

	
	

	
	

	
	

 Redgate Hub

 	

 Product articles

	

 University

	

 Events

	

 Forums

	

 Community

	

 Simple Talk

	
	
		
			
					Home
	Cloud
	DevOps
	Sysadmin
	Development
	Databases
	Opinion
	Books
	Blogs

				
					
							Log in
						
	
							Sign up
						
	
						
					

			

		
	

	
		
			
				

	
				
					
	

Aneesh Lal Gopalakrishnan	

	23 May 2022

	
		
			

 			
				8			
		
	
			26523 views
		
	
			0		
	
			
	
	
	
	
	

		

	

			
			Home
	
											
					
						Development
											
									
	
											
					
						Angular
											
									
	Inline PDF Viewer in an Angular App? Now you can

	
		
			
			
						
					
	

Aneesh Lal Gopalakrishnan			

			
			23 May 2022

			
				
				
					26523 views
				

				
				
					

 					
						8					
				

				
				0			

		

		Inline PDF Viewer in an Angular App? Now you can
This article by Aneesh Lal Gopalakrishnan describes the easiest way to integrate an inline pdf viewer into an angular application.

		
			
				PDF and web have never been friends — so much so that most users always download a PDF before viewing it. This has changed a lot in recent years. Browsers do support the viewing of pdfs in separate tabs nowadays. For most use cases, downloading plus the ability to show a PDF in a tab would suffice.

But, developers have been hungry. They wanted to show the PDF inside their website so that users could view and sign them, read them like a book, and so on. In short, a better user experience was lacking when users were forced to download a PDF or open it in a separate tab/window. This created the need for a PDF viewer which can be easily integrated into Angular. There were a lot of small and partial solutions arising in this space, yet none was available for Angular developers.

Angular developers like myself have suffered greatly due to a lack of a quality library that can be used to show a pdf without losing the user experience.

Enter ng2-pdfjs-viewer, and the Angular developer’s fight with PDF is over!

The ng2-pdfjs-viewer component is built on top of Mozilla’s viewerjs and pdfjs, so its core is solid. It does have easy-to-use attributes along with the ability to customize anything which pdfjs supports. You can find the code demonstrated in this article here.

Usage can be as simple as

		
		
			

			
					
					1

					<ng2-pdfjs-viewer pdfSrc="sample.pdf"></ng2-pdfjs-viewer>

			

		

And viola, the PDF sits right inside the Angular application like this:

Now the question is – what else can I get out of it?

Here are some examples. Suppose you wanted to show two versions of the same document for comparison side by side in your web application. Now you can. Do you want to open the PDF in a separate browser window for traditional viewing? No problem. Do you like to show a print preview dialog automatically after opening the PDF in a new browser window? Piece of cake. Automatically download the pdf? Got it.

This pdf viewer supports tons of other features, and you have fine control of what to do with it.

Setup ng2-pdfjs-viewer in an Angular App

Follow these steps to set up the component:

1. Installation – Like any other package – get it from the npm registry

		
		
			

			
					
					1

					$ npm install ng2-pdfjs-viewer --save

			

		

This is a standard npm package installation command. Make sure it gets installed in dependencies using the --save parameter.

2. Configuration – Let your app know you would like to use it

Set it up in your angular AppModule:

		
		
			

			
					
					1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

					import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { AppComponent } from './app.component';
import { PdfJsViewerModule } from 'ng2-pdfjs-viewer'; // <-- Import PdfJsViewerModule module
@NgModule({
 declarations: [
	AppComponent,
],
 imports: [
	BrowserModule,
	PdfJsViewerModule // <-- Add to declarations
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

			

		

As shown here, the module to be imported is PdfJsViewerModule; this is required as this is the module that makes sure ng2-pdfjs-viewer is ready to be used.

It is equally important to add the module PdfJsViewerModule into the imports section of @NgModule. With this step, you are almost ready to use the inline PDF viewer.

3. Build – Add a build step, so that your angular app has a copy of pdfjs

The ng2-pdfjs-viewer component is built on top of pdfjs, which also means that it’s needed for this angular component to work properly. There are several ways this can be achieved, from the manual process of copying relevant files to automated build scripts. Here are the two most popular mechanisms angular developers use when they need extra files to be copied as part of the build step.

Either add an angular build step into angular.json:

		
		
			

			
					
					1
2
3

					"assets": [
 { "glob": "**/*", "input": "node_modules/ng2-pdfjs-viewer/pdfjs", "output": "/assets/pdfjs" },
]

			

		

Or use webpack or similar bundlers (Hmm, are you still using webpack?)

		
		
			

			
					
					1
2
3
4
5
6
7

					var TransferWebpackPlugin = require('transfer-webpack-plugin');
...
plugins: [
 new TransferWebpackPlugin([
	{ from: 'node_modules\ng2-pdfjs-viewer\pdfjs', to: path.join(__dirname, 'assets') }
])
]

			

		

PDF Loading Events

Often, you might like to tap into the PDF pipeline of printing or loading to execute a task. This could be to show a message to the user that the PDF is loaded for large PDFs or that the PDF is successfully printed, etc. The code found here provides several events hooks for that.

HTML

		
		
			

			
					
					1
2
3
4
5
6
7

					<!-- your.component.html -->
<ng2-pdfjs-viewer pdfSrc="gre_research_validity_data.pdf"
 	viewerId="MyUniqueID"
 	(onBeforePrint)="testBeforePrint()"
 	(onAfterPrint)="testAfterPrint()"
 	(onPagesLoaded)="testPagesLoaded($event)">
</ng2-pdfjs-viewer>

			

		

For events to work properly, you should set viewerId. This helps event routing understand which component the event is to be sent to, even if there is more than one ng2-pdfjs-viewer component on the page. viewerId should be a unique id (like a guid).

Angular component

Once capturing these events, developers can execute custom tasks/code to take action based on these events. Given below is an event which emits and displays a number of pages in PDF.

		
		
			

			
					
					1
2
3
4
5
6
7
8
9
10

					<!-- your.component.ts -->
public testBeforePrint() {
	console.log("testBeforePrint() successfully called");
}
public testAfterPrint() {
	console.log("testAfterPrint() successfully called");
}
public testPagesLoaded(count: number) {
	console.log("testPagesLoaded() successfully called. Total pages # : " + count);
}

			

		

You can see the events that are emitted on the developer console as shown below.

What about PDF files returned from an API?

The ng2-pdfjs-viewer component can also work with other server-side APIs to render returned PDFs. To get this going, you would convert the PDF into a byte[] array or blob and give it to the viewer.

A bit of HTML in an Angular component

		
		
			

			
					
					1
2
3
4

					<!-- your.component.html -->
<div style="height: 600px">
	<ng2-pdfjs-viewer #pdfViewer></ng2-pdfjs-viewer>
</div>

			

		

Notice the #pdfViewer. This is your reference.

Some download code

The downloadFile() function calls the API; you may use any HTTP querying mechanism here. The requirement is that the API endpoint returns the pdf as a byte array.

		
		
			

			
					
					1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

					<!-- your.component.ts -->	
 @ViewChild('pdfViewer') public pdfViewer;
constructor(private http: HttpClient) {
	let url = "api/document/getmypdf";
	this.downloadFile(url).subscribe(
 	(res) => {
 	this.pdfViewer.pdfSrc = res; // pdfSrc can be Blob or Uint8Array
 	this.pdfViewer.refresh(); // Ask pdf viewer to load/refresh pdf
 	}
);
}
private downloadFile(url: string): any {
	return this.http.get(url, { responseType: 'blob' })
 	.pipe(
 	map((result: any) => {
 	return result;
 	})
);
}

			

		

A sample API using C# and ASP.NET Core

		
		
			

			
					
					1
2
3
4
5
6
7
8

					[HttpGet]
[Route("GetMyPdf")]
public IActionResult GetMyPdf()
{
	var pdfPath = Path.Combine(Directory.GetCurrentDirectory(),"sample.pdf");
	byte[] bytes = System.IO.File.ReadAllBytes(pdfPath);
	return File(bytes, "application/pdf");
}

			

		

I used ASP.NET Core and some C# here. Don’t worry; you can do this in Python or Ruby or whatever server-side technology you prefer, or any APIs supplying pdf through HTTP endpoints.

Wrap up

The ng2-pdfjs-viewer component is a powerful tool to display PDF files without losing the user experience. If you are a student programmer who is building a pdf book library angular app or an enterprise programmer who wants to display a PDF stored away somewhere in SharePoint, this library is useful. The ability to show more than one PDF on the same page also helps with the comparison of different versions of a document. More on that later!

			

			

				
					
							
 	.NET

	Angular

	Data Science

	JavaScript

	Other Development

	Python

	Web

 Subscribe to the Angular RSS feed

	

Automate database deployments - Unlock agility and performance across the full software lifecycle, with database continuous integration, continuous delivery, and shift-left testing that let you rapidly respond to user requirements.

Find out more

 Subscribe for more articles

 Fortnightly newsletters help sharpen your skills and keep you ahead, with articles, ebooks and opinion to keep you informed.

 					

				
			

		

	

	
	

		
		
				
					

 					
						8					
				
	
					26523 views
				
	
					
	
	
	
	
	

				

		

		
		
		
			
				
					
						Rate this article

						Click to rate this post!

[Total: 8 Average: 5]

					

				

			

			

	
	
		
			
							
		

		
			Aneesh Lal Gopalakrishnan

			Aneesh Lal has pioneered a variety of technologies over the last two decades. He authored libraries and apps used by millions of customers and developers worldwide, speaks at developer events, and works with coding academies and open source foundations.
Follow him on Twitter: https://twitter.com/aneeshlalga

			

 Follow Aneesh Lal Gopalakrishnan via

 	

 View all articles by Aneesh Lal Gopalakrishnan
		

	

		

					
 				
					
						Load comments
					

				

			

			

	
				
				Related articles

				
									

	
	
		
					
					
	

Michal Kostrzewski		
		03 November 2017
	

	
	
		
		
		
			
						
					
	

Michal Kostrzewski			
			03 November 2017
		

		
		Hacking Visual Studio

		
		
			
				0									
						

 						
							16						
					
								
						.NET

				
			

		

		
		
			Visual Studio, like any Integrated Development Environment, can host extensions for more specialist languages or development tasks. This sort of work is reasonably straightforward most of the time but occasionally you need functionality that isn't available in the APIs. Michal takes two examples, printing code in an editing window, and gaining access to the Visual Studio Notifications, and explains how to hack Visual Studio to get to the functionality.…			Read more
		
	

	
	
		
			0							
					

 					
						16					
				
						
					.NET

			
		

	

																							

	
	
		
					
					
	

Robert Sheldon		
		07 October 2022
	

	
	
		
		
		
			
						
					
	

Robert Sheldon			
			07 October 2022
		

		
		Introducing the MySQL INSERT statement

		
		
			
				0									
						

 						
							3						
					
								
						MySQL

				
			

		

		
		
			In the previous article in this series, I introduced you to the SELECT statement, one of several SQL statements that fall into the category of data manipulation language (DML), a subset of statements used to query and modify data. Another DML statement is the INSERT statement, which lets you add data to MySQL tables, both …			Read more
		
	

	
	
		
			0							
					

 					
						3					
				
						
					MySQL

			
		

	

														

	
	
		
					
					
	

Michael Sorens		
		07 March 2016
	

	
	
		
		
		
			
						
					
	

Michael Sorens			
			07 March 2016
		

		
		The Zen of Code Reviews: Review As If You Own the Code

		
		
			
				0									
						

 						
							27						
					
								
						.NET

				
			

		

		
		
			A code review is a serious business; an essential part of development. Whoever signs off on a code review agrees, essentially, that they would be able to support it in the future, should the original author of the code be unavailable to do it. Review code with the energy you'd use if you owned the code. Michael Sorens runs through the principles of reviewing C# code.…			Read more
		
	

	
	
		
			0							
					

 					
						27					
				
						
					.NET

			
		

	

																																				
				
																																															
					
	Tags
.NET, angular, automate, c#, ng2-pdfjs-viewer, PDF, pdfjs
	

 Simple Talk

 	FAQ
	Author AI Usage Policy
	Sitemap
	About Simple Talk
	Contact Us

