

Position
Specifies where this operator
may occur in a sequence:
those that generate a sequence
(a source) must be in initial position; those that transform or process a sequence are intermediate; those that
convert the sequence to an object or a value (a sink) are final. For example, Select (intermediate) might
appear as op1(...).op2(...).Select(...).op3(...) while Count (final) must appear as op1(...).op2(...).Count(...).

Syntax
Every operator exists in lambda syntax; only a select few exist in query syntax but those are the most
commonly used; both styles
may be used together. The snippet
shows the same result with both styles.

Execution and Laziness
LINQ defers execution for many operators; data results are returned immediately only for some. Further,
when executing a query, only as much of a sequence that is actually needed is evaluated: that might be just
the first element, all elements, or some number in between. This could vary for any given operator
depending on arguments supplied. Ex: with no arguments First evaluates only the first element, but with a
condition First might evaluate any number (or all) arguments; thus, First shows all 3 possibilities marked.

Complexity
Time complexity specifies how long an operator takes to run. Notes:
>> Count & LongCount run in O(1) if the underlying type implements ICollection; otherwise O(n).
>> ElementAt(OrDefault) & Last(OrDefault) run in O(1) if the type implements IList<T>; otherwise O(n).
>> First(OrDefault) & Single(OrDefault) run in O(n) if a condition is present; otherwise O(1).
Space complexity specifies how much memory is used with respect to the input size.

Optional Features
Available index: When processing a given element, operator
may use the element’s index in a computation.

Input Transform: Accepts a transform function for input
(rather than invoking Select then the operator).

Output Projection: Accepts a projection function for output
(rather than invoking the operator then Select).

Custom Comparer: Operators that do comparisons can
accept a custom comparer rather than the default.

Conditional Selection: Accepts a filtering function for output
(rather than invoking Where then the operator).

Category LINQ Operators Visual Pattern

Collapse

all to one

Aggregate
All
Any
Average
Count
LongCount
Sum

Collapse

some to one

Count
LongCount
SequenceEqual

Collapse

groups

GroupBy
ToLookup

Expand

groups

SelectMany

One

to one

All
Any
Contains
ElementAt(OrDefault)
First(OrDefault)
Last(OrDefault)
Max
Min
Single(OrDefault)

None

to one

DefaultIfEmpty
ElementAtOrDefault
FirstOrDefault
LastOrDefault
SingleOrDefault

None

to some

Range
Repeat

Convey all/

order

retained

AsEnumerable
Cast
Concat
DefaultIfEmpty
GroupJoin
Select
Single
Skip(While)
Take(While)
ToArray
ToDictionary
ToList
Union
Zip

Convey all/

order

changed

OrderBy(Descending)
Reverse
ThenBy(Descending)

Convey

some

Distinct
Except
Intersect
Join
OfType
Skip(While)
Take(While)
Where
Zip

 Further Reading
LINQ on MSDN

Enumerable Methods

LINQ Debugging and Visualization

Query Expression Syntax for Standard Query Operators

101 LINQ Samples or LINQ Samples.com

 Visual Lexicon of LINQ
LINQ extends the C# language with native data querying capabilities giving you SQL-like expressiveness in C# (and other .NET languages). LINQ can

 be applied to in-memory data (variables), XML, databases, and more, limited only by the LINQ providers you have on hand. This wallchart is a

companion to the article A Visual Lexicon of LINQ (http://bit.ly/2oJNF3j), which provides a visual example for each LINQ operator to provide a quick understanding

of how each one conveys its input to its output. An example is shown immediately below. Thanks to OzCode (https://oz-code.com/) for the visual pattern

renderings.

Copyright © 2017 Michael Sorens

 2017.04.22 Version 1.0.2

Published on Simple-Talk.com at http://bit.ly/2oJNF3j

Characteristics of each LINQ operator

Visual Patterns of LINQ Operators

LINQ operators can be categorized into these ten patterns.

Note that some operators fit more than one pattern. For

example, All fits Collapse all to one when returning true,

but One to one when returning false. Count with

conditional selection fits Collapse some to one but without

it, fits Collapse all to one. Refer to the main article for

details of each operator.

This example visualization of the Count operator shows

how some of the 7 input elements are included and

some excluded, and how the included elements

collapse to a single output element (the “Collapse all

to one” pattern). Purple lines (/) simply indicate an

item is selected in the editor; other patterns also show

grey lines (/) for unselected elements.

pets.Select((pet, i) => $"{i} {pet.Name}")

numbers.Sum(n => n > 5 ? n : 0)

pets.GroupBy(p => p.Age, p => p.Name)

words.Single(w => w.Length > minLength)

fruits.Contains(pear, produceComparer)

https://msdn.microsoft.com/en-us/library/mt693024.aspx
https://msdn.microsoft.com/en-us/library/system.linq.enumerable_methods(v=vs.110).aspx
https://www.simple-talk.com/dotnet/net-development/linq-debugging-visualization/
https://msdn.microsoft.com/en-us/library/mt693033.aspx
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://linqsamples.com/
http://bit.ly/2oJNF3j
https://oz-code.com/
http://www.simple-talk.com/author/michael-sorens/
http://bit.ly/2oJNF3j

