050007200ed00720075010d006b006500200075017e00ed0076006100740065013e0061002000610070006c0069006b00e10063006900650020004100630072006f006200610074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200034002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b00690020006a006900680020006a0065002000740072006500620061002000700072006500760065007200690074006900200061006c00690020006d006f00720061006a006f002000620069007400690020007600200073006b006c006100640075002000730020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e0064006100720064006f006d002000490053004f0020007a006100200069007a006d0065006e006a00610076006f002000670072006100660069010d006e0065002000760073006500620069006e0065002e00200020005a006100200064006f006400610074006e006500200069006e0066006f0072006d006100630069006a00650020006f0020007500730074007600610072006a0061006e006a007500200064006f006b0075006d0065006e0074006f00760020005000440046002c00200073006b006c00610064006e00690068002000730020005000440046002f0058002d00310061002c0020007300690020006f0067006c0065006a00740065002000750070006f007200610062006e00690161006b006900200070007200690072006f010d006e0069006b0020004100630072006f006200610074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200034002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004b006f006e00740072006f006c0020006500640069006c006500630065006b00200076006500790061002000670072006100660069006b0020006900e7006500720069006b002000740061006b0061007301310020006900e70069006e0020006200690072002000490053004f0020007300740061006e006400610072006401310020006f006c0061006e0020005000440046002f0058002d00310061003a003200300030003120190065002000750079006d00610073013100200067006500720065006b0065006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020005000440046002f0058002d003100610020007500790075006d006c00750020005000440046002000620065006c00670065006c006500720069006e0069006e0020006f006c0075015f0074007500720075006c006d00610073013100200069006c006500200069006c00670069006c006900200064006100680061002000660061007a006c0061002000620069006c006700690020006900e70069006e0020006c00fc007400660065006e0020004100630072006f0062006100740020004b0075006c006c0061006e0131006d0020004b0131006c006100760075007a0075006e0061002000620061006b0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200034002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456002004310443043404430442044c0020043f043504400435043204560440044f044204380441044f002004300431043e0020043f043e04320438043d043d04560020043204560434043f043e0432045604340430044204380020044104420430043d043404300440044204430020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f00200434043b044f0020043e0431043c0456043d04430020043304400430044404560447043d0438043c0438002004340430043d0438043c0438002e002000200414043e043404300442043a043e043204560020043204560434043e043c043e0441044204560020043f0440043e0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d0442045604320020005000440046002c0020044f043a04560020043204560434043f043e0432045604340430044e0442044c0020044104420430043d043404300440044204430020005000440046002f0425002d0031002c0020043404380432002e002004430020043f043e044104560431043d0438043a04430020043a043e0440043804410442044304320430044704300020004100630072006f006200610074002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200034002c0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

